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Integrated single-cell analysis
reveals the regulatory network of
disulfidptosis-related lncRNAs in
bladder cancer: constructing
a prognostic model and
predicting treatment response
Jiafu Xiao1,2,3, Wuhao Liu1,2,3, Jianxin Gong1,2,3, Weifeng Lai1,2,3,
Neng Luo1,2,3, Yingfan He1, Junrong Zou2,3* and Zhihua He2,3,4*

1The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China, 2Department of
Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China, 3Institute
of Urology, First Affiliated Hospital of Gannan Medical University, Key Laboratory of Urology and
Andrology of Ganzhou, Ganzhou, Jiangxi, China, 4Department of Urology, Zhongshan Hospital
Xiamen University, School of Medicine, Xiamen University, Xiamen, China
Background: Disulfidptosis is a newly discovered form of cell death, and long

non-coding RNAs (lncRNAs) play a crucial role in tumor cell growth, migration,

recurrence, and drug resistance, particularly in bladder cancer (BLCA). This study

aims to investigate disulfidptosis-related lncRNAs (DRLs) as potential prognostic

markers for BLCA patients.

Methods: Utilizing single-cell sequencing data, RNA sequencing data, and

corresponding clinical information sourced from the GEO and TCGA

databases, this study conducted cell annotation and intercellular

communication analyses to identify differentially expressed disulfide death-

related genes (DRGs). Subsequently, Pearson correlation and Cox regression

analyses were employed to discern DRLs that correlate with overall survival. A

prognostic model was constructed through LASSO regression analysis based on

DRLs, complemented by multivariate Cox regression analysis. The performance

of this model was rigorously evaluated using Kaplan-Meier analysis, receiver

operating characteristic (ROC) curves, and area under the ROC curve (AUC).

Furthermore, this investigation delved into the potential signaling pathways,

immune status, tumor mutation burden (TMB), and responses to anticancer

therapies associated with varying prognoses in patients with BLCA.

Results: We identified twelve differentially expressed DRGs and elucidated their

corresponding intercellular communication relationships. Notably, epithelial

cells function as ligands, signaling to other cell types, with the interactions

between epithelial cells and both monocytes and endothelial cells exhibiting

the strongest connectivity. This study identified six DRLs in BLCA—namely, C1RL-

AS1, GK-AS1, AC134349.1, AC104785.1, AC011092.3, and AC009951.6, and

constructed a nomogram to improve the predictive accuracy of the model.

The DRL features demonstrated significant associations with various clinical

variables, diverse immune landscapes, and drug sensitivity profiles in BLCA

patients. Furthermore, RT-qPCR validation confirmed the aberrant expression
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levels of these DRLs in BLCA tissues, affirming the potential of DRL characteristics

as prognostic biomarkers.

Conclusion:We established a DRLs model that serves as a predictive tool for the

prognosis of BLCA patients, as well as for assessing tumor mutation burden,

immune cell infiltration, and responses to immunotherapy and targeted

therapies. Collectively, this study contributes valuable insights toward

advancing precision medicine within the context of BLCA.
KEYWORDS

bladder cancer, disulfidptosis, lncRNA, single-cell RNA, sequencing, prognostic model,
immune microenvironment
1 Introduction

BLCA, also known as bladder cancer, is a common urogenital

tumor worldwide, with a significant increasing trend in the number

of new cases each year (1, 2), llness incidence ranks ninth, while

mortality rates rank thirteenth (3, 4). This growth trend is related to

smoking, exposure to carcinogens, and environmental factors.

Despite some countries witnessing a decrease in incidence rates

through education and preventive measures, BLCA remains a

global public health issue (5). The mortality rate of BLCA is

closely related to tumor classification, stage of development, and

the effectiveness of treatment strategies, due to its high recurrence

and invasiveness (3, 6) postoperative care requires additional

intervention methods (7–9). A thorough investigation of the

etiology and molecular mechanisms of BLCA is crucial for

developing personalized prognosis assessments and treatment

strategies, which will help improve patients’ survival rates and

quality of life. Therefore, further research will offer more

breakthroughs for the treatment and management of BLCA,

bringing hope and progress.

Disulfidptosis is a remarkable new discovery, and its definition

and characteristics are fascinating. This form of cell death is

triggered by specific disulfide bond stress, completely different

from traditional types of cell death such as apoptosis, necrosis,
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and autophagy. In Disulfidptosis, the rapid depletion of intracellular

NADPH and the high expression of the SLC7A11 protein under

glucose deprivation are significant features, prompting profound

reflections on the mechanisms that trigger Disulfidptosis (10). In

cells with high expression of SLC7A11, glucose deprivation or

uptake obstruction can lead to the significant uptake of cystine

and its reduction to cysteine, depleting a large amount of NADPH

in the process. This results in the accumulation of abnormal

disulfides, ultimately triggering disulfide bond stress and rapid

cell death, adding further mystery to the connection with cancer.

Research indicates that SLC7A11 plays a crucial role in BLCA (11,

12), suggesting that Disulfidptosis may play an important role in

BLCA, bringing therapeutic potential through this new discovery.

Research on long non-coding RNA (LncRNA) in the field of

BLCA is indeed intriguing. These LncRNA play crucial roles in cellular

physiology and pathological processes (13), encompassing the control

of key processes such as cell proliferation, differentiation, and apoptosis

(14, 15). In BLCA, specific LncRNAs such as MALAT1 (16), H19 (17),

HOTAIR (18), and PTENP1 (19) have been found to be closely

associated with the development and prognosis of the disease. An

increasing number of studies have employed lncRNAs as biomarkers

to predict therapeutic responses in bladder cancer, including models

associated with ferroptosis, m6A methylation, and immune responses.

These findings underscore the potential of lncRNAs not only as

prognostic indicators but also as valuable tools for personalizing

treatment approaches in the management of BLCA (20–22).

