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based radiomics and deep
learning with clinical data to
predict response in breast
cancer patients treated with
neoadjuvant chemotherapy
Wu Tenghui1†, Liu Xinyi2†, Si Ziyi2, Zhang Yanting2, Ma Ziqian3*,
Zhu Yiwen2* and Gan Ling2*

1Department of Nuclear Medicine, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine,
Xiangyang, China, 2Department of Ultrasound, Xiangyang No.1 People’s Hospital, Hubei University of
Medicine, Xiangyang, China, 3Department of Oncology, The People’s Hospital of Zouping City,
Zouping, China
Objectives: Accurate assessment of NAC efficacy is crucial for determining

appropriate surgical strategies and guiding the extent of surgical resection in

breast cancer. Therefore, this study aimed to design an integrated predictive

model combining ultrasound imaging, deep learning features, and clinical

characteristics to predict pCR in breast cancer patients undergoing NAC.

Methods: A retrospective study was conducted, including 643 pathologically

confirmed breast cancer patients who underwent NAC between January 2022 to

February 2024 from two institutions (Center 1: 372 cases; Center 2: 271 cases).

Ultrasound images before and after NAC were collected for each patient. A total

of 2,920 radiomics features and 4,096 deep learning features were extracted

from the ultrasound images. Multiple machine learning algorithms were

employed to model and validate the diagnostic performance of different types

of features. Finally, clinical data, radiomics, and deep learning features were

integrated to form a fusion model, which was evaluated using receiver operating

characteristic (ROC) analysis.

Results: The combined model achieved the highest predictive performance for

pathological complete response (pCR) across both cohorts. In the internal

validation cohort, it reached an accuracy of 0.892 (95% CI: 0.862–0.912) and

an AUC of 0.901 (95% CI: 0.854–0.948). In the external cohort, it maintained

strong performance with an accuracy of 0.857 (95% CI: 0.822–0.928) and an

AUC of 0.891 (95% CI: 0.848–0.934), significantly outperforming the individual

models (DeLong test, p < 0.01).The deep learning model showed solid

performance with accuracies of 0.875 and 0.833 in the internal and external

cohorts, respectively, and AUCs of 0.870 and 0.874. The radiomics model

displayed moderate accuracy and AUC in both cohorts, while the clinical

model showed the lowest predictive capability among the models, with

accuracy and AUC values around 0.67 in both cohorts.
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Conclusions: The combined model, integrating clinical, radiomics, and deep

learning features, demonstrated superior predictive accuracy for pCR following

neoadjuvant chemotherapy (NAC) in breast cancer patients, outperforming

individual models. This integrated approach highlights the value of combining

diverse data types to improve prediction, offering a promising tool for guiding

NAC response assessment and personalized treatment planning.
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1 Introduction

Breast cancer remains one of the most prevalent malignancies

among women worldwide and is a leading cause of cancer-related

mortality (1). Neoadjuvant chemotherapy (NAC) is widely

employed as a first-line treatment strategy to downstage tumors

before surgical intervention. Achieving a pathological complete

response (pCR) following NAC is considered an effective

surrogate endpoint for predicting long-term prognosis in breast

cancer patients. Those who attain pCR have reported 5-year

survival rates as high as 85–90% (2, 3).

Despite its benefits, the effectiveness of NAC varies significantly

due to tumor heterogeneity, leading to considerable differences in

pCR rates among different molecular subtypes of breast cancer,

especially in advanced stages or in patients resistant to therapy (4–

6). Approximately 30–50% of breast cancer patients achieve pCR

after completing NAC, as defined by postoperative pathology

(ypT0/is ypN0). Conversely, about 29% of patients exhibit no

response to NAC, and 7.9% experience disease progression post-

treatment, which adversely affects prognosis and increases mortality

rates in advanced cases (2, 3). These disparities not only affect

individual prognoses but also complicate treatment planning and

decision-making processes. Consequently, there is a pressing need

to understand the factors influencing NAC responsiveness and to

develop reliable methods for predicting pCR in order to tailor

individualized treatment strategies effectively.

The choice of surgical options after NAC largely depends on

whether the patient achieves pCR. Some researchers suggest that

patients who reach pCR may opt for breast-conserving surgery to

improve quality of life and outcomes, with some even proposing the

possibility of completely avoiding mastectomy. However, accurately

identifying which patients are suitable for such conservative

treatments remains a challenge in clinical practice. Currently, the

assessment of NAC efficacy in clinical practice predominantly relies

on subjective evaluations using ultrasound (US) and magnetic

resonance imaging (MRI). While these imaging modalities

provide valuable information, they have limitations in accurately

predicting pCR due to factors like inter-observer variability and

limited sensitivity and specificity. Moreover, the gold standard for

determining pCR remains the pathological examination of surgical
02
specimens obtained after NAC, which is invasive and only available

postoperatively. This highlights a critical gap in preoperative

assessment tools that can non-invasively and accurately predict

NAC outcomes, enabling clinicians to optimize treatment plans

before surgical intervention.

