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Hepatocellular Carcinoma (HCC), a highly prevalent malignancy, poses a

significant global health challenge. Its pathogenesis is intricate and

multifactorial, involving a complex interplay of environmental and genetic

factors. Viral hepatitis, excessive alcohol consumption, and cirrhosis are known

to significantly elevate the risk of developing HCC. The underlying biological

processes driving HCC are equally complex, encompassing aberrant activation of

molecular signaling pathways, dysregulation of hepatocellular differentiation and

angiogenesis, and immune dysfunction. This review delves into the multifaceted

nature of HCC, exploring its etiology and the intricate molecular signaling

pathways involved in its development. We examine the role of immune

dysregulation in HCC progression and discuss the potential of emerging

therapeutic strategies, including immune-targeted therapy and tumor-

associated macrophage interventions. Additionally, we explore the potential of

traditional Chinese medicine (TCM) monomers in inhibiting tumor growth. By

elucidating the complex interplay of factors contributing to HCC, this review aims

to provide a comprehensive understanding of the disease and highlight

promising avenues for future research and therapeutic development.
KEYWORDS
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1 Introduction

Liver diseases cause over 2 million deaths annually, accounting for 4% of all global

deaths (1 in every 25 deaths) (1). Currently, liver diseases are the 11th leading cause of

death, but liver-related mortality may have been underestimated (2).

Approximately two-thirds of all liver-related deaths occur in men (1, 3). The main

causes of death are complications of cirrhosis and HCC. Liver diseases are diverse,
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including hepatitis, alcoholic liver disease, metabolic dysfunction-

associated fatty liver disease(MAFLD), cirrhosis, and liver cancer.

These diseases share common features such as varying degrees of

inflammation and liver cell damage (4–6). In the early stages,

symptoms may not be significant, but long-term accumulation

can lead to cirrhosis or even liver cancer (HCC), ultimately

resulting in death (7, 8).

HCC develops through a complex, multi-stage biological

process. MAFLD, alcoholic liver disease, autoimmune hepatitis,

hepatitis B, and hepatitis C (Figure 1) are all potential causes of

HCC (9). Currently, the progression of HCC is often accompanied

by genetic and epigenetic modifications, oxidative stress,

inflammation, and immune involvement (10). Liver cancer stem

cells (LCSC) play a critical role in cancer occurrence, metastasis,

recurrence, and treatment resistance, affecting the dedifferentiation

of mature hepatocytes and bile duct cells (11, 12). The loss of tumor

suppressor proteins p53/p21 leads to the dedifferentiation of mature

liver cells into progenitor-like cells, which further develop into HCC

with gene mutations in the Wnt and Notch signaling pathways (12).

The insulin-like growth factor (IGF) signaling pathway is involved

in the occurrence, progression, and metastasis of HCC (13).

Moreover, signaling pathways controlling growth factor receptors

(such as FGFR, TGFA, EGFR, and IGFR), cytoplasmic

intermediates (such as PI3K-AKT-mTOR, RAF/ERK/MAPK),

and key cell differentiation pathways (such as Wnt-catenin, JAK/

STAT, Hippo, Hedgehog, and Notch) all influence the progression

of HCC (14). In recent years, the greatest focus in cancer treatment

has been on tumor-associated macrophages and liver

cancer immunotherapy.

This review will provide a comprehensive understanding of the

pathogenesis of liver diseases, current research advancements in

cancer treatment, and future perspectives, offering clinical

researchers a theoretical foundation and reference for potential

therapeutic targets in treating liver cancer patients.
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2 Pathogenesis of HCC

2.1 Alcoholic liver disease

Currently, 43% of the global population consumes alcohol, and

excessive drinking is a significant risk factor for disease and death

worldwide (15, 16). It is reported that alcohol increases the

mortality rate related to liver disease by 260 times, cardiovascular

disease by 3.2 times, and cancer by 5.1 times (17). About 35% of

patients with alcohol use disorder (AUD) develop various forms of

ALD (18). ALD often coexists with viral hepatitis and MAFLD.

However, compared to liver diseases of other causes, alcoholic liver

disease is more likely to progress to cirrhosis. Additionally, with the

rising global prevalence of obesity and type 2 diabetes, alcohol-

related liver damage is increasing. Obesity and metabolic syndrome

can synergistically exacerbate the severity of ALD at all stages (19).

Drinking alcohol also increases the risk of liver cancer for those

who are overweight, obese, or have liver cirrhosis associated with

MAFLD (20, 21). Without global interventions, ALD-related

mortality is expected to rise significantly.

Alcohol metabolism in the body occurs through oxidative and

non-oxidative pathways. The oxidative pathway involves alcohol

dehydrogenase (ADH), microsomal cytochrome P450 enzymes

(CYP450), and peroxidases.
2.2 Metabolic dysfunction-associated fatty
liver disease

Currently, metabolic dysfunction-associated fatty liver disease

(MAFLD) affects one-quarter of the global adult population (22,

23). MAFLD can also occur in individuals without obesity or

metabolic syndrome, possibly due to certain metabolic disorders,

such as insulin resistance(IR) or increased cardiovascular risk.

Excess fatty acids lead to IR and liver steatosis, which eventually

cause liver cell damage, inflammation, fibrosis, and other

pathological changes due to oxidative stress and lipid

peroxidation (24). The mechanisms of MAFLD pathology are

varied, including oxidative stress, ER stress, and lipotoxicity (25).

2.2.1 Lipid accumulation
When energy intake exceeds consumption, the excess energy is

stored as lipids in organs throughout the body (26–28). MAFLD is

formed through ectopic lipid accumulation. The steatosis in

MAFLD is triggered by the excessive synthesis of triglycerides

(TG) in liver cells, with 60% of the substrates for synthesis

coming from white adipose tissue (WAT), 26% from de novo

lipogenesis (DNL), and 15% from high-fat and high-sugar diets

(29, 30). Insulin has an anti-lipolytic effect, mediating the storage of

TG in adipose tissue and promoting the esterification and storage of

fatty acids (31). Therefore, IR is a key factor in MAFLD. In the IR

state, insulin’s anti-lipolytic function weakens, WAT is broken

down, leading to a large release of free fatty acids (FFA) (32).

Excess FFAs are then stored in the liver as TG, forming ectopic lipid

deposits and leading to MAFLD (33).
FIGURE 1

Course of HCC pathogenesis.
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DNL is a key pathway for promoting lipid accumulation and is

closely related to IR (34). DNL is regulated by sterol regulatory

element-binding protein-1c (SREBP-1c) and carbohydrate response

element-binding protein (ChREBP) (35, 36). IR activates SREBP-1c

to promote DNL in liver cells (37, 38). Increased glucose

concentrations activate ChREBP to regulate the expression of

acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS),

thus promoting DNL in liver cells (Figure 2) (39).