In this study, we examined the differential expression of

disulfidptosis-related genes(DRGs) at the single-cell level. We

successfully identified DRGs and subsequently conducted co-

expression analyses to identify associated disulfidptosis-related

long non-coding RNAs (DRLs). This investigation explores into

the roles of DRLs in BLCA and establishes a model for assessing

patient prognosis, overall survival (OS), tumor immune

microenvironment (TIME), and sensitivity to immunotherapy

and chemotherapy agents. The objective of this research is to

elucidate the functions of these lncRNAs in BLCA and to provide

more precise predictions and therapeutic strategies for

personalized medicine.
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2 Materials and methods

2.1 Data collection and compilation

Single-cell RNA sequencing (scRNA-seq) data (GSE135337) (23)

were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/

), comprising seven BLCA tumor samples and one normal tissue

sample. This dataset serves as a valuable resource for exploring the

cellular heterogeneity and molecular characteristics associated with

BLCA, facilitating a deeper understanding of the tumor

microenvironment and the role of DRLs in this malignancy. We

selected the seven BLCA tumor samples for subsequent analyses,

followed by rigorous filtering and quality control procedures. We

retrieved and downloaded RNA transcriptomic data, clinical

information, and somatic mutation data for 431 BLCA patients

from The Cancer Genome Atlas (TCGA) database (https://

gdc.cancer.gov/), which included 412 tumor samples and 19

normal samples. Normal control samples were excluded from

further analyses, and cases with a survival duration of less than

30 days, as well as those lacking sufficient age and tumor staging

information, were also eliminated. The filtered dataset underwent

normalization using log2 transformation to ensure consistency and

enhance the interpretability of the subsequent analyses. Building

upon previous research, we compiled a list of 27 DRGs for our

analysis (10, 24).
2.2 Cell annotation analysis

The detailed steps for quality control of scRNA-seq data are as

follows (1): We utilized the R package “Seurat” (25) for filtering and

analyzing the scRNA-seq data. The filtering criteria were as follows:

cells were retained if they exhibited a substantial number of detected

RNA features greater than 50 and had a mitochondrial gene

percentage of less than 5%. Cells meeting these criteria were

included in the subsequent analyses, thereby ensuring the

inclusion of high-quality data for further exploration of cellular

heterogeneity and gene expression dynamics in BLCA.(2)The

scRNA-seq dataset was normalized using the “NormalizeData”

function in the Seurat package. (3) The “FindVariableFeatures”

function was employed to identify variable features within the

dataset, resulting in the selection of 3,000 variable genes.(4)

Subsequently, the “ScaleData” function was applied to standardize

the data, followed by principal component analysis (PCA) to

identify significant principal components. The “ElbowPlot”

function, utilizing the variable genes as input, was employed to

determine the top 20 principal components, which were selected for

subsequent Uniform Manifold Approximation and Projection

(UMAP) analysis (dims = 20) (26). The “FindClusters” function

was then utilized for cell clustering, allowing us to group cells based

on their expression profiles.(5) The “FindAllMarkers” function was

utilized to compare gene expression across different cell types,

employing the Wilcoxon rank-sum test to identify differentially

expressed genes between these cellular populations. Finally, the R

package “singleR” (27) was integrated with manual adjustments of
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present in BLCA patients.
2.3 Cell–cell communication analysis

Cellular communication analysis is a pivotal component of

single-cell sequencing data analysis, primarily aimed at

uncovering the interactions, s ignal ing pathways, and

communication networks between cells. We employed the

Cel lChat package (v 1.6 .1) to infer the intercel lular

communication network, which included the identification of

known ligands and receptors, as well as their interactions.

Utilizing the CellChat package, we conducted an analysis of

intercellular communication based on the expression of known

ligand-receptor pairs across different cell types.
2.4 Selection of disulfidptosis-related
lncRNAs(DRLs)

Based on the downloaded TCGA-BLCA transcriptomic

expression profiles, we utilized Perl software (https://

www.perl.org) to segregate the RNA transcriptomic expression

data into lncRNAs and mRNAs. Subsequently, we employed the

R packages ‘limma’ (28), ‘ggplot2’, ‘ggalluvial’, and ‘dplyr’ to

conduct a Pearson correlation analysis (Since the gene expression

data, after log2 normalization, approximates a normal distribution,

and the research objective is to assess linear correlation, Pearson

correlation analysis is employed (|cor|>0.4, p<0.001)), filtering for

lncRNAs that co-express with DRGs. To visualize these lncRNAs,

we employed a Sankey diagram, which effectively illustrates the

relationships between the identified lncRNAs and DRGs. The

lncRNAs highlighted in this analysis are defined as DRLs.
2.5 Construction of a prognostic model
for DRLs

The sample size was determined based on a power analysis

using the ‘PowerSurvFDR’ package in R. Assuming a hazard ratio

(HR) of 1.5 for key lncRNAs, a significance level (a) of 0.05, and
80% statistical power (1-b), the minimum required sample size was

calculated as 360.

A total of 394 BLCA patients with available survival data were

initially randomized using the R programming language package

into a training set and a testing set, with the training set consisting

of 197 patients designated for model development and the testing

set comprising 197 patients allocated for model validation.

Subsequently, we performed chi-square tests to assess the clinical

characteristics—namely, age, gender, grade, and stage of both

groups to determining whether significant differences existed. A

p-value of less than 0.05 was regarded as statistically significant. In

the training cohort, univariate Cox regression analysis (UniCox)

was employed to identify DRLs associated with OS. Following this,
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the ‘glmnet’ package in R was utilized to conduct least absolute

shrinkage and selection operator (LASSO) analysis on the lncRNAs

identified in the preceding step. This was followed by multivariate

Cox regression analysis to validate the most relevant OS-associated

lncRNAs and to develop a prognostic model based on key lncRNAs

linked to dual sulfide death. The model calculation method is as

follows: Risk score = on
i=x   Coe (genei)∗Exp(genei) (29). The risk

score was calculated, and patients were divided into low-risk and

high-risk groups based on the median risk score.
Fron
Coe(genei): the coefficient of each gene in the DRLs signature.

Exp (genei): the relative expression level of each gene in this study.
2.6 Model validation

Using R software (package “pheatmap”), we plotted the risk

curves, survival status diagrams, and risk heatmaps for the training

and testing groups, dividing them into high-risk and low-risk

groups based on the median. With R software (packages

“survival” and “survminer”), we generated the Kaplan-Meier

(KM) curves for the high-risk and low-risk groups in the training

set, testing set, and overall set, including OS and progression-free

survival (PFS). Utilizing R software (“survival” package), we

conducted univariate and multivariate independent prognostic

analyses for the risk model. Employing R software (packages

“survival”, “survminer”, and “timeROC” (30)), we generated the

1-year, 3-year, and 5-year ROC curves for the risk model, as well as

the 5-year ROC curves for age, gender, grade, and stage, and

performed comparisons. Using R software (packages “limma” and

“scatterplot3d”), we performed PCA on the risk model using the

limma and scatterplot3d R packages to see if it could distinguish all

lncRNAs、DRLs、DRGs and all genes, and visualized the results.

We used KM、ROC、and concordance index (C-index) curves or

our analyses.
2.7 Construction of nomograms

We employed the “survival”,”regplot” and “rms” packages to

generate nomograms, thereby validating the credibility of the model

in predicting clinically relevant indicators for the entire cohort of

BLCA patients. This serves as a useful reference tool for clinicians.