The emergence of deep learning and radiomics has opened new

avenues for developing such predictive tools. Radiomics involves

extracting a vast array of high-dimensional features from medical

images, capturing subtle textural and spatial characteristics that are

often imperceptible to traditional manual analysis (7). By modeling

and integrating these features, robust predictive models can be

established. Deep learning, with its powerful automated learning

capability, effectively handles complex non-linear data relationships,

further enhancing the model’s ability to capture abstract and spatial

features, thereby improving the model’s predictive accuracy and

robustness. With advancements in computational power and the

accumulation of large-scale datasets, deep learning–based radiomics

models have demonstrated substantial potential for clinical

applications. The significance of this integration is that the two can

play their relative advantages to describe different types of texture

features, and finally achieve more accurate diagnostic efficiency

through feature combination.

Several studies have demonstrated the feasibility of such

approaches using other imaging modalities. For instance, Huang

et al. (8) developed a predictive model using multimodal

longitudinal MRI images for different pathological subtypes of

breast cancer, achieving excellent diagnostic performance (AUC =

0.89), Song et al. also verified the feasibility of the method in

prostate cancer (9). However, the reliance on MRI images across

multiple time points limits the model’s applicability, given the

higher cost, longer scanning time, and reduced accessibility of

MRI compared to other imaging modalities.In clinical practice,

ultrasound is the most commonly used and recommended modality

for monitoring and evaluating NAC response in breast cancer due

to its accessibility, cost-effectiveness, and real-time imaging

capabilities. Despite these advantages, the quality of evidence for

using ultrasound data to predict the efficacy of NAC in different

pathological subtypes is still poor, and the method using radiomics

combined with deep learning has not been explored (10). Therefore,

the aim of this study is to develop a predictive model based on
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radiomics and deep learning using US images to predict patients’

pCR status. This model seeks to provide a non-invasive, practical

tool that can assist clinicians in making more informed decisions

regarding surgical planning and personalized treatment strategies.
2 Materials and methods

2.1 Patient information and clinical data

This retrospective study adhered to the Declaration of Helsinki

and received ethical approval from Xiangyang First People’s

Hospital and Zou Ping Hospital, with informed consent waived

due to its retrospective nature. Data collection at Xiangyang First

People’s Hospital involved 372 patients between January 2022 and

February 2024, including 146 patients who achieved pathological

complete response (pCR) and 226 patients who did not. These

patients were divided into a training cohort and an internal

validation cohort in a 7:3 ratio using stratified random sampling.

Zou Ping Hospital collected data from 271 patients between March

2022 and February 2024, comprising 107 pCR and 164 non-pCR

patients, which served as an external test cohort.

Inclusion criteria were as follows: (a) confirmed diagnosis of

invasive breast cancer; (b) completion of NAC treatment followed

by surgery; (c) availability of US data both before and at the

midpoint of NAC; and (d) comprehensive clinical and

pathological data. Although histological subtyping (e.g., ductal vs.

lobular carcinoma) was not explicitly used as an inclusion criterion,

the vast majority of patients were diagnosed with invasive

ductal carcinoma.
Frontiers in Oncology 03
Exclusion criteria included: (a) diagnosis of bilateral breast

cancer; (b) incomplete or non-standardized NAC treatment or

surgery; (c) poor US quality or absence of US data; and (d)

presence of metastatic disease or a secondary malignancy.

Patient demographic data, including age and clinical symptoms,

were obtained from medical records. Collected clinical data

included: (a) age; (b) clinical stage; (c) estrogen receptor (ER)

status; (d) progesterone receptor (PR) status; (e) HER-2 status;

and (f) Ki-67 status. The comprehensive data screening and

collection workflow is illustrated in Figure 1.
2.2 Experimental methods

2.2.1 Data processing
Breast ultrasound examinations were conducted by five

radiologists with over 10 years of experience in breast ultrasound

imaging, both prior to intervention and at the midpoint of NAC.

Imaging was performed using four different ultrasound systems

(Resona 7, Mindray, China; Philips Healthcare, USA; LOGIQ E20,

GE, USA; and Samsung, Korea), each equipped with a linear array

transducer. To ensure consistency, all images were acquired at the

largest cross-sectional area of the tumor.