Dietary factors play a crucial role in the development of

MAFLD (40, 41) A diet high in fats and sugars increases the

expression of genes related to liver fibrosis, inflammation, ER

stress, and adipocyte apoptosis (42). Animal models and human

studies have shown that fructose has selective liver metabolism and

triggers liver stress responses, including activating c-Jun N-terminal

kinase (JNK) and IR, promoting liver fat accumulation, impairing

fatty acid oxidation (FAO), and leading to liver inflammation and

fibrosis (43, 44).

2.2.2 Oxidative stress
DNL converts excess carbohydrates into fatty acids, which are

then esterified into triglycerides (TG) and stored in liver cells. When

energy is insufficient, TG is used to supply energy through b-
oxidation (45). However, an increase in FFA in the liver impairs b-
oxidation and mitochondrial function, leading to oxidative

stress (46).

Peroxisomes are the first enzymes in the fatty acid b-oxidation
system. Peroxisome proliferator-activated receptor alpha (PPARa)
Frontiers in Oncology 03
regulates the activity of three interconnected liver fatty acid

oxidation systems: mitochondrial and peroxisomal b-oxidation
and microsomal w-oxidation pathways (47). Continuous

activation of PPARa can alleviate MAFLD by enhancing FAO

and reducing ROS levels (48, 49). However, many studies have

found that excessive activation of PPARa leads to overconsumption

of liver energy, disproportionately increasing H2O2 and triggering

an inflammatory response (50).

MAFLD patients show damage to mitochondrial ultrastructure,

reduced respiratory chain complex activity, and impaired ATP

synthesis (51). Mitochondria play a crucial role in FAO and

energy supply while producing large amounts of ROS (52).

Mitochondrial dysfunction results from damage to the electron

transport chain (ETC). Over-reduction of components of the

mitochondrial respiratory chain leads to abnormal reactions

between electrons and oxygen, increasing ROS (53). Moreover,

ROS oxidize lipid deposits, releasing lipid peroxides that damage

liver cells. In liver cells, ROS and lipid peroxides further disrupt the

respiratory chain, directly or indirectly causing oxidative damage to

the mitochondrial genome, which leads to more ROS production,

creating a vicious cycle, ultimately leading to inflammation

(Figure 3) (54).

2.2.3 Endoplasmic reticulum stress
ER stress represents a protective cellular reaction, triggering the

unfolded protein response (UPR) in an effort to restore protein

homeostasis. As lipid accumulation increases, ER stress results in a
FIGURE 2

Pathways of lipid accumulation leading to MAFLD.
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buildup of unfolded proteins, triggering the UPR (55) The UPR is

mediated by protein kinase RNA-like ER kinase (PERK), inositol-

requiring enzyme 1 (IRE1), and activating transcription factor 6

(ATF6) (56), all of which regulate lipid storage in the liver (57).

PERK-mediated phosphorylation of eukaryotic initiation factor 2a
(eIF2a) transiently reduces translation, while activating

transcription factor 4 (ATF4) induces the expression of the gene

CCAAT/enhancer-binding protein homologous protein (CHOP)

(58). ATF6 and IRE1 promote the expression of X-box binding

protein-1 (XBP1) and mediate inflammation through the JNK

signaling pathway (59, 60). Additionally, IRE1 can directly

activate JNK, which in turn activates TNF receptor-associated

factor 2 (TRAF2), promoting apoptosis (61).

2.2.4 Lipotoxicity
Lipotoxicity refers to the toxic effects caused by the excessive

deposition of lipids and their metabolites in non-adipose tissues

(62). When the concentration of lipotoxic substances in liver cells

exceeds the transport capacity of the liver, the damage to liver cells

worsens, and The more that the disease advances, the more stages it

will progress to. One of the reasons that IR will stem from the

disease in MAFLD is due to a surge of FFA in plasma. Thus, the

liver cells undergo an overload of FAO, which results in a great

production of ROS, damage to mitochondria, ER stress, and the

addition of inflammation. The lipotoxicity caused by lipid

accumulation drives the further progression of the disease.

Liver parenchymal cells are mainly composed of hepatocytes.

Hepatic stellate cells (HSCs) and Kupffer cells (KCs) are examples of
Frontiers in Oncology 04
non-parenchymal cells that also have a vital job in the development

of NASH. Liver fibrosis is a major cause for the progression of

NASH and usually stems from HSCs. It has been found that the

activation of toll-like receptor 4 (TLR4) by lipotoxic substances

promotes inflammation and fibrotic signaling in HSCs (63). KCs

regulate inflammatory responses in the liver microenvironment and

contribute to liver disease progression by secreting pro-

inflammatory cytokines. In patients with NASH, elevated levels of

oxidized LDL trigger inflammation in KCs (Figure 4) (64).
2.3 Viral hepatitis

Viral hepatitis generally includes five types: hepatitis A, B, C, D,

and E. When liver enzymes increase in the serum, the liver may be

under viral attack. Cytotoxic T cells play a key role in virus clearance

during the acute phase of hepatitis (65).

During viral infection, the virus activates cytotoxic T

lymphocytes (CD8T cells), which produce virus-specific CD8T

cells. Activated virus-specific CD8T cells differentiate into effector

cytotoxic T lymphocytes, which specifically kill virus-infected cells,

leading to liver damage and possibly progressing to liver cancer

(66, 67).

Viral hepatitis includes both acute and chronic forms. In

chronic infections, the body’s immune response is impaired as the

target virus persists. If the host immune response fails to clear the

virus, it leads to immune evasion due to genetic mutations, and viral

proteins suppress immune responses. Acute hepatitis can typically
FIGURE 3

Pathways of MAFLD development due to oxidative stress.
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resolve on its own if the liver cell damage is within recoverable

limits. However, severe acute hepatitis may require medication to

prevent progression to chronic hepatitis.
2.4 Cirrhosis

Chronic liver diseases progress to cirrhosis through an

intermediate stage of liver fibrosis. Liver fibrosis occurs when

ECM proteins (primarily cross-linked types I and III collagen)

accumulate, replacing damaged normal tissue with fibrotic scars

(68). Key mechanisms of liver fibrosis include chronic hepatocyte

damage, epithelial or endothelial barrier injury, the release of

inflammatory cytokines, recruitment of bone marrow-derived

inflammatory cells, macrophage production of TGF-b, and

activation of hepatic myofibroblasts that secrete type I collagen

(COL1A1) to produce excessive ECM (69).

