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for predicting lymph node 
positivity in ovarian cancer: 
development, validation, 
and clinical application 
QingYong Guo1, Jinji Wang2, Ru Chen1, LiPing Hu1* 

and Wenqiang You1* 

1Obstetrics & Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for 
Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China, 2Medical 
Record Statistics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Medical 
Record Statistics, Fujian Medical University, Fuzhou, Fujian, China 
Background: Ovarian cancer (OC) remains a highly lethal gynecological 
malignancy, often diagnosed at advanced stages with a poor prognosis. Lymph 
node involvement is a critical prognostic factor and significantly influences 
treatment planning. However, accurately predicting lymph node positivity 
remains challenging due to the disease’s heterogeneity and the limitations of 
traditional models in handling high-dimensional and imbalanced data. 

Methods: A retrospective analysis was conducted using the SEER database 
(2000–2021), including 26,844 OC patients with complete clinical information. 
We developed a machine learning model incorporating multiple algorithms, with 
XGBoost demonstrating superior performance. SMOTE was