To reduce variability introduced by different ultrasound

machines, all images were rescaled to a uniform resolution of 512

× 512 pixels using linear interpolation. The 3-sigma method was

applied to remove outlier pixel values. All segmentation was

manually performed by two radiologists under the supervision of

a senior breast imaging expert using 3D Slicer software. Radiologists

were blinded to outcomes, and delineation was performed in
FIGURE 1

Diagram of the experimental inclusion-exclusion criteria.
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consensus. The largest cross-sectional images from both pre-NAC

and mid-NAC were used for segmentation and saved as ROI-

original images.

To train the deep learning model, ROI-original images were

further resampled to 128 × 128 pixels to generate a uniform dataset

(ROI-resample) for input. This standardization ensured a

consistent representation of tumor morphology and enhanced

model generalizability.

2.2.2 pCR prediction model
To construct the clinical model, clinical variables showing

statistical significance (p < 0.05) in univariate analysis of the

training cohort were selected and input into eight supervised

machine learning algorithms. The radiomics model was developed

by extracting features from the ROI-original images using the

PyRadiomics library. Filters such as Laplacian of Gaussian and

wavelets were applied to generate derivative images, from which

1,216 features per ROI were extracted. Categories included shape-

based, first-order, GLCM, GLRLM, GLSZM, GLDM, and NGTDM

features. Each patient contributed two ROIs (pre- and mid-NAC),

resulting in 2,438 radiomics features per patient.

To construct the deep learning model, a ResNet-50 architecture

was trained using the ROI-resample dataset. Probability-based

predictions were generated through a softmax activation function

in the final layer. The model with the best internal validation

performance was selected. Deep features were extracted from the

final fully connected layer for further integration.

To address class imbalance between pCR and non-pCR groups

(~39% vs. ~61%), the Synthetic Minority Oversampling Technique

(SMOTE) was applied to the training cohort. For algorithms that

support class weighting, such as logistic regression and XGBoost,

balanced class weights were also utilized.

The composite (Combine) model was constructed by

integrating clinical, radiomics, and deep learning features using

early feature-level fusion. Eight machine learning algorithms were

employed for model building. All models were trained on the

training cohort and evaluated on both internal and external test

sets. Model calibration was assessed using calibration curves and

Brier scores. Clinical utility was evaluated using decision curve

analysis (DCA). The complete experimental workflow is

summarized in Figure 2.

2.2.3 Statistical analysis
Statistical analysis and model construction were performed

using R (version 4.1.3) and Python (version 3.6.2). For

continuous variables, the Kolmogorov-Smirnov test was employed

to assess normality. Depending on the distribution, either the t-test

or the Mann-Whitney U test (using SciPy version 1.7.0) was used to

compare differences between the two cohorts. For multivariate

analysis, logistic regression was applied to evaluate associations

between clinical variables and outcomes. The p-values were

adjusted using the Benjamini-Hochberg correction to control for

multiple comparisons, ensuring statistical rigor. Categorical

variables were analyzed with the chi-square test to identify

significant associations.
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To assess the agreement between predicted probabilities and

actual outcomes, model calibration was evaluated using calibration

curves and Brier scores. Calibration curves were generated by

plotting the predicted probabilities against observed event rates.

The optimal classification threshold was determined based on the

Youden index, maximizing the sum of sensitivity and specificity on

the ROC curve. To further explore the clinical value of the model

across different probability thresholds, DCA was performed, which

estimates the net benefit of using the model in clinical decision-

making compared to treating all or no patients.

To evaluate model performance, 95% confidence intervals (CIs)

for the AUC were calculated using a bootstrapping approach with

1,000 iterations, providing robust interval estimates. Using the

selected clinical features, a predictive model was developed using

machine learning algorithms optimized for diagnostic

accuracy.ROC curves were used to visually demonstrate the

predictive ability of each model—the clinical, deep learning,

radiomics, and composite models. Each model was tested on both

internal and external validation sets to assess generalizability and

predictive performance across different datasets. The DeLong test

was conducted to compare the AUCs between models, allowing for

statistical validation and comparison of their predictive capabilities.
3 Results

3.1 Baseline characteristics of patients

Between January 2022 and February 2024, a total of 372 patients

were included in the primary cohort from Xiangyang First People’s

Hospital, and 271 patients were included in the external validation

cohort from Zou Ping Hospital (March 2022 to February 2024). In the

primary cohort, 146 patients (39.2%) achieved pathological complete

response (pCR), while 226 patients (60.8%) did not. Similarly, in the

validation cohort, the pCR rate was 39.5% (107 out of 271), with the

remaining 164 patients (60.5%) not achieving pCR.