Additionally, we utilized calibration curves to assess the accuracy of

the predicted survival rates versus the actual survival rates of the

prognostic model at 1, 3, and 5 years.
2.8 Clinical characteristics of the
risk model

Using R software with the “survivor” and “survminer” packages,

we plotted survival curves for patients stratified by gender, age, and

tumor stage based on the risk model. This approach was undertaken
tiers in Oncology 04
to verify the applicability of our constructed risk model to patient

subgroups with varying clinical characteristics.
2.9 Enrichment analysis of differentially
expressed genes(DEGs)

In order to further investigate the functional and pathway

enrichment of genes in different risk groups, we used the R package

“limma” to obtain DEGs between the two risk groups, with |log2 fold

change| > 1 and false discovery rate (FDR) < 0.05. We then utilized the

clusterProfiler and other R software packages (“clusterProfiler”,

“colorspace”, “stringi”, “ggplot2”, “circlize”, “RColorBrewer”, and

“ggpubr”) to perform Gene Ontology (GO) (31) functional

enrichment and Kyoto Encyclopedia of Genes and Genomes

(KEGG) (32) pathway enrichment analysis on these DEGs. Finally,

we employed gene set enrichment analysis (GSEA) with R packages to

distinguish the functions and pathways between the two risk groups.
2.10 Immune infiltration analysis

According to the ESTIMATE algorithm (33, 34), we utilized the

“ESTIMATE” package in R to assess the tumormicroenvironment, and

employed the “reshape2” and “ggpubr” R packages to analyze

differences between the two risk groups. To ascertain the

immunological characteristics of the 384 samples, we imported the

expression data into CIBERSORT (35) using the “limma,” “parallel,”

and “preprocessCore” packages in R to evaluate the percentage of

immune cell infiltration (33). To explore the composition of immune

cells in different risk groups, we compared the distribution of immune

cells across the risk groups using the Wilcoxon test with the “limma,”

“reshape2,” and “ggpubr” R packages.
2.11 Analysis of tumor mutational burden
(TMB) and immune checkpoints

We calculated the TMB and mutation frequency for each

sample in BLCA based on the total number of somatic base

substitutions, and analyzed the differences in TMB between the

high-risk and low-risk groups. The R package “Maftools” (36) was

utilized to create the waterfall plot of mutations in DEGs. Patients

with BLCA were divided into two groups according to the median

TMB score, and survival analysis was conducted to explore the

impact of TMB on patients’ OS.
2.12 Immunotherapy and drug
sensitivity prediction

Weutilized theTumor ImmuneDysfunction andExclusion (TIDE)

(37) platform(http://tide.dfci.harvard.edu/)to predict the

immunotherapy outcomes for patients with BLCA (37, 38). By

comparing TIDE scores, we analyzed the differences in immune
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therapy responses between high-risk and low-risk groups. The R

packages limma, oncoPredict, and parallel were employed to assess

the half-maximal inhibitory concentration (IC50) values of

chemotherapy drugs. The requisite training set was sourced from

the Genomics of Drug Sensitivity in Cancer (GDSC) database and

downloaded from the oncoPredict Open Science Framework

repository(https ://osf . io/c6tfx/) (39). We uti l ized the

calcPhenotype function to obtain drug sensitivity scores for each

patient. The differences in responses to multiple drugs between the

high-risk and low-risk groups were compared based on the drug

sensitivity scores (40).
2.13 Validation of lncRNAs in the model

LncRNA data obtained from the TCGA-BLCA database were

subjected to differential analysis to evaluate the expression of

relevant lncRNAs. Additionally, tumor and paired adjacent tissue

samples were collected from ten patients who underwent radical

cystectomy for BLCA at the First Affiliated Hospital of Gannan

Medical University. All patients were pathologically confirmed to

have BLCA. All samples in this study were obtained with the

informed consent of each patient and were authorized by the

hospital’s ethics committee, in accordance with the Declaration of

Helsinki. The expression of the relevant lncRNAs was detected

using real-time fluorescent quantitative PCR (qRT-PCR).
2.14 qRT-PCR

Following the manufacturer’s experimental protocol, total RNA

was extracted from the collected tissue samples using an RNA

extraction reagent. The total RNA was then reverse transcribed

into complementary DNA (cDNA) according to the reverse

transcription steps. Nuclease-Free Water, primers, cDNA, and

Universal Blue SYBR Green qPCR Master Mix were mixed in

proportion and real-time quantitative PCR (qRT-PCR) was

performed using a PCR detection system with the following

program and parameters: initial denaturation (95°C, 30 seconds),

denaturation (95°C, 15 seconds), annealing/extension (60°C, 30

seconds). A total of 40 cycles were conducted. Data were

normalized using GAPDH as the control group. The relative

quantification method (2−DDCt) was used to assess the relative

expression of the lncRNA. Primer Sequences are presented in Table 1.
2.15 Statistical analysis

The t-test was used to compare continuous variables between

two groups, while categorical variables were analyzed using the chi-

square test. Univariate and multivariate survival analyses were

performed using Cox regression analysis. The log-rank test was

employed for analyzing OS data. All data were analyzed using R

version 4.4.0 or GraphPad Prism 9.

This study screened DRGs through single-cell sequencing,

constructed a DRLs model using TCGA data, and evaluated its
Frontiers in Oncology 05
prognostic value through KM, ROC curves, and C-index.

Ultimately, the study verified the association of the model with

the immune microenvironment and treatment response.
3 Results

The Technical Roadmap of This Study (Figure 1).
3.1 Cell annotation and cell
trajectory analysis

We performed quality control on the scRNA-seq data, discarding

low-quality cells and genes, as shown in Figure 2A: the number of

genes per cell was predominantly below 5000, the number of

transcripts was below 4000, the percentage of mitochondrial

content was low in each sample, and the top 10 highly variable

genes were marked (Figure 2B). Principal Component Analysis was

performed, and the heatmap of the related expressed genes was

obtained (Figure 2C). After dimensionality reduction with UMAP, 20

clusters were identified, and the “singleR” package was used to

annotate the clusters, resulting in 5 core cell types, including

endothelial cells, tissue stem cells, epithelial cells, monocytes, T

cells, etc. A detailed cell count for each cell type is displayed in

Figure 2D, showing that endothelial cells have the highest proportion,

with other cells having lower proportions. The FindAllMarkers

algorithm was then employed to retrieve differentially expressed

genes for each core cell type (with filtering criteria of an absolute

logFC greater than 1 and adjPvalFilter < 0.05), obtaining a

comprehensive list of differential genes. Ultimately, the differential

expression of 12 genes was obtained (Figures 2E, F). The differential

genes were intersected with DRGs, and the intersected genes were
TABLE 1 Sequence of primers for qPCR.