(a) HSCs reside in the liver’s space of Disse and exist in a

quiescent phenotype. Quiescent HSCs are the main storage site for

vitamin A (70, 71), and maintaining this quiescent phenotype is

critical (72). Upon liver injury, quiescent HSCs downregulate the

expression of vitamin A, GFAP, and PPARg, becoming activated (73).

Upon stimulation by fibrogenic mediators, HSCs upregulate a-
smooth muscle actin and other intracellular microfilaments of

myofibroblasts. Activated HSCs migrate to the injury site and

secrete ECM, forming fibrotic scars (74).

TGF-b is the most potent fibrogenic cytokine (75). COL1A1,

COL1A2 proteins, Activin, and Pai1 genes are targets of TGF-b.
Frontiers in Oncology 05
Additionally, IL-6 and IL-17 can induce COL1A1 transcription

through the JAK-STAT3 signaling pathway (76). Connective tissue

growth factor (CTGF) and IL-13 promote COL1A1 expression in

activated HSCs via the TGF-b1 pathway81. Research shows that

inflammation is an essential factor for fibrosis; signals from

damaged hepatocytes alone are insufficient to directly activate

HSCs and cause fibrosis.

(b) Inflammation plays a crucial role in the pathogenesis of liver

fibrosis. Neutrophils are often recruited to the injured liver as the

first responders to clear apoptotic liver cells (77). Neutrophils

release free DNA, which has a strong pro-inflammatory effect

(78). Increased levels of neutrophil chemokines (IL-8, IL-18, IL-

17, CCL3, CCL4, and CXCL2) accelerate liver fibrosis progression

in mice (79, 80).

The activation of macrophages capable of producing TGF-b is a

key factor in liver fibrosis. Kupffer cells are the main source of TGF-

b, and they possess phagocytic and anti-inflammatory functions

(81). Overexpression of myeloid TGF-b genes spontaneously

induces fibrosis in target tissues and organs (including the liver),

indicating that TGF-b is a crucial mediator offibrosis. Furthermore,

the deletion of IL-6, TNF, or IL-1b genes reduces liver fibrosis

progression, as these cytokines synergize with TGF-b (82, 83).

(c)Viral hepatitis (especially hepatitis B and C), alcoholic liver

disease, and MAFLD can all lead to liver fibrosis and eventually

cirrhosis. For example, ALD is a leading cause of cirrhosis and liver

failure. ALD progresses from fatty degeneration to steatohepatitis,

fibrosis, and HCC (84). Alcohol induces liver injury both directly

(through toxic ethanol metabolites) and indirectly (via cytochrome
FIGURE 4

Lipotoxicity causes MAFLD.
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P4502E1, an alcohol-metabolizing enzyme) (85). Alcohol activates

SREBP1 or SREBP2-dependent fatty acid and cholesterol synthesis

(84), leading to the accumulation of lipid droplets in the liver, the

formation of Mallory bodies in ballooned hepatocytes, and alcohol-

induced liver injury (86). Alcohol-induced hepatotoxic damage is

associated with the upregulation of IL-8, IL-17, CXCL1, neutrophil

infiltration, recruitment of bone marrow-derived or liver

macrophages to the alcohol-injured liver, TGF-b secretion, and

activation of myofibroblasts, which further produce excessive ECM

proteins that contribute to liver fibrosis (86–88).
3 Hepatocellular carcinoma

HCC is a cancer that originates in the cells of the liver. Its

pathogenesis involves multiple molecular defects, including cell

cycle dysregulation, changes in DNA methylation, chromosomal

instability, immune modulation, epithelial-to-mesenchymal

transition, increases in HCC stem cells, and dysregulation of

miRNAs (89). While the specific mechanisms driving HCC differ

based on the underlying etiology, the usual progression involves

liver injury, followed by chronic inflammation, fibrosis, cirrhosis,

and ultimately HCC. The release of molecular mediators, including

damage-associated molecular patterns (DAMPs) and pathogen-

associated molecular patterns (PAMPs), by viral particles activates

pattern recognition receptors (PRRs) present on immune cells.

These PRRs encompass Toll-like receptors (TLRs), C-type lectin

receptors, NOD-like receptors, and retinoic acid-inducible gene I

(RIG-I)-like receptors, thereby triggering inflammation. This

chronic inflammation can lead to fibrosis and eventually cirrhosis

(90). Research into molecular mechanisms related to the

development of liver cancer has the potential to identify

therapeutic targets.
3.1 IGF pathway

Aberrant IGF signaling is critically involved in the pathogenesis

and carcinogenic processes of HCC, especially in insulin resistance-

related HCC. Insulin and hyperinsulinemia promote the synthesis

and bioactivity of IGF-1 and IGF-2, regulating energy-dependent

growth processes (91).

IGF-1 has a higher affinity for IGF-1 R, which is associated with

the development of precancerous lesions (92). The binding of IGF-1

to IGF-1 R can regulate stem cell pluripotency and differentiation,

triggering cell proliferation, organ development, and tissue

regeneration (93). Additionally, imbalances in IGF-1/IGF-1 R

signaling can activate MAPK and c-JNK pathways, promoting

HCC cell proliferation and inhibiting apoptosis. IGF-1 also

promotes angiogenesis by increasing the production of VEGF

(94). Plasma levels of IGF-2 are elevated in patients with obesity,

cirrhosis, and HCC (95). During hepatocarcinogenesis, IGF-2 exerts

various carcinogenic functions by binding to IGF-1 R, such as

inhibiting apoptosis, promoting HCC cell proliferation and

migration, and activating angiogenesis (96). Studies indicate that
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IRS-1 is an oncogene with higher expression levels in HCC (97).

Hyperinsulinemia and increased IGF receptor activation lead to the

phosphorylation of IRS-1, triggering the activation of multiple

cytokine pathways, including the PI3 K/AKT/mTOR and MAPK

cascades, which regulate the cell cycle and may potentially enhance

tumor progression in HCC (98).
3.2 Wnt/b-catenin pathway

Wnt/b-catenin signaling pathway is one of the most important

pathways for cell fate differentiation and the overall maintenance of

liver metabolism and homeostasis (99). In patients with cirrhosis

and HCC, Wnt activity is frequently overactivated. Abnormal

activation of Wnt/b-catenin signaling is a hallmark of various

liver pathologies, playing a role in nearly every aspect of liver

biology (100).