Table 1 summarizes the clinical characteristics of all patients in

this study. The primary and validation cohorts exhibited similar

baseline characteristics, with no significant differences observed in

age or clinical stage between pCR and non-pCR patients across both

cohorts (p = 0.631 and p = 0.682 in the primary cohort; p = 0.317

and p = 0.231 in the validation cohort, respectively). However,

significant differences were noted in several molecular markers,

including estrogen receptor (ER), progesterone receptor (PR),

human epidermal growth factor receptor 2 (HER2), and Ki-

67 status.

ER and PR positivity were more prevalent among non-pCR

patients. In the primary cohort, ER positivity was observed in 69.9%

of non-pCR patients compared to 44.5% in pCR patients (p < 0.01).

Conversely, HER2 positivity was significantly higher in the pCR

group, with rates of 67.8% in the primary cohort and 72.9% in the

validation cohort (p < 0.01). Additionally, Ki-67 positivity, an

indicator of cellular proliferation, was more common among pCR

patients, showing significant differences in both cohorts (p = 0.036

in the primary cohort and p = 0.01 in the validation cohort).
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Regarding molecular subtypes, the HER2-positive subtype had

the highest pCR rate, with 66.4% of pCR patients in the primary

cohort belonging to this subtype, whereas the hormone receptor-

positive/HER2-negative (HR+/HER2−) subtype had the lowest pCR

rate, accounting for only 11.6% of pCR patients (p < 0.01). These

findings highlight significant associations between ER, PR, HER2,

and Ki-67 status with pCR, underscoring the importance of these

biomarkers in predicting NAC response.
3.2 Model performance

Achieved an accuracy (ACC) of 0.892 (95% CI: 0.862–0.912)

and an area under the curve (AUC) of 0.901 (95% CI: 0.854–0.948).

This model consistently outperformed the individual models. The

deep learning model recorded an ACC of 0.875 (95% CI: 0.818–

0.932) and an AUC of 0.870 (95% CI: 0.833–0.907), while the

radiomics model had an ACC of 0.797 (95% CI: 0.791–0.913) and

an AUC of 0.831 (95% CI: 0.788–0.873). The clinical model showed

the lowest predictive capability, with an ACC of 0.674 (95% CI:

0.628–0.741) and an AUC of 0.682 (95% CI: 0.629–0.736).

In the external validation cohort, the combined model

maintained high performance, achieving an ACC of 0.857 (95%

CI: 0.822–0.928) and an AUC of 0.891 (95% CI: 0.848–0.934).
Frontiers in Oncology 05
The deep learning model demonstrated robust external

generalizability with an ACC of 0.833 (95% CI: 0.791–0.875)

and an AUC of 0.874 (95% CI: 0.838–0.909). The radiomics

model also performed well, with an ACC of 0.801 (95% CI:

0.788–0.859) and an AUC of 0.822 (95% CI: 0.778–0.866).

However, the clinical model recorded the lowest external

validation performance, with an ACC of 0.655 (95% CI: 0.601–

0.709) and an AUC of 0.666 (95% CI: 0.612–0.721).

DCA was also conducted to assess the net clinical benefit across

a range of threshold probabilities. The combined model provided

the highest net benefit in both validation cohorts, supporting its

clinical utility in decision-making contexts (Figure 3). To evaluate

the reliability of probability-based predictions, calibration analysis

was performed using calibration curves (Figure 4). The combined

and deep learning models demonstrated good calibration

performance, with curves closely aligned to the ideal diagonal and

low Brier scores in both internal and external validation sets (see

Supplementary File S1).

For final model comparisons, DeLong’s test was used to

compare the AUCs among the clinical, ResNet50, radiomics, and

combined models. The results showed that the combined model

significantly outperformed the clinical model (p < 0.01), and also

demonstrated superiority over the radiomics and standalone deep

learning models (see Figure 5, Table 2).
FIGURE 2

Flow chart. The flowchart shows the study design.
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FIGURE 3

Decision Curve Analysis (DCA) for Predictive Models. (A) DCA curves of six algorithms in the internal validation cohort; (B) DCA results in the external
validation cohort. The y-axis represents the net benefit, and the x-axis denotes the threshold probability.
TABLE 1 Characteristics of patients in the training and test cohort.