Primer name Direction Primer sequence 5’—3’

AC134349.1 Forward TCAAGACCCTCCACTGATACAAGA

AC134349.1 Reverse TAGCAACAGATGGCTTTCACCC

AC011092.3 Forward AGATGCTATGCAGCCTAACTTTACA

AC011092.3 Reverse GAACTGCCTGGTTATGGAATGG

AC009951.6 Forward GGATTGGATTGCGAGTCTGC

AC009951.6 Reverse GCAAGCAAAGGGTGATAAAGG

C1RL-AS1 Forward CGTCTGTGGTGAGAAGCCTGAT

C1RL-AS1 Reverse GCTTTCTGTTCCACTGTGCTCTT

GK-AS1 Forward ATTCCCTCCCTTCCTGACTTTA

GK-AS1 Reverse GCTTCCAGGTTCATTCAGGTTAT

AC104785.1 Forward GTGTTCTTAGGCTCCTCTTGGC

AC104785.1 Reverse TGTTAGTGGGGGCAAGAAATG

GAPDH Forward GGAAGCTTGTCATCAATGGAAATC

GAPDH Reverse TGATGACCCTTTTGGCTCCC
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v i sua l i z ed and sub j ec t ed to subsequent prognos t i c

correlation analysis.
3.2 Cell-to-cell communication analysis

In order to construct a cell communication map for BLCA, we

created an object using CellChat and utilized the CellChatDB.human

database to examine the types of ligand and receptor pairs

(Figure 3A). We then calculated the probabilities of cell
Frontiers in Oncology 06
communication, filtering out cell communications involving fewer

than 10 cells to obtain the cell-cell communication relationships

(Figures 3B, C). As shown in Figure 3D, the results of single-cell

communication indicate that epithelial cells can act as ligands to send

signals to other cells, with the strongest interactions observed with

Monocytes and Endothelial Cells. A bubble chart was constructed

(Figure 3E) to detail the intercellular communication between the five

cell types, thereby gaining a deeper understanding of their

interactions. For instance, in Epithelial_cells−>Monocyte,

Tissue_stem_cells−>Monocyte, T_cells−>Monocyte, tissue stem
FIGURE 1

The flow chart of the study. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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cells−>Monocyte, Endothelial_cells−>Monocyte, and Epithelial_cells

−> T_cells, various signal pairs are involved, such as MIF-(CD74

+CD44) and MIF- (CD74+CXCR4), Macrophage migration

inhibitory factor (MIF) promotes the proliferation and survival of

tumor cells by binding to CD74 and CD44. In breast cancer, high

expression of MIF is associated with the invasiveness of tumor cells

and poor prognosis. MIF activates the PI3K/AKT signaling pathway,

inhibits apoptosis in tumor cells, and facilitates tumor growth and

metastasis (41). MIF facilitates the invasion and metastasis of tumor

cells by binding to CXCR4. In colorectal cancer, MIF promotes the
Frontiers in Oncology 07
migration and invasion of tumor cells by activating the CXCR4

signaling pathway, thereby increasing the risk of tumor metastasis

(42).We further identified the pathways involving core genes and the

interaction relationships between the cells. In this step, we mainly

determined three pairs of receptor-ligand pairs, as shown in

Figures 3F, G. In Figure 3H, the expression levels of interaction

genes in various cell types are clearly visible. Finally, we also obtained

a horizontal communication map for the receptor-ligand pairs

(Figures 3I–K). For example, MIF-(CD74+CXCR4) is the most

complex in cell communication andmay become a therapeutic target.
FIGURE 2

Single-cell analysis results (A), Gene count、sequencing depth and percentage of mitochondrial genes. (B) The 1500 most variable genes and the 10
most variable genes. (C) Heatmap of PCA (Principal Component Analysis). (D) Cluster map after cell annotation. (E) Scatter plots for 12 DRGs (Cell
types are shown in D). (F) Violin plots for 12 DRGs.
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3.3 Screening of DRLs

RNA-seq data from BLCA patients were downloaded from the

TCGA database, normalized, and mRNA and lncRNA expression

profile data were extracted separately according to gene type. After

intersecting the differential genes in cells with disulfidptosis genes, 12

disulfidptosis genes were obtained, and a Pearson correlation analysis
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was performed with lncRNAs to identify 144 lncRNAs (Figure 4A),

and a Sankey diagram was constructed. Additionally, as shown in

Figure 4B, 17 prognostic-related lncRNAs were identified using

UniCox analysis in the training set. Nine lncRNAs were identified

using LASSO logistic regression analysis (Figures 4C, D), and finally, a

multifactorial regression analysis yielded 6 lncRNAs for model

construction, with the formula as follows: Riskscore = ExpC1RL-
FIGURE 3

Cell Communication Analysis (A) Percentage graph of receptor-ligand pair types. (B) Relationship graph of interaction quantity. (C) Relationship
graph of interaction strength. (D) Communication network graph for individual cell types. (E) Bubble chart of receptor-ligand pairs FHeatmap of cell
communication. (F) Represents the heatmap of cell communication (G) Analysis graph of receptor-ligand pairs. (H) Expression levels of interaction
genes. (I-K) Cellular communication maps at the receptor-ligand pair level.
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AS1*( -0 .460404324) + ExpGK-AS1*( -0 .560636669)+

ExpAC134349.1*(0.614635779) + ExpAC104785.1*(-0.472889887)+

ExpAC011092.3*(0.743568001) + ExpAC009951.6*(0.482146255).

Furthermore, we generated a heatmap of these 6 hub lncRNAs

and DRGs (Figure 4E).
3.4 Validation of disease prediction model

We randomly divided 394 BLCA patients with survival

information into a training set and a testing set in a 1:1 ratio. The

t-test results for the clinical data (age, gender, grade, stage, T, M, N)

of the two groups are shown in Table 2. The training set was used to

build the model, and the testing set was used to validate the model.

Based on the patient risk scores obtained from the previous steps,

patients were divided into high-risk and low-risk groups using the

median risk score, and risk curves, survival status curves, and risk

heatmaps were plotted for the training set, testing set, and overall

set (Figures 5A–C). As the risk score increased, the number of

patient deaths also increased, which is consistent with the

predictions of our model. The risk heatmap shows that

AC134349.1, AC011092.3, and AC009951.6 in the training set,

testing set, and overall set are positively correlated with the risk

score, while C1RL-AS1, GK-AS1, and AC104785.1 show an

opposite relationship, indicating that the predictive performance

of this risk model is consistent. We conducted KM curve analysis
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for OS (Figures 5D–F) and PFS (Figures 5G–I), and it can be seen

that the model has significant survival discrimination capabilities.