At the heart of the Wnt signaling cascade lies b-catenin, a
protein produced from the CTNNB1 gene. The pathway centers on

the interaction between Wnt ligands and the Frizzled/LRP co-

receptor complex, leading to abnormal accumulation of b-catenin
in the nucleus and the expression of multiple transcriptional targets,

including genes responsible for proliferation (e.g., MYC), anti-

apoptosis (e.g., BIRC5), epithelial-mesenchymal transition (e.g.,

Snail), invasion (e.g., MMP), angiogenesis (e.g., VEGF), and

inflammation (e.g., IL-6) (101). b-catenin also functions in cell-

cell adhesion as a component of adherens junctions (100). Hepatic

stellate cells (HSCs) express several Wnt receptors, with

components like Wnt 3a and Wnt 5a promoting HSC activation,

which is crucial in fibrosis development and progression (102).

Therefore, activation of the Wnt/b-catenin pathway regulates tissue

development and regeneration, as well as HCC tumorigenicity and

metastatic potential (99). Increasing evidence links Wnt/b-catenin
to human inflammation (e.g., HBV and HCV) and metabolic

dysfunction (103). It can regulate liver function by modulating

Supplementary regulating cytokines like FAS, and the PPAR family

(104). Additionally, Wnt/b-catenin pathway plays an essential role

in HCC by mediating communication between the distinct

components of the TME, such as immune cells, stem cells, and

non-cellular constituents (105).
3.3 JAK/STAT pathway

As a key downstream signal transducer for numerous cytokines

(such as IL-6) and growth factors (such as EGF), the JAK/STAT

pathway exhibits dysregulation in inflammatory conditions and

HCC.JAK and STAT regulate cell development, with persistent

activation of STAT leading to harmful pathological effects

(106, 107).

Disruption of the GH/JAK2/STAT5 signaling pathway, a result

of inhibited growth hormone (GH) secretion (brought on by

obesity, inflammation, and excessive glucose), results in increased

lipid accumulation in the liver, further leading to MAFLD and

subsequently HCC (108). STAT3 is strongly linked to liver injury,
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playing a significant role in the genesis of liver diseases; a common

activator of STAT3 is IL-6. Activating the IL-6/JAK/STAT3

signaling cascade within the liver amplifies inflammation and

immune responses, furthering the development of HCC (109).
3.4 PI3K/AKT pathway

Upon receptor binding by insulin and inflammation, the PI3K/

AKT pathway is activated, acting as an essential oncogenic

mechanism controlling metabolism, cell growth, and survival.

Inflammation is worsened by dysregulated PI3K/AKT signaling,

which can then lead to type 2 diabetes mellitus and development of

HCC. AKT maintains hepatic lipid homeostasis through regulation

of lipid metabolism. The PI3K/AKT signaling process triggers the

creation of genes for proteins and transcription factors that play a

role in DNL, acetyl-CoA carboxylase a (ACCa) and SREBP1 for

example (110, 111).
3.5 MAPK pathway

MAPK pathway comprises a family of mitogen-activated

protein kinases, including stress-responsive MAPK, c-JNK, and

p38 MAPK (112).

High activation of JNK is evident in HCC, which is related to the

severity of liver histological activity and facilitates carcinogenesis

(113). Increases of ROS, FFA, and TNF-a during chronic

inflammation and obesity triggers activation of JNK in hepatocytes

and macrophages, thus increasing production of inflammatory

cytokines that drives inflammation, apoptosis, liver injury and

fibrosis, and hepatic IR, thereby highlighting the metabolic effects of

the JNK pathway (114). Macrophage overactivation of JNK is

important for pro-inflammatory differentiation and tissue

infiltration, while JNK1 deficiency within macrophages prevents

hepatic IR. JNK directly contributes to reducing fatty acid oxidation

and increasing the potential of steatosis by inhibiting hepatic PPARa
and other genes that it targets. Activation of apoptotic proteins, such

as Bcl-2-L-11, BAD, and Bcl-2-L-4, result in the initiation of

lipotoxicity and apoptosis through the function of JNK (115).

p38a/b MAPK stimulates generation of hepatocytes by

activating pro-apoptotic genes, such as PEPCK, G6Pase, and

PGC-1a. Activation of p38a MAPK has been recently shown to

drive ER stress and IR, accelerating the development of NASH

(112); MAFLD patients who are obese display increased levels of

p38a MAPK, which leads to HCC (116).
3.6 AMPK pathway

An intracellular energy sensor is the AMPK pathway, also

known as AMP-activated protein kinase, which plays an essential

role in maintaining energy homeostasis while also taking part in

various biological processes. Activation of AMPK increases if there

is nutrient deprivation; however, it decreases if there is chronic
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inflammation and MAFLD (117). In order to combat liver injury

and fibrosis, increasing AMPK activity is a viable therapeutic plan.

The loss of AMPK activity would exacerbate liver injury and

fibrosis. The prevention of HSC activation, proliferation, and

migration can improve liver fibrosis by activating AMPK, in

addition to reducing fibrotic stimuli and inhibiting the expression

of fibrotic genes (118). Cell proliferation is regulated through

AMPK’s inhibition of mTOR signaling (119).
3.7 NF-kB and Toll-like pathway

Key inflammatory pathways involved in HCC are the NF-kB
and Toll-like receptor (TLR) pathways (120, 121). Chronic

inflammation, which is a product of saturated fatty acids,

activates pro-inflammatory pathways in adipocytes and

macrophages using a mechanism dependent on TLR4 (115). After

TLR signaling, transcription factors like NF-kB and AP-1 are

activated, increasing secretion of inflammatory cytokines like IL-

6, IL-1b, and TNF-a. This increase in pro-inflammatory cytokines

that occur in hepatocytes will lead to insulin resistance, liver cell

damage, and also the progression of MAFLD, NASH, and HCC.

The gut microbiota’s dependence on TLRs is an important

characteristic when looking at the relationship between

inflammation and obesity. Also, mice without TLR5 have a

distinct gut microbiota profile, showing susceptibility to metabolic

syndrome (122).

NF-kB is a transcription factor that is crucial in the processes of

inflammation, immunity, cell proliferation, and how liver injury,

fibrosis, and HCC occurs (123). IKKa/IKKb, a complex that

directly activates NF-kB, is associated with downstream gene

expression of TLRs and cytokines. Broadly, NF-kB has many

responsibilities in various cellular compartments; it has been seen

to affect hepatocyte survival, inflammation that occurs in KCs, and

also the survival, inflammation, and activation of HSCs (124). If

NF-kB regulates HSC survival, it will also promote the induction

and secretion of inflammatory chemokines such as CCL2 and

CCL3. However, NF-kB has a protective effect in the liver.