Characteristics Primary cohort (N=372) Validation cohort 1 (N=271)

pCR (n=146) N-pCR (n=226) P Value pCR (n=107) N-pCR (n=164) P Value

Age 48.93 ± 8.73 49.21 ± 9.66 0.631 47.91 ± 10.31 49.13.39 ± 9.78 0.317

Clinical Stage (%) 0.682 0.231

I 2 (1.37%) 1 (0.44%) 1 (0.9%) 2 (1.2%)

II 97 (66.4%) 152 (67.3%) 67 (62.6%) 108 (65.9%)

III 47 (32.2%) 73 (32.3%) 39 (36.4%) 54 (32.9%)

ER Status (%) <0.01 <0.01

Positive 65 (44.5%) 158 (69.9%) 63 (58.9%) 121 (73.8%)

Negative 67 (45.9%) 82 (36.3%) 44 (41.1%) 43 (26.2%)

PR status (%) <0.01 <0.01

Positive 71 (48.6%) 159 (70.4%) 61 (57.0%) 122 (74.4%)

Negative 68 (46.6%) 74 (32.7%) 46 (43.0%) 42 (25.6%)

HER-2status (%) <0.01 <0.01

Positive
Negative

99 (67.8%)
33 (22.6%)

71 (31.4%)
169 (74.8%)

78 (72.9%)
29 (27.1%)

47 (28.7%)
117 (71.3%)

Ki-67 Status (%) 0.036 0.01

Positive 106 (72.6%) 172 (76.1%) 86 (80.4%) 118 (72.0%)

Negative 26 (17.8%) 68 (23.9%) 21 (19.6%) 46 (28.0%)

Cancer subtype (%) <0.01 <0.01

HR+/Her2- 17 (11.6%) 131 (58.0%) 13 (12.1%) 94 (57.3%)

Her2+ 97 (66.4%) 69 (30.5%) 78 (72.9%) 50 (30.5%)

TN 21 (14.4%) 37 (16.4%) 16 (14.9%) 20 (12.2%)
F
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P-value is derived from the univariable association analyses between the clinicopathologic variables and Bone status. The data marked with * are averaged.
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4 Discussion

Accurate prediction of pathological complete response (pCR)

following neoadjuvant chemotherapy (NAC) is essential for

optimizing surgical planning and improving outcomes for breast

cancer patients. Reliable pCR prediction enables clinicians to make

informed decisions about the feasibility of breast-conserving

surgery, potentially avoiding unnecessary mastectomies and their

associated morbidity (11–13). However, traditional reliance on

imaging modalities like MRI and postoperative pathological

examination presents limitations, including limited accessibility,

high costs, and delayed diagnostic timing. Therefore, developing a

convenient, non-invasive, and accurate method to assess pCR

before surgery is a crucial objective in current breast cancer

treatment strategies.
Frontiers in Oncology 07
Recent advances in radiomics and deep learning have opened

new avenues for enhancing the prediction of treatment response.

Radiomics involves extracting high-dimensional quantitative

features from medical images, capturing subtle textural, spatial,

and morphological characteristics that may not be discernible

through conventional imaging analyses (7). Deep learning,

particularly convolutional neural networks (CNNs), can model

complex non-linear relationships within imaging data, thereby

improving predictive accuracy and robustness (14). Integrating

these technologies with ultrasound imaging—a widely available,

cost-effective, and non-invasive modality—offers a practical

solution to overcome the limitations of traditional methods.

Despite this potential, few studies have focused on using

ultrasound-based radiomics models for predicting pCR in

breast cancer.
FIGURE 5

ROC curves for six classification models in both cohorts. (A) ROC curves in the internal validation cohort. (B) ROC curves in the external
validation cohort.
FIGURE 4

Calibration Curve Analysis. (A) Calibration curves for six classifiers in the internal validation set; (B) Dashed diagonal line indicates perfect calibration.
A curve closer to the diagonal suggests better agreement between predicted probability and actual observed frequency of pCR. The XGBoost and
MLP models showed the highest calibration accuracy across both datasets.
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In our study, we aimed to address this gap by developing a

predictive model based on ultrasound images, leveraging the

strengths of deep learning and radiomics to offer a practical and

accessible tool for clinicians. Our model demonstrated strong

performance in predicting pCR, with area under the curve (AUC)

values of 0.907 and 0.862 across different validation cohorts. The

use of ultrasound expands the applicability of predictive models to a

broader patient population, including those in resource-limited

environments or with contraindications to MRI. Beyond its

accessibility, ultrasound’s real-time imaging capability enables

dynamic monitoring of treatment response, further enhancing its

clinical utility. By focusing on a widely available and user-friendly

modality, our approach simplifies the predictive process, reduces

methodological complexity, and facilitates more efficient clinical

implementation. This not only improves workflow efficiency but

also increases the likelihood of broader adoption in clinical practice,

where ease of use is a critical factor for integrating new technologies.

In our cohort, the pCR rate following NAC was approximately

38%, which is slightly higher than the 26–35% typically reported in

previous studies. This discrepancy may be attributed to the

retrospective nature of our study, where patients were selected

based on real-world clinical decisions. As a result, individuals

with more favorable baseline characteristics—such as earlier-stage

disease or molecular subtypes known to be more responsive to NAC

—were more likely to be included. Moreover, the relatively limited

sample size may have contributed to this deviation through

statistical variability.Despite this potential selection bias, the

reliability of our ultrasound-based radiomics model remains

robust, as it leverages high-dimensional imaging features that are

less influenced by subjective clinical judgment. This objectivity

supports the model’s potential for broader clinical applicability

and generalizability.