To verify whether our prognostic model has independence

compared to clinical characteristics, we further included four

clinical characteristics of BLCA patients, Age, Gender, Grade, and

Stage, and conducted an independent prognostic analysis. The results

of univariate and multivariate regression analyses showed that Age,

Stage, and riskscore are independent prognostic indicators for BLCA

patients (Figures 6A, B), with the P-values for riskscore all being less

than 0.001, the univariate hazard ratio at 1.258 (1.155-1.370), and the

multivariate hazard ratio at 1.287 (1.174-1.410). However, the

anomaly in the hazard ratio might be related to collinearity or a

small sample size within subgroups, and thus requires validation with

a larger sample size. Subsequently, we performed ROC curve analysis

to calculate the AUC (Area Under the Curve) values of the prognostic

model. The AUC values for the 1-year, 3-year, and 5-year survival

rates were 0.673, 0.671, and 0.682, respectively (Figure 6C), indicating

that the risk model has good predictive performance. Additionally,

the AUC for riskScore was 0.671, which is significantly higher than

other clinical variables in predicting the prognosis of BLCA patients,

such as Age (AUC=0.614), Gender (AUC=0.489), Grade

(AUC=0.531), and Stage (AUC=0.642) (Figure 6D). The C-index

(concordance index) also showed the same predictive performance

(Figure 6E). We then constructed a nomogram based on the risk

model and clinical data that includes clinical pathological variables

and features (Figure 6F) to further determine the prognosis of BLCA
FIGURE 4

Identification and prognostic model construction of DRLs in bladder cancer. (A) Sankey diagram showing the correlation between DRGs and the
expression of 144 lncRNAs. (B) Univariate Cox regression analysis to evaluate 17 prognostic-related lncRNAs. (C) Lasso regression curve for 9
lncRNAs. (D) Ten-fold cross-validation of variables in the LASSO model. (E) Expression correlation between the 6 lncRNAs used for model
construction and DRGs. *p < 0.05; **p < 0.01; ***p < 0.001.
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patients (Stage I types were excluded due to the small number of

cases). The nomogram predicted the 1-year, 3-year, and 5-year

overall survival (OS) and generated corresponding calibration

curves (Figure 6G), with good consistency between the predicted

and observed values for the predicted probability of OS.

To further understand whether the risk score also has the ability

to distinguish high-risk and low-risk groups in different clinical

characteristic subgroups, we divided Age into Age≥65 years and

Age<65 years, Gender into FEMALE andMALE, and Stage into Stage

I-II and Stage III-IV groups, and performed KM curve analysis for

each. The results shown in Figures 7A–F indicate that, except for the

Stage I-II group, the OS of patients in the high-risk group was lower

than that of patients in the low-risk group. These results suggest that

the low-risk group has a more significant survival advantage. Overall,

our analysis proves that the prognostic model is a reliable clinical

prediction tool. By performing PCA on BLCA patients, we can
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observe whether the lncRNAs constructed in the model can clearly

distinguish patients in the high-risk and low-risk groups. The three-

dimensional visualization of the PCA results (Figures 7G–J) shows

that, in Figure 7J, most patients in the high-risk group are located in

the upper right of the three-dimensional graph, while patients in the

low-risk group are in the upper left area. Therefore, the lncRNAs

involved in the model construction can effectively distinguish patients

in the high-risk and low-risk groups.
3.5 Enrichment analysis of DEGs

To further understand the functional correlations and signaling

pathways between the high-risk and low-risk groups, we conducted

GO functional enrichment analysis and KEGG pathway enrichment

analysis on the DEGs between the high-risk and low-risk groups.
TABLE 2 Results of t-test for clinical data of train and test sets.

Covariates Type Total Test Train Pvalue

Age ≤65 158 (40.1%) 80 (40.61%) 78 (39.59%) 0.9181

>65 236 (59.9%) 117 (59.39%) 119 (60.41%)

Gender Female 103 (26.14%) 55 (27.92%) 48 (24.37%) 0.4915

Male 291 (73.86%) 142 (72.08%) 149 (75.63%)

Grade High Grade 373 (94.67%) 185 (93.91%) 188 (95.43%) 0.8007

Low Grade 18 (4.57%) 10 (5.08%) 8 (4.06%)

unknow 3 (0.76%) 2 (1.02%) 1 (0.51%)

Stage Stage I 2 (0.51%) 0 (0%) 2 (1.02%) 0.5691

Stage II 123 (31.22%) 62 (31.47%) 61 (30.96%)

Stage III 138 (35.03%) 69 (35.03%) 69 (35.03%)

Stage IV 129 (32.74%) 65 (32.99%) 64 (32.49%)

Unknown 2 (0.51%) 1 (0.51%) 1 (0.51%)

T T0 1 (0.25%) 1 (0.51%) 0 (0%) 0.7428

T1 3 (0.76%) 1 (0.51%) 2 (1.02%)

T2 112 (28.43%) 52 (26.4%) 60 (30.46%)

T3 190 (48.22%) 97 (49.24%) 93 (47.21%)

T4 56 (14.21%) 27 (13.71%) 29 (14.72%)

unknow 32 (8.12%) 19 (9.64%) 13 (6.6%)

N N0 228 (57.87%) 114 (57.87%) 114 (57.87%) 0.7656

N1 44 (11.17%) 24 (12.18%) 20 (10.15%)

N2 75 (19.04%) 36 (18.27%) 39 (19.8%)

N3 6 (1.52%) 2 (1.02%) 4 (2.03%)

Unknown 41 (10.41%) 21 (10.66%) 20 (10.15%)

M M0 188 (47.72%) 100 (50.76%) 88 (44.67%) 1

M1 10 (2.54%) 5 (2.54%) 5 (2.54%)

Unknown 196 (49.75%) 92 (46.7%) 104 (52.79%)
Bold values indicate statistical significance at the p < 0.05 level.
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The GO enrichment circular diagram shows that the outermost

circle represents the GO enrichment ID, the second circle

represents the number of genes associated with each GO term,

the third circle represents the number of enriched differentially

expressed genes in each GO term, and the fourth circle represents

the proportion of enriched genes. The redder the color, the more

significant the enrichment of differentially expressed genes. It can be
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seen that the proportion of genes enriched in GO:0003012,

GO:0062023, and GO:0009897 is relatively high (Figures 8A, B).