Significant inhibition of NF-kB has been shown to cause

hepatocyte apoptosis (125).
3.8 p53 pathway

Integrating cellular stress responses, metabolism, and cell cycle

regulation, the tumor suppressor gene p53 is a key regulatory

element in both liver homeostasis and dysfunction (103, 126).

Moderate and transient p53 activation inhibits both liver lipid

accumulation and inflammation under normal conditions.

However, during cellular stress stemming from inflammation or

NASH, excessive p53 activation can trigger IR, lipid accumulation,

inflammation, and oxidative stress through various mechanisms,

thereby increasing the risk of HCC (127, 128).

Elevated p53 levels can worsen the release of pro-inflammatory

cytokines, which in turn contributes to metabolic abnormalities
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facilitating HCC initiation and progression (129, 130). For instance,

systemic IR is triggered by p53 activation during hyperlipidemia or

excessive caloric intake. The formation of white and brown adipose

tissue is critically regulated by p53, functioning as a suppressor of

adipocyte pre-differentiation (131). Within AT, NF-kB signaling

leads to the expression of pro-inflammatory adipokines following

p53 activation, resulting in hepatic steatosis, IR, and inflammation.

Conversely, reducing p53 activity can diminish inflammation and

ease hepatic steatosis (132). Further, as a major positive regulator of

lipid metabolism in hepatocytes, p53 plays a role in lipotoxicity-

mediated NASH progression (133). Increased hepatocyte apoptosis,

driven by p53 activation, contributes to liver fibrosis, and

eliminating p53 completely negates this fibrotic phenotype,

indicating significant implications for HCC progression (134).
4 Current status and prospects of liver
cancer treatment

Ranking at fifth most common is HCC, hepatocellular

carcinoma, when looking at cancers worldwide. It is the cause of

death for the third leading cause of cancer-related deaths (135).

Currently, tumor resection is the most effective form of treatment

for this cancer; however, in postoperative recovery, the tumor can

have high recurrence (136). In addition, there are only two clinical

drugs that specifically target HCC. Those drugs, sorafenib and

lenvatinib, can extend overall survival by approximately 2-3

months (135). Therefore, new treatments for HCC are urgently

needed, and macrophage-targeted therapy and immunotherapy for

liver cancer have become research hotspots.
4.1 Liver cancer immunotherapy

Cancer immunotherapy triggers systemic and lasting anti-

tumor responses, making it a promising option for treating HCC.

Immune checkpoint inhibitors (ICIs) targeting cytotoxic T-

lymphocyte antigen-4 (CTLA-4), programmed cell death protein-

1 (PD-1), or its ligand programmed cell death-ligand 1 (PD-L1)

have demonstrated therapeutic benefit in HCC 144. Beyond ICIs,

adoptive cell therapy, chimeric antigen receptor (CAR)-modified

immune cells, engineered cytokines, and therapeutic cancer

vaccines represent increasingly viable immunotherapy approaches

in clinical settings (136, 137). The challenges and future directions

in this research field are discussed below.

Immune Checkpoint Inhibitors (ICIs)

Expressed on immune cells, a collection of molecules known as

immune checkpoints finely regulate the level of immune activation.

An important function of these checkpoints is to prevent

autoimmune reactions, a condition characterized by the immune

system attacking the body’s own healthy cells (138). Tumor cells can

over-activate immune checkpoints, leading to immune system

dysfunction. ICIs can relieve this inhibition, reactivating immune

cells to attack and destroy cancer cells.
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ICIs are monoclonal antibodies designed to disrupt the

interaction between immune checkpoint proteins and their

respective ligands. By blocking T-cell inactivation and

reinvigorating immune recognition and attack, ICIs amplify the

anti-tumor immune response. Common ICI targets currently

include PD-1, PD-L1, and CTLA-4 (139). PD-1 is found on the

surface of most immune cell types, predominantly on activated T

cells, NK cells, regulatory T cells (Tregs), myeloid-derived

suppressor cells (MDSCs), monocytes, and dendritic cells (DCs).

This protein can bind to its ligands PD-L1 and PD-L2, which are

expressed in many tumors, including HCC, transmitting inhibitory

signals to T cells and inducing immune evasion by tumor

cells (140).

Acting as a transmembrane receptor on T cells, CTLA-4 is

expressed mainly on dendritic cells and activated T cells. It

participates in the negative regulation of the immune response

after the B7 molecule binds to it. The B7 molecule ligand can be

bound by both CTLA-4 and CD28 (141). Compared to CD28, the

affinity for the ligand is 20-100 times higher in CTLA-4. If the

ligand binds to it, then it inhibits cell proliferation, stops the

production of cytokines, and prevents cell cycle progression.

Competitively, CTLA-4 blocks CD28 for the B7-1/B7-2 ligand;

because of this, CD28 co-stimulation is unable to work.(Figure 5).
4.2 Anti-tumor cell therapy

ACT uses immune cells from the patient or healthy donors to

combat cancer and has become a viable option for cancer treatment

(142). Compared to targeted drugs, ACT can be activated and

replicated within the body, producing a lasting anti-tumor

effect (143).

Traditional immune cell therapies, such as CIK (cytokine-

induced killer) cells, involve culturing a patient’s immune cells

outside the body and reinfusing them to target and kill tumor cells.

The key components of CIK cells are NKT cells, natural killer NK

cells, and cytotoxic T lymphocytes (CTLs). Leveraging adhesion

molecules, CIK cells recognize tumor cells and induce lysis

independent of major histocompatibility complex (MHC)

restriction (144). However, traditional immune cell therapy lacks

specificity, limiting its effectiveness. The key to enhancing immune

cell-mediated tumor killing lies in improving the immune cells’

ability to recognize tumors.

Most tumor cells express certain tumor-specific or tumor-

associated antigens (TSA or TAA). By combining the “antigen

recognition domain (scFv)” of antibodies that recognize these

tumor antigens with components that promote T-cell

proliferation, and transducing them into the patient’s T cells

using gene transfer, the T cells are made to express a CAR. Once

the patient’s T cells are “reprogrammed,” they can produce large

quantities of tumor-specific CAR-T cells upon contact with target

cells, achieving specific killing of tumor cells. This is known as

CAR-T cell therapy. By introducing a synthetically designed CAR

molecule into T cells, CAR-T cells gain a new targeted activation
frontiersin.org

https://doi.org/10.3389/fonc.2025.1526206
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ding et al. 10.3389/fonc.2025.1526206
function, and once reinfused into the patient, these CAR-T cells are

no longer MHC-restricted. Instead, they are activated by binding to

target antigens, efficiently killing tumor cells. This process is

illustrated in Figure 6.