Currently, clinical evaluation of NAC response often includes

biomarkers such as estrogen receptor (ER), progesterone receptor

(PR), and human epidermal growth factor receptor 2 (HER2) status,

which significantly influence treatment outcomes. Research has

shown that molecular subtypes like triple-negative and HER2-

positive breast cancers are more likely to achieve pCR compared

to hormone receptor-positive tumors (15–20). Accordingly, our
Frontiers in Oncology 08
study incorporated these molecular subtypes as key clinical

variables in the model development process. Univariate and

multivariate logistic regression analyses revealed significant

associations between molecular subtype, tumor grade, and the

likelihood of achieving pCR (P < 0.05, Table 1), aligning with

findings from previous research. However, predictive models

based solely on traditional clinical indicators demonstrated

limited accuracy (AUC of clinical feature model = 0.73, 0.69).

This limitation could be due to the inherent complexity of tumor

biology, where molecular and imaging markers alone may not fully

capture the heterogeneity of treatment response. Additionally,

certain clinical parameters, such as Ki-67 proliferation index and

histological grade, may not always be reliably assessed due to

sampling errors or variability in pathological interpretation (21,

22). These challenges underscore the necessity for advanced

imaging-based models that integrate both clinical and imaging

data to enhance predictive accuracy.

Radiomics research, leveraging high-throughput data and

advancements in CNN-based deep learning, has significantly

enhanced the non-invasive prediction of tumor biological

behavior. Traditional radiomics approaches have demonstrated

promise in identifying imaging features correlated with treatment

outcomes, such as predicting pCR following NAC (10, 23, 24).

However, our study introduces several methodological and clinical

innovations that improve predictive accuracy and applicability

beyond prior efforts.

Firstly, our model utilizes ultrasound imaging instead of MRI,

which many existing models rely upon. Ultrasound offers

substantial practical advantages due to its widespread availability,

cost-effectiveness, and non-invasive nature, making it highly

suitable for routine clinical practice. By integrating radiomics

with deep learning, our model captures high-dimensional imaging

features that are often undetectable through conventional analyses,

enhancing the precision of pCR prediction in breast cancer patients

undergoing NAC. The model’s strong performance metrics, with

AUC values of 0.907 and 0.862 across different validation cohorts,

underscore its effectiveness and potential for clinical application.

Secondly, we address the limitations of traditional radiomics

models in capturing abstract and non-linear relationships within
TABLE 2 Predictive model performance effectiveness.

Model Accuracy AUC Delong test*

Internal validation
cohort

External
Validation

Internal validation
cohort

External
Validation

Internal validation
cohort

External
Validation

Combine 0.892
(0.862,0.912)

0.857
(0.822,0.928)

0.901
(0.854,0.948)

0.877
(0.834,0.919)

0.002 0.003

Deep
learning

0.875
(0.818,0.932)

0.833
(0.791,0.875)

0.870
(0.833,0.907)

0.834
(0.808,0.889)

0.002 0.014

Radiomics 0.797
(0.791,0.913)

0.801
(0.788,0.859)

0.831
(0.788,0.873)

0.822
(0.778,0.866)

0.019 0.029

Clinic 0.674
(0.628,0.741)

0.655
(0.601,0.709)

0.682
(0.629,0.736)

0.666
(0.612,0.721)

– –
1. DeLong test is performed with Clinic as the benchmark, and the 95% confidence interval is listed for AUC and ACC, respectively. 2. All results show the best model results in internal validation
cohort AUC.
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imaging data by incorporating CNNs. CNNs have the unique ability

to extract complex spatial features from medical images through

convolutional and pooling operations, analyzing relationships

between distant pixels (25, 26). This capability provides deeper

insights into tumor heterogeneity—a significant challenge in

predicting treatment response in breast cancer. Furthermore, we

enhanced the robustness and reliability of our predictive model

through ensemble learning by combining radiomics and deep

learning-derived features. In performing ensemble learning, we

tested a variety of model structures, and the results showed that

the XGBoost algorithm model had the highest accuracy in the

internal validation set (Supplementary File S1). Employing the

XGBoost algorithm, known for effectively handling non-linear

and complex data interactions (27, 28), we developed the

combined model. This ensemble model achieved impressive

AUCs of 0.901 and 0.891 across two independent centers,

demonstrating both its generalizability and clinical strength. The

multicenter validation significantly enhances the external validity of

our results. The DeLong test (P < 0.05) revealed significant

differences between our ultrasound-based model and traditional

clinical risk models, emphasizing the necessity of incorporating

advanced imaging techniques into predictive modeling.