The results of the GO functional enrichment analysis (Figure 8C)

indicate that in terms of molecular function (MF), the main focus is

on intermediate filament organization, intermediate filament

cytoskeleton organization, intermediate filament−based process,

and connective tissue development. In cellular component (CC),
FIGURE 5

Identification and evaluation of the prognostic value of the DRLs model. (A-C) Curve charts of risk scores from low to high for each BLCA patient in
the training set, validation set, and overall set, survival status of BLCA patients sorted from low to high, and heatmap of the correlation between the
6 key lncRNAs and risk scores. (D-F) KM curves for OS of high-risk and low-risk patients in the training set, validation set, and overall set, indicating
that the model has significant survival discrimination capabilities. (G-I) KM curves for progression-free survival of high-risk and low-risk patients in
the training set, validation set, and overall set.
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the main focus is on blood microparticle, I band, collagen trimer,

cornified envelope, sarcolemma, sarcomere, myofibril, contractile

fiber, external side of plasma membrane, and collagen−containing

extracellular matrix. In biological process (BP), the main focus is on

integrin binding, serine hydrolase activity, serine−type peptidase

activity, heparin binding, extracellular matrix structural constituent,

sulfur compound binding, and glycosaminoglycan binding. The

KEGG pathway analysis results show that the focus is mainly on the
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Cytoskeleton in muscle cells, Focal adhesion, Complement and

coagulation cascades, and ECM-receptor interaction pathways,

among which the cytoskeleton, adhesion, migration, and

proliferation are important mechanisms for cell movement

functions and may be related to cancer cell proliferation and

migration (Figure 8D). GSEA analysis was also performed

(Figures 8E, F), cell adhesion molecules cams, focal adhesion,

regulat ion of actin cytoskeleton, and systemic lupus
FIGURE 6

Prognostic value of the DRLs model and construction and validation of the nomogram. (A) Univariate Regression Analysis. (B),Multivariate Regression
Analysis. (C) ROC Curve Analysis for 1-year, 3-year, and 5-year Survival. (D) ROC Curve Analysis for Clinical Characteristics. (E) Concordance Index
Analysis for Clinical Characteristics. (F) Nomogram. (G) Calibration Curves for 1-year, 3-year, and 5-year Survival.
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erythematosus are the top 5 significantly enriched items in the high-

risk group, while in the low-risk group, ascorbate and aldarate

metabolism, drug metabolism cytochrome p450, metabolism of

xenobiotics by cytochrome p450, pentose and glucuronate

interconversions, taste transduction are the top 5 significantly

enriched cellular processes.
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3.6 Immune infiltration, tumor immune
microenvironment tumor (TME) and
mutational landscape

The TME plays a crucial role in determining tumor progression

(43). We further analyzed this using the CIBERSORT algorithm. From
FIGURE 7

Kaplan-Meier survival curves and PCA analysis demonstrate the prognostic value of the risk model in BLCA patients, stratified by various clinical
characteristics. (A-F) These figures show the KM curves for low-risk and high-risk BLCA patients, categorized based on different clinical
characteristics. (G-J) Represent PCA analyses for all genes, disulfidptosis genes, disulfidptosis lncRNAs, and risk lncRNAs, respectively.
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Figure 9A, we can observe the stromal cell scores and the integration of

stromal and immune cell scores in the tumor microenvironment for

both high-risk and low-risk groups, such as StromalScore (stromal cells

in tumor tissue), ImmuneScore (immune cell infiltration in tumor

tissue), and ESTIMATEScore (the sum of stromal and immune scores).

The results show that the high-risk group has higher stromal cell scores
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and stromal-immune cell integration scores, indicating a higher

abundance of stromal cells in this group. Additionally, we displayed

the infiltration levels of immune cell populations between high-risk and

low-risk groups using a bar chart (Figure 9B). The high-risk group

contains higher amounts of Monocytes, Macrophages M0,

Macrophages M2, and Mast cells resting, while the low-risk group
FIGURE 8

Functional analysis of the risk model.(“BP:(Biological Process);CC:(Cellular Component);MF:(Molecular Function). The significance of enrichment has
been adjusted using the Benjamini-Hochberg method, with a false discovery rate (FDR) less than 0.05; the intensity of the color represents the
-log10(FDR) value.) (A, B) GO analysis demonstrates enrichment in molecular biological processes (BP), cellular components (CC), and molecular
functions (MF). (C, D) KEGG pathway analysis shows significantly enriched pathways. (E, F) GSEA analysis based on the KEGG pathway database for
the high-risk and low-risk groups.
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shows a positive correlation with T cells regulatory (Tregs) and

Dendritic cells activated (Figure 9C). Monocytes and Macrophages

M0/M2 are key cells in inflammatory responses, and their

accumulation in tissues may be associated with inflammatory

diseases or an immunosuppressive state in the tumor
Frontiers in Oncology 15
microenvironment. M2-type macrophages are particularly associated

with an anti-inflammatory and tumor growth-promoting

environment. The high content of Tregs in the low-risk group may

be related to a stronger immunosuppressive environment; Tregs help

maintain immune tolerance and prevent excessive immune responses,
FIGURE 9

Differences in the tumor immune microenvironment between the low-risk and high-risk groups. (A) Violin plots comparing StromalScore,
ImmuneScore, and ESTIMATEScore between the low-risk and high-risk groups. (B), Proportions of 22 tumor-infiltrating immune cell types in BLCA
patients. (C) Differences in various types of immune cells between the high-risk and low-risk groups. (D) Abundance ratio of immune cells in BLCA
samples. (E, F) KM analysis of OS for patients classified by TMB status and risk score. (G, H) KM analysis of OS for patients categorized by combining
TMB status and risk score *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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but in the tumor microenvironment, they may also aid the tumor in

evading immune surveillance. These results indicate that in our model,

as the risk score increases, the tumor immune microenvironment may

be disrupted, leading to tumor progression and poorer overall survival.

Based on these findings, we infer that reduced immune cell infiltration

and activity lead to poor prognosis in BLCA patients, who can be

distinguished by our DRLs model.