While still under development (145), due to the complexity of

solid tumors and their heterogeneity, finding specific targets for

CAR-T therapy for liver cancer continues to be the focus of

research. One research avenue looks towards using GPC3

(glypican-3) as a target in order to kill HCC (146). Using Tet-On

inducible CD147-CAR-T cells has also shown promise in that these

cells have successfully destroyed several HCC cell lines and

inhibited the growth of cancer in xenograft models (147).

However, all of these targets can be also found in other parts of

the body leading to toxicity. The research moving forward lies in

finding more specific antigens, as well as improving the efficacy and

safety of CAR-T therapy.

Building on CAR-T therapy, research has also extended to

CAR-NK immunotherapy (148, 149), TCR-T (150, 151), and

other advanced approaches that continue to be explored

and developed.
4.3 Macrophage-targeted therapy in liver
cancer

Depending on the signals present in their microenvironment,

macrophages can adopt different polarized states. Primarily, based

on their activation state and function, they are grouped as classically

activated, pro-inflammatory M1 macrophages, or selectively

activated, anti-inflammatory M2 macrophages (152). The

polarization of macrophages towards an M1 phenotype can be

triggered by IFN-g, LPS, or GM-CSF. These M1 macrophages, by

secreting inflammatory cytokines like IL-1, contribute to
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inflammatory responses, defend against intracellular pathogens,

and exhibit anti-tumor effects (153, 154).

In contrast, M2 macrophages are induced by IL-4, IL-13, and

exhibit high expression of CD206, enhanced phagocytic capacity,

and secrete anti-inflammatory cytokines like IL-10 and TGF-b,
facilitating Th2 cell differentiation, immune regulation, repair

functions, wound healing, angiogenesis, and promoting tumor

progression (155).

Among them, M2 TAMs contribute to enhancing the stem cell-

like properties of cancer cells in liver cancer (156, 157). They

participate in the growth of tumor microvessels and lymphatic

vessels by secreting VEGF (vascular endothelial growth factor) and

EGF, promoting tumor cell proliferation (158). Additionally, they

secrete IL-1, CSF-1, MMPs, etc., which facilitate tumor cell

metastasis and invasion (159, 160). M2 TAMs are also involved

in tumor immune evasion regulation by producing IL-10, PGE2,

TGF-b, and they can promote tumor growth by regulating tumor

cell metabolism (Figure 7) (161, 162).

As an important cell type that promotes tumor growth and

metastasis, M2 TAMs can serve as crucial therapeutic targets. Drug

development targeting tumor-associated macrophages can be

approached in three ways: inhibiting the production of tumor-

associated macrophages and promoting their exhaustion (163, 164);

suppressing the recruitment of TAMs; and reprogramming TAMs

to shift from a tumor-suppressive immune state to a tumor-

promoting immune state (transforming M2 to M1) (165, 166).

Besides CAR-T cell therapy, clinical trials are exploring CAR-M

therapy. Genetically engineered macrophages can target CD19 and

CD22 antigens to find tumor cells (167). These CAR-M cells then eat

the tumor cells, release chemicals to change the tumor’s environment,

present tumor antigens to T cells, and boost immune responses (168).

Studies in solid tumors show macrophages effectively destroy tumor

cells via SYK (spleen tyrosine kinase) (169). A viral vector, Ad5/f35,
FIGURE 5

Immune checkpoint inhibitor-related target effects.
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can make macrophages stay in an M1 state in mice, improving T cell

activity and stopping solid tumor growth. However, finding specific

targets on liver cancer cells and engineering macrophages within the

liver environment is hard due to the diversity of liver cancers.

Attention must also be paid to the potential off-target toxicity

and immunogenicity of these treatments (170–172). As CAR-M

technology continues to evolve, developing safer, more reliable, and

more effective CAR-M approaches is essential for translating it into

clinical practice. Whether combining CAR-M with CAR-T, multi-

target kinase inhibitors, and ICIs can synergistically enhance tumor

suppression remains an area for future research.
4.4 Traditional Chinese medicine in liver
cancer treatment

In Traditional Chinese Medicine (TCM), liver cancer falls under

concepts such as “jaundice” and “accumulation.” In the early stages,

liver cancer is often characterized by excess conditions, gradually

progressing to a combination of excess and deficiency, and ultimately

becoming deficiency with excess signs in advanced stages, closely

related to pathological factors such as blood stasis and damp-heat

toxins (173). The research value of TCM in treating liver cancer is of

significant importance in modern pharmacology. For instance,

ginsenoside Rb1 can induce apoptosis and inhibit tumor

progression by mediating mitochondrial autophagy (174). Ginseng

polysaccharides can induce apoptosis in liver cancer cells via the ERK
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pathway, potentially blocking tumor cells at the G0/G1 phase and

inhibiting their proliferation (175). Additionally, interventions with

different concentrations of Astragalus polysaccharides on SMMC-

7721 cells may reduce tumor cell migration and invasion by

inhibiting the activation of the JAK/STAT signaling pathway (176).

Studies have also shown that polysaccharides from Half-leaf Mimosa

can inhibit tumor growth in H22 tumor-bearing mice potentially

downregulating the expression of VEGFA and further suppressing

the VEGF signaling pathway to inhibit tumor angiogenesis (177),.

Many other traditional Chinese medicines have significant research

value in liver cancer treatment, particularly the combination of TCM

formulas, which may yield synergistic effects in therapy.

With the increasing incidence of HCC, the hepatoprotective

effects of TCM are becoming increasingly important. Compared to

conventional drugs, TCM offers advantages such as wide

availability, lower cost, greater stability, and fewer side effects.

Furthermore, numerous studies have demonstrated the liver-

protective effects of TCM extracts through anti-lipid peroxidation

mechanisms. Both hesperidin and Bicyclol have shown promise in

addressing hepatic steatosis. Hesperidin, in in vitro and in vivo

settings, has been shown to alleviate steatosis by upregulating

antioxidant levels through PI3K/AKT-Nrf2 and inhibiting NF-

kB-mediated inflammation (178). Bicyclol, found as an extract

from Schisandra chinensis , possesses a wide variety of

pharmacological activities. Notably, Bicyclol lessens tetracycline-

induced steatosis while also ameliorating hepatic lipid accumulation

and physalin-induced steatosis (179).
FIGURE 6

CAR-T treatment process.
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Therapies derived from TCM present certain obstacles for

treatment of HCC, yet the prevention and early management

benefits are undeniable. Clinical trials have explored several drugs

and treatment strategies but none have resulted in significant

improvement. Sadly, this is also true of later-approved drugs due

to mechanisms of drug resistance. One of the most promising

potential tumor growth inhibitors, Ferroptosis, can impact HCC

development and progression by manipulating intracellular iron

levels and ROS (180). Ferroptosis, however, is understudied in

human clinical trials, and is mainly investigated on animal models.