To address the “black box” nature of deep learning, we

incorporated Gradient-weighted Class Activation Mapping (Grad-
Frontiers in Oncology 09
CAM) into our study to visually interpret which tumor regions the

model prioritized for prediction (Figure 6). This technique

generates heatmaps that indicate the areas most influential in the

model’s decision-making. For interpretability, we further utilized

SHAP plots (Figure 7) to reveal the decision-making process of the

optimal model (internal validation set). As a novel visualization

tool, SHAP showed that among the top 20 features, clinical features

were all considered and prioritized by the model, with molecular

phenotypes like Ki-67 and HER2 positively correlated with pCR

probability, consistent with previous research. Notably, both deep

learning and radiomic features were among the top 20, validating

our integrated learning strategy that combines different types of

features. Importantly, clinical reviewers who evaluated the SHAP

plots confirmed not only the intuitive alignment of high-impact

variables—such as HER2 and Ki-67—with their clinical

expectations, but also found the explanations actionable in

supporting individualized treatment discussions. Feedback

indicated that the clear ranking and directionality of feature

contributions could help reinforce clinical decision-making,

particularly when used alongside other interpretable tools like

Grad-CAM.

In addition to evaluating discriminative performance via AUC,

we assessed the calibration of our model’s predicted probabilities.

Calibration curves showed a strong agreement between predicted
FIGURE 6

Grad-CAM Visualization of Deep Learning Model Attention in Pre- and Post-NAC Ultrasound Images. This figure demonstrates the deep learning
model’s attention maps using Gradient-weighted Class Activation Mapping (Grad-CAM) on tumor ultrasound images before and after neoadjuvant
chemotherapy (NAC). (A1, A2) Pre- and post-NAC ultrasound and Grad-CAM images, respectively, of a 53-year-old patient who did not achieve pCR.
The Grad-CAM heatmap (A2) highlights strong peripheral activations, particularly on the upper tumor border.B1, B2 Corresponding post-NAC
ultrasound and Grad-CAM images of the same non-pCR patient. The attention remains at the edge but appears more diffuse, indicating persistent
residual tumor.C1, C2 Pre-NAC ultrasound and Grad-CAM visualization of a 49-year-old patient who achieved pCR. The heatmap (C2) shows
dispersed and weak activations across the tumor, suggesting limited model attention toward aggressive patterns.(D1, D2) Post-NAC ultrasound and
Grad-CAM of the same pCR patient. The model’s attention in D2 is minimal and centrally located, aligning with radiologic signs of tumor
regression.Dashed lines represent the maximal tumor diameters measured during routine clinical evaluation. Tumor sizes were A = 2.24 cm, B = 2.61
cm (non-pCR case), and C = 1.08 cm, D = 0.68 cm (pCR case), respectively. These measurements further validate model attention correlates with
tumor shrinkage patterns.
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and actual pCR probabilities across both internal and external

cohorts, suggesting that the model not only distinguishes

outcomes effectively but also provides reliable probability

estimates. Furthermore, DCA demonstrated that our integrated

model yielded a greater net clinical benefit across a wide range of

threshold probabilities, compared with models based solely on

clinical or radiomic features. These findings underscore the

practical value of our approach, indicating that the model’s high

discriminative power is matched by strong calibration and tangible

clinical utility.

In addition to visual interpretability, we conducted calibration

curve analyses (Figure 4) and decision curve analysis (DCA,

Figure 7) to further evaluate the clinical reliability and practical

value of our model. Calibration curves demonstrated that the

predicted probabilities aligned well with the actual outcomes in

both internal and external validation sets, as reflected by Brier

scores of 0.102 and 0.109, respectively, supporting the model’s

reliability. Moreover, DCA showed that the combined model

consistently provided the highest net benefit across a wide range

of threshold probabilities, confirming its strong clinical utility in

decision-making scenarios. Notably, the optimal probability

threshold for distinguishing pCR from non-pCR cases may vary

depending on the clinical context. In our analysis, threshold values

between 0.4 and 0.7 offered the best balance between sensitivity and

specificity, as observed from DCA performance, and corresponded

to the range where net clinical benefit was maximized across most

patient scenarios. This range was selected based on maximizing
Frontiers in Oncology 10
clinical utility while maintaining interpretability for real-

world application.