We further conducted a correlation analysis between the

riskscore and gene mutations. TMB (Tumor Mutational Burden)

refers to the number of mutations in tumor cells per million base

pairs (megabase, Mb). The level of TMB has significant clinical

implications in oncology, and subsequently, we performed an

analysis of the distribution of somatic mutations in BLCA

patients in the two risk groups. The results shown in Figure 9D

indicate that, in terms of overall tumor mutational burden, we

observed a higher mutation frequency in the low-risk group. In the

high-risk group (Figure 9E), TTN, TP53, KMT2D, MUC16,

KDM6A, ARID1A, PIK3CA, SYNE1, HMCN1, and FLG are the

top 10 most frequently mutated genes. In the low-risk group

(Figure 9F), TP53, TTN, ARID1A, KMT2D, MUC16, RB1,

PIK3CA, KMT2C, SYNE, and HMCN1 are the top 10 most

frequently mutated genes. A comprehensive analysis (Figures 9G,

H) shows that the survival rate in the high TMB group is

significantly higher than that in the low TMB group, and the

difference is statistically significant (p<0.001). There is also a clear

difference in survival rates between the low-risk and high-risk

groups, and the difference is significant (p<0.001). This also

suggests that high TMB may be associated with immune cell

infiltration in the tumor microenvironment; these immune cells

can recognize tumor cells and participate in tumor clearance (44).
3.7 Drug sensitivity analysis

We found that the TIDE score was significantly increased in

high-risk BLCA patients (Figure 10A), which may indicate that these

patients have a higher immune evasion capability. To assess the

association between the risk model and drug sensitivity, we used the

oncoPredict package to evaluate the IC50 values of various drugs in

high and low-risk groups of BLCA patients, as shown in the results

(Figures 10B–L). High-risk BLCA patients showed better efficacy

against Cisplatin, Ribociclib, SB216763, and Obatoclax Mesylate,

Venetoclax, and higher resistance to Cytarabine, Lapatinib,

Linsitinib, Nilotinib, MK-2206 (AKT inhibitor), Rapamycin

(mTOR inhibitor), and Navitoclax. These results suggest that our

model can provide personalized drug sensitivity predictions for

BLCA patients, which can help guide clinicians in choosing the

most appropriate drugs and treatment plans to improve therapeutic

outcomes and reduce the development of drug resistance.
3.8 Validation of lncRNA expression

To validate the reliability of the six lncRNAs constituting the

risk model, we analyzed their corresponding expression levels using

data downloaded from the TCGA database. The results of the six
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lncRNAs identified in cancerous and non-cancerous tissues of

BLCA patients from the TCGA database are shown in

Figures 11A–F. Compared to normal samples, the expression

levels of AC104785.1 and AC009951.6 were higher in BLCA.

Conversely, GK-AS1, C1RL-AS1, AC134349.1, and AC011092.3

exhibited higher expression levels than adjacent non-cancerous

tissues. We further investigated the relative expression levels of

the six lncRNAs using qRT-PCR on 10 pairs of BLCA tumor tissues

and corresponding adjacent normal tissues. As shown in

Figures 11G–L, all six lncRNAs exhibited higher expression in

tumor tissues; however, AC011092.3 showed no significant

difference. The results for AC104785.1 and AC009951.6 were

contrary to those from the TCGA database analysis, which may

be due to the small sample size and high individual variability.
4 Discussion

In the field of cancer treatment, new discoveries continuously

bring hope to patients. Recently, a groundbreaking study revealed a

novel form of cell death called “disulfide death,” which may provide a

new strategy for cancer therapy. This type of cell death differs from

common apoptosis and ferroptosis, characterized by abnormal

accumulation of disulfide bonds between actin cytoskeletal proteins

in cancer cells, leading to the collapse of the cell skeleton and eventual

cell death. This process is particularly prominent in cancer cells with

high expression of SLC7A11, especially under conditions of glucose

deprivation (10). The discovery of disulfide death not only enriches

our understanding of cell death mechanisms but also offers new

potential targets for cancer treatment. Studies indicate that the

features of disulfide death can be used to predict the prognosis of

various types of tumors, including BLCA (45) and lung

adenocarcinoma (46). LncRNAs play an important role in

regulating the malignant behavior of tumor cells and have been

proven to be potential biomarkers and targets for cancer diagnosis

and therapy (36). However, DRLs are largely unknown. In this study,

we identified six DRLs and established a prognostic risk model for

patients with BLCA.

In the field of cancer research, a deep understanding of the

tumor microenvironment and immune regulation mechanisms is

crucial for developing effective treatment strategies. Our study

leveraged information from public databases such as TCGA and

GEO, and through the analysis of single-cell sequencing data, we

identified 12 DEGs in BLCA. This research not only provided new

insights into gene expression in BLCA but also revealed the critical

roles of MIF-(CD74+CD44) and MIF-(CD74+CXCR4) signals in

regulating communication-induced DEG expression through

intercellular communication analysis. The study found that the

MIF-(CD74+CD44) complex play a significant role in tumor

development by promoting immune cell migration and activation

(47). Moreover, MIF, through binding with CD74 and CXCR4,

facilitates tumor cell migration and invasion and regulates the

immunosuppressive state in the tumor microenvironment (41).

These findings offer a fresh perspective on understanding the

complexity of the tumor microenvironment and may hold

significant implications for identifying new therapeutic targets.
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Subsequently, 144 co-expressed lncRNAs were identified

through the 12 DEGs. Then, prognostic lncRNAs were obtained

through UniCox analysis, and a risk model composed of 6 lncRNAs

(C1RL-AS1, GK-AS1, AC134349.1, AC104785.1, AC011092.3, and

AC009951.6) was constructed through LASSO regression and

multivariate regression analysis. The reliability of this model was
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confirmed by validating two clinical characteristic indicators of risk

sets. By combining relevant risk factors, we generated a predictive

nomogram for clinical application. Our predictive model effectively

distinguished high-risk and low-risk patients in the entire cohort

and subgroups, with higher risk samples having poorer OS and PFS.

Tumor staging reflects the progression and severity of the disease,
FIGURE 10

BLCA patients’ response to immune checkpoint blockade and other antitumor treatments. (A) Violin plots show the difference in TIDE scores
between high-risk and low-risk BLCA groups. (B-F) Drugs with better efficacy in the high-risk group. (G-L) Drugs with better efficacy in the low-risk
group, ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1527036
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xiao et al. 10.3389/fonc.2025.1527036
and our model is as sensitive as tumor staging in predicting 1-year,

3-year, and 5-year survival rates. The enrichment analysis of DEGs

revealed the activation of many signaling pathways associated with

tumorigenesis, such as cell adhesion molecules cams, focal

adhesion, regulation of actin cytoskeleton, and systemic lupus
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erythematosus. Therefore, this model associated with DRLs is an

accurate and reliable prognostic predictor for BLCA patients.