The evidence for its mechanisms at the molecular level are

relatively limited.

Whether it is possible to clearly distinguish ferroptosis from

other forms of PCD during pathogenesis, and to carry out targeted

prevention and treatment, is also worthy of further investigation.
5 Conclusion and prospects

The liver functions as an immunoregulatory organ, containing a

rich array of adaptive immune cells that can suppress inflammation
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to a certain extent (181, 182). The interactions within the TIME are

intricate, dependent on the populations of immune cells present,

and predictive of how well immunotherapies will function and how

long patients will live. HCC is known to harbor TAMs, MDSCs,

CAFs, TANs, TILs, DCs, and elements of the ECM within its TIME

(183). Compared to other solid tumors, HCC faces a steep climb in

effectively utilizing immunotherapy due to its immunosuppressive

TIME. In HCC, nearly all cell subpopulations and an army of

regulatory processes conspire to advance the tumor’s malignancy.

Macrophage research and advances in immunotherapy have

provided some inroads into managing liver cancer, yet the road to

fully tackling this disease remains beset with many challenges.

Objective response rates can still be too low and adverse treatment

effects occur with discouraging frequency. To surmount these

obstacles and realize personalized precision treatment plans for

each liver cancer patient, there is a clear need to take a bird’s eye

view analysis, evaluate, and predict treatment outcomes, and explore

new combination therapy techniques. Targeting liver-specific

immune environment macrophages with more stable, safe, and

effective immunotherapeutic methods, alongside traditional Chinese

medicine, will further advance the treatment of liver cancer.
FIGURE 7

Mechanism of action of tumor-associated macrophages.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1526206
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ding et al. 10.3389/fonc.2025.1526206
Author contributions

ZD: Writing – original draft, Writing – review & editing. LW:

Writing – review & editing. JS: Writing – review & editing. LZ:

Writing – review & editing. YT: Writing – review & editing. HT:

Conceptualization, Writing – review & editing, Writing –

original draft.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. Grant number 2024B732

was received from the Anhui Postdoctoral Scientific Research

Program Foundation. Grant number AHWJ2022a034 was

received from the Key Program of the Health Commission of

Anhui Province. Grant number SZKJXM202320 was received

from the Suzhou Science and Technology Program. Grant

numbers 2024byzd203 and 2024byzd208 were received from the

Natural Science Foundation of Bengbu Medical University.
Frontiers in Oncology 12
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E, Kamath PS. Global burden
of liver disease: 2023 update. J Hepatol. (2023) 79:516–37. doi: 10.1016/
j.jhep.2023.03.017

2. Griffin C, Agbim U, Ramani A, Shankar N, Kanwal F, Asrani SK.
Underestimation of cirrhosis-related mortality in the medicare eligible population,
1999-2018. Clin Gastroenterol Hepatol. (2023) 21:223–25.e3. doi: 10.1016/
j.cgh.2021.10.036

3. Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the
world. J Hepatol. (2019) 70:151–71. doi: 10.1016/j.jhep.2018.09.014

4. Baumgartner K, Cooper J, Smith A, St Louis J. Liver disease: cirrhosis. FP Essent.
(2021) 511:36–43.

5. Garcia-Pagan JC, Francoz C, Montagnese S, Senzolo M, Mookerjee RP.
Management of the major complications of cirrhosis: Beyond guidelines. J Hepatol.
(2021) 75 Suppl 1:S135–s146. doi: 10.1016/j.jhep.2021.01.027

6. Tincopa MA, Loomba R. Non-invasive diagnosis and monitoring of non-
alcoholic fatty liver disease and non-alcoholic steatohepatitis. Lancet Gastroenterol
Hepatol. (2023) 8:660–70. doi: 10.1016/s2468-1253(23)00066-3

7. Huang DQ, Terrault NA, Tacke F, Gluud LL, Arrese M, Bugianesi E, et al. Global
epidemiology of cirrhosis - aetiology, trends and predictions. Nat Rev Gastroenterol
Hepatol. (2023) 20:388–98. doi: 10.1038/s41575-023-00759-2

8. Huang DQ, Mathurin P, Cortez-Pinto H, Loomba R. Global epidemiology of
alcohol-associated cirrhosis and HCC: trends, projections and risk factors. Nat Rev
Gastroenterol Hepatol. (2023) 20:37–49. doi: 10.1038/s41575-022-00688-6

9. Singal AG, Kanwal F, Llovet JM. Global trends in hepatocellular carcinoma
epidemiology: implications for screening, prevention and therapy. Nat Rev Clin Oncol.
(2023) 20:864–84. doi: 10.1038/s41571-023-00825-3

10. Pan M, Luo M, Liu L, Chen Y, Cheng Z, Wang K, et al. EGR1 suppresses HCC
growth and aerobic glycolysis by transcriptionally downregulating PFKL. J Exp Clin
Cancer Res. (2024) 43:35. doi: 10.1186/s13046-024-02957-5

11. Mishra L, Banker T, Murray J, Byers S, Thenappan A, He AR, et al. Liver stem
cells and hepatocellular carcinoma. Hepatology. (2009) 49:318–29. doi: 10.1002/
hep.22704

12. Nio K, Yamashita T, Kaneko S. The evolving concept of liver cancer stem cells.
Mol Cancer. (2017) 16:4. doi: 10.1186/s12943-016-0572-9

13. Waly Raphael S, Yangde Z, Yuxiang C. Hepatocellular carcinoma: focus on
different aspects of management. ISRN Oncol. (2012) 2012:421673. doi: 10.5402/2012/
421673

14. Wang Z, Chen K, Jia Y, Chuang JC, Sun X, Lin YH, et al. Dual ARID1A/ARID1B
loss leads to rapid carcinogenesis and disruptive redistribution of BAF complexes. Nat
Cancer. (2020) 1:909–22. doi: 10.1038/s43018-020-00109-0
15. Mackowiak B, Fu Y, Maccioni L, Gao B. Alcohol-associated liver disease. J Clin
Invest. (2024) 134. doi: 10.1172/jci176345