Our model demonstrated excellent performance in predicting

pCR, providing a more accessible and cost-effective alternative to

MRI-based models. This is particularly important in routine clinical

settings where resource constraints or contraindications to MRI

may limit its use. Additionally, the use of ultrasound imaging has

the potential to expand the applicability of predictive models to a

broader patient population, including those in resource-limited

settings. Beyond its accessibility, ultrasound enables clinicians to

monitor treatment response dynamically, further enhancing its

clinical utility.

Furthermore, our model demonstrates not only excellent

performance in terms of discrimination and calibration but also

delivers consistent net benefit and clinical interpretability through

robust visual explanation tools. This positions the model as a

promising, scalable, and user-friendly solution for preoperative

pCR prediction, particularly in resource-limited or MRI-

constrained clinical environments. By focusing on ultrasound—a

widely accessible and low-cost modality, we further simplify model

deployment and enhance feasibility for routine integration into

clinical workflows.

Despite the promising results of our study, several limitations

should be acknowledged. First, the model relies on manual tumor

segmentation for feature extraction, which introduces potential

variability due to operator dependency. In this study, all

segmentations were performed in consensus by two experienced
FIGURE 7

SHAP Plot. The SHAP values illustrate each feature’s contribution to the prediction outcome, providing insight into feature importance and the
model’s interpretability.
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radiologists to mitigate inter-observer variability. However, we

acknowledge that inter-observer agreement was not formally

quantified, which may impact reproducibility. This limitation has

been noted, and future studies will incorporate quantitative

evaluation of segmentation consistency using standard metrics

such as the Dice Similarity Coefficient. Moreover, although

manual delineation remains common in radiomics research, the

development of automatic or semi-automatic segmentation

methods will be critical to improve reproducibility, reduce labor,

and enhance clinical applicability. We plan to explore these

approaches in subsequent work.

Second, while our use of ultrasound imaging offers practical

advantages such as accessibility and cost-effectiveness, ultrasound is

inherently operator-dependent, and variations in image acquisition

and quality could affect radiomic feature extraction and model

performance. This variability underscores the importance of

standardizing ultrasound scanning protocols and ensuring

adequate training across institutions to promote consistency and

reduce noise in future multicenter implementations. Notably, in our

preprocessing, we implemented uniform image resampling and

pixel normalization strategies to reduce inter-equipment

variability, thus improving the consistency of feature extraction.

Third, although our cohort included only patients with

confirmed invasive breast cancer who underwent NAC, we did

not further stratify cases based on molecular subtypes such as

hormone receptor (HR) or HER2 status. Certain subtypes—such

as HER2-negative Luminal A—are less responsive to NAC and are

often not recommended for such treatment. However, since this

was a retrospective study, all patients had already received NAC

based on clinical judgment and established treatment guidelines.

This real-world selection process likely excluded low-response

subtypes and reduced potential molecular-level bias. This is

supported by our data: while HR+/HER2− patients accounted for

approximately 38.5% of the total cohort, they represented only

11.6% of the pCR group, consistent with their known lower

chemosensitivity. In contrast, HER2-positive and triple-negative

breast cancer (TNBC) patients accounted for 46.8% and 15.0% of

the cohort, respectively, and demonstrated significantly higher pCR

rates, in alignment with existing clinical evidence. These

distributions are highly consistent with real-world NAC-treated

populations, suggesting that our cohort is representative and

clinically relevant. Nevertheless, future studies should consider

incorporating molecular subtyping more explicitly into model

development to further improve performance across

heterogeneous tumor biology.

Finally, while our model demonstrated strong predictive

performance across two independent centers, the relatively

limited sample size and geographic diversity may restrict its

generalizability to broader populations. To address this, we plan

to expand our external validation to include geographically and

ethnically diverse cohorts across multiple clinical centers.

Preliminary collaborations have already been initiated with two

additional tertiary hospitals outside our current regional network,

and ethics approval processes are underway. This will ensure the

robustness and scalability of our model in real-world applications.
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Additionally, future research should continue to explore strategies

that enhance interpretability—such as explainable artificial

intelligence (XAI)—and develop intuitive clinical decision support

tools that facilitate seamless integration into clinical workflows.
5 Conclusions

In this study, we developed a deep learning-based radiomics

model using ultrasound imaging to predict pCR in breast cancer

patients undergoing NAC. Integrating CNN allowed for the

extraction of complex, non-linear imaging features, addressing the

limitations of traditional radiomics approaches in capturing tumor

heterogeneity. By employing ultrasound, we ensured that our model

is both accessible and cost-effective, making it suitable for

widespread clinical application. Additionally, ensemble learning,

through the combination of radiomics and deep learning-derived

features, further enhanced the predictive accuracy and robustness of

the model. The multicenter validation demonstrated strong

generalizability across independent datasets, confirming the

potential of our model in clinical practice.
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