The tumor microenvironment (TME) is a complex ecosystem

that encompasses not only tumor cells but also immune cells,

stromal cells, cytokines, and other molecular components. This
FIGURE 11

The relative expression levels of the 6 lncRNAs. (A-F) In the TCGA database, the expression levels of 6 types of lncRNA in bladder tumor tissue and
normal bladder tissue. (G-L) Relative normalized expression of six DRLs in bladder tumor tissues compared to adjacent normal tissues. *p < 0.05; **p
< 0.01; ***p < 0.001; ns, no significance.
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dynamic system is closely associated with the initiation, growth,

metastasis of tumors, and their response to treatment (48, 49). In

BLCA, the role of the TME is particularly crucial. It not only

influences tumor recurrence and progression but also has the

potential to serve as a therapeutic target (45). In our study, we

found that most immune cells were enriched in the high-risk group,

including Monocytes, Macrophages M0, Macrophages M2, and

Mast cells resting, with significant differences between the high-

risk and low-risk groups (p < 0.01). In the low-risk group, T cells

regulatory (Tregs) and Dendritic cells activated were positively

correlated. Monocytes and Macrophages M0/M2 are key cells in

inflammatory responses, and their accumulation in tissues may be

associated with inflammatory diseases or an immunosuppressive

state in the tumor microenvironment (50). M2 macrophages, in

particular, are associated with an anti-inflammatory and tumor

growth-promoting environment. The high content of Tregs in the

low-risk group may be related to a stronger immunosuppressive

environment; Tregs help maintain immune tolerance and prevent

excessive immune responses, but in the tumor microenvironment,

they may also aid the tumor in evading immune surveillance (51).

These findings collectively indicate that there is a strong correlation

between DRLs and immune responses.

Immune checkpoint inhibitors (ICI) have revolutionized cancer

treatment by demonstrating significant therapeutic effects across

various types of tumors, making them a first-line adjuvant

treatment choice for many cancer types. The TIDE (Tumor

Immune Dysfunction and Exclusion) method is an advanced tool

used to predict BLCA patients’ response to ICB and the likelihood

of immune escape. Research indicates that high-risk patients may

be more prone to immune escape, which is associated with their

lower tumor mutational burden (TMB) (Figure 10A) (52, 53). TMB

is a crucial indicator for predicting favorable responses to

immunotherapy because it is often linked to the generation of

more neoantigens by tumor cells, which can be recognized by the

immune system, eliciting an effective immune response (54).

Moreover, high-risk patients have shown better responses to

certain drugs such as cisplatin, Ribociclib, SB216763, Obatoclax

Mesylate, Venetoclax, among others. This suggests that despite

facing higher risks of immune escape, these patients may exhibit

enhanced responses to specific medications, possibly linked to their

immune status and tumor biology. By integrating this information,

more precise prognostic assessments and personalized treatment

recommendations can be offered to BLCA patients, thereby

increasing treatment success rates and improving patients’ quality

of life.

Overall, the prognostic model we constructed with DRLs can

independently assess the clinical outcomes of BLCA patients and is

closely associated with their survival and response to

immunotherapy and chemotherapy drugs. Our research aim is to

provide a scientific basis for the molecular mechanisms of DRLs in

BLCA and their prospects for application in clinical treatment.
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However, this study also faces some challenges; in addition to the

limitations of sample size, the model lacks external validation, The

study did not include confounding factors such as medical

treatment history and lifestyle, and future research will need to

integrate multi-omics data (clinical follow-up, metabolomics) to

refine the model. To further understand the underlying

mechanisms of DRLs, for instance, AC134349.1 may influence

cysteine metabolism by regulating the SLC7A11-related pathway.

Future studies will employ techniques such as CRISPR screening

and RNA pull-down to verify its interaction with DRGs and explore

its regulatory role in chemoresistance or immunotherapy.

Additionally, clinical translation efforts include the development

of liquid biopsy biomarkers or targeted therapies based on DRLs to

enhance personalized treatment of BLCA.
5 Conclusion

In conclusion, by analyzing the DRGs between cells, we

identified DEGs and based on these, constructed a prognostic

model for BLCA patients based on DRLs. This model can

effectively predict the survival outcomes of BLCA patients

and distinguish between high-risk and low-risk groups,

emphasizing their association with immune responses and

chemotherapy sensitivity.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/supplementary material.
Ethics statement

The studies involving humans were approved by Ethics

Committee of the First Affiliated Hospital of Gannan Medical

University. The studies were conducted in accordance with the local

legislation and institutional requirements. The participants provided

their written informed consent to participate in this study.
Author contributions

JX: Writing – original draft, Writing – review & editing,

Investigation, Methodology, Software, Validation, Visualization.

WHL: Software, Validation, Visualization, Writing – review &

editing. JG: Software, Validation, Visualization, Writing – review &

editing. WFL: Software, Validation, Visualization, Writing – review
frontiersin.org

https://doi.org/10.3389/fonc.2025.1527036
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xiao et al. 10.3389/fonc.2025.1527036
& editing. NL: Software, Validation, Visualization, Writing – review

& editing. YH: Data curation, Methodology, Investigation, Software,

Writing – original draft, Writing – review & editing. JZ: Writing –

review & editing. ZH: Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the First Affiliated Hospital of Gannan Medical

University Doctoral Research Startup Fund (Grant No. QD026).
Acknowledgments

We express our gratitude to the researchers and organizations

affiliated with TCGA and GEO for their substantial contribution in

uploading the invaluable dataset utilized in our analysis.
Frontiers in Oncology 20
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in
China, 2015. CA: Cancer J Clin. (2016) 66:115–32. doi: 10.3322/caac.21338

2. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global
cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA: Cancer J Clin. (2024) 74:229–63. doi: 10.3322/caac.21834

3. Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME, et al.
Bladder cancer. Nat Rev Dis Primers. (2017) 3:17022. doi: 10.1038/nrdp.2017.22

4. Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin DM. Estimates of
worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. (2010)
127:2893–917. doi: 10.1002/ijc.v127:12

5. Charlton ME, Adamo MP, Sun L, Deorah S. Bladder cancer collaborative stage
variables and their data quality, usage, and clinical implications: a review of SEER data,
2004-2010. Cancer. (2014) 120 Suppl 23:3815–25. doi: 10.1002/cncr.v120.S23

6. Flaig TW, Spiess PE, Abern M, Agarwal N, Bangs R, Boorjian SA, et al. NCCN
guidelines® Insights: bladder cancer, version 2.2022. J Natl Compr Cancer Network:
JNCCN. (2022) 20:866–78. doi: 10.6004/jnccn.2022.0041

7. Witjes JA, Bruins HM, Cathomas R, Compérat EM, Cowan NC, Gakis G, et al.
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