16. Wu X, Fan X, Miyata T, Kim A, Cajigas-Du Ross CK, Ray S, et al. Recent
advances in understanding of pathogenesis of alcohol-associated liver disease. Annu
Rev Pathol. (2023) 18:411–38. doi: 10.1146/annurev-pathmechdis-031521-030435

17. Hagström H, Thiele M, Roelstraete B, Söderling J, Ludvigsson JF. Mortality in
biopsy-proven alcohol-related liver disease: a population-based nationwide cohort
study of 3453 patients. Gut. (2021) 70:170–9. doi: 10.1136/gutjnl-2019-320446

18. Stein E, Cruz-Lemini M, Altamirano J, Ndugga N, Couper D, Abraldes JG, et al.
Heavy daily alcohol intake at the population level predicts the weight of alcohol in
cirrhosis burden worldwide. J Hepatol. (2016) 65:998–1005. doi: 10.1016/
j.jhep.2016.06.018

19. Raynard B, Balian A, Fallik D, Capron F, Bedossa P, Chaput JC, et al. Risk factors
of fibrosis in alcohol-induced liver disease. Hepatology. (2002) 35:635–8. doi: 10.1053/
jhep.2002.31782

20. Hart CL, Morrison DS, Batty GD, Mitchell RJ, Davey Smith G. Effect of body
mass index and alcohol consumption on liver disease: analysis of data from two
prospective cohort studies. BMJ. (2010) 340:c1240. doi: 10.1136/bmj.c1240

21. Ascha MS, Hanouneh IA, Lopez R, Tamimi TA, Feldstein AF, Zein NN. The
incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic
steatohepatitis. Hepatology. (2010) 51:1972–8. doi: 10.1002/hep.23527

22. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global
epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence,
incidence, and outcomes. Hepatology. (2016) 64:73–84. doi: 10.1002/hep.28431

23. Ludwig J, Viggiano TR, Mcgill DB, Oh BJ. Nonalcoholic steatohepatitis: Mayo
Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc. (1980) 55:434–8.
doi: 10.1016/S0025-6196(24)00530-5

24. Basaranoglu M, Basaranoglu G, Sentürk H. From fatty liver to fibrosis: a tale of
“second hit. World J Gastroenterol. (2013) 19:1158–65. doi: 10.3748/wjg.v19.i8.1158

25. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-
alcoholic fatty liver disease (NAFLD). Metabolism. (2016) 65:1038–48. doi: 10.1016/
j.metabol.2015.12.012

26. Byrne CD, Targher G. Ectopic fat, insulin resistance, and nonalcoholic fatty liver
disease: implications for cardiovascular disease. Arterioscler Thromb Vasc Biol. (2014)
34:1155–61. doi: 10.1161/atvbaha.114.303034

27. Byrne CD. Ectopic fat, insulin resistance and non-alcoholic fatty liver disease.
Proc Nutr Soc. (2013) 72:412–9. doi: 10.1017/s0029665113001249

28. Takamura T, Misu H, Ota T, Kaneko S. Fatty liver as a consequence and cause of
insulin resistance: lessons from type 2 diabetic liver. Endocr J. (2012) 59:745–63.
doi: 10.1507/endocrj.ej12-0228
frontiersin.org

https://doi.org/10.1016/j.jhep.2023.03.017
https://doi.org/10.1016/j.jhep.2023.03.017
https://doi.org/10.1016/j.cgh.2021.10.036
https://doi.org/10.1016/j.cgh.2021.10.036
https://doi.org/10.1016/j.jhep.2018.09.014
https://doi.org/10.1016/j.jhep.2021.01.027
https://doi.org/10.1016/s2468-1253(23)00066-3
https://doi.org/10.1038/s41575-023-00759-2
https://doi.org/10.1038/s41575-022-00688-6
https://doi.org/10.1038/s41571-023-00825-3
https://doi.org/10.1186/s13046-024-02957-5
https://doi.org/10.1002/hep.22704
https://doi.org/10.1002/hep.22704
https://doi.org/10.1186/s12943-016-0572-9
https://doi.org/10.5402/2012/421673
https://doi.org/10.5402/2012/421673
https://doi.org/10.1038/s43018-020-00109-0
https://doi.org/10.1172/jci176345
https://doi.org/10.1146/annurev-pathmechdis-031521-030435
https://doi.org/10.1136/gutjnl-2019-320446
https://doi.org/10.1016/j.jhep.2016.06.018
https://doi.org/10.1016/j.jhep.2016.06.018
https://doi.org/10.1053/jhep.2002.31782
https://doi.org/10.1053/jhep.2002.31782
https://doi.org/10.1136/bmj.c1240
https://doi.org/10.1002/hep.23527
https://doi.org/10.1002/hep.28431
https://doi.org/10.1016/S0025-6196(24)00530-5
https://doi.org/10.3748/wjg.v19.i8.1158
https://doi.org/10.1016/j.metabol.2015.12.012
https://doi.org/10.1016/j.metabol.2015.12.012
https://doi.org/10.1161/atvbaha.114.303034
https://doi.org/10.1017/s0029665113001249
https://doi.org/10.1507/endocrj.ej12-0228
https://doi.org/10.3389/fonc.2025.1526206
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ding et al. 10.3389/fonc.2025.1526206
29. Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein
metabolism. Mol Metab. (2021) 50:101238. doi: 10.1016/j.molmet.2021.101238

30. MaChado MV, Cortez-Pinto H. Non-alcoholic fatty liver disease: what the
clinician needs to know. World J Gastroenterol. (2014) 20:12956–80. doi: 10.3748/
wjg.v20.i36.12956

31. Tanase DM, Gosav EM, Costea CF, Ciocoiu M, Lacatusu CM, Maranduca MA,
et al. The intricate relationship between type 2 diabetes mellitus (T2DM), insulin
resistance (IR), and nonalcoholic fatty liver disease (NAFLD). J Diabetes Res. (2020)
2020:3920196. doi: 10.1155/2020/3920196

32. Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, et al.
Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride
lipase. Science. (2006) 312:734–7. doi: 10.1126/science.1123965

33. Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads
and missing links. Cell. (2012) 148:852–71. doi: 10.1016/j.cell.2012.02.017

34. Luukkonen PK, Qadri S, Ahlholm N, Porthan K, Männistö V, Sammalkorpi H,
et al. Distinct contributions of metabolic dysfunction and genetic risk factors in the
pathogenesis of non-alcoholic fatty liver disease. J Hepatol. (2022) 76:526–35.
doi: 10.1016/j.jhep.2021.10.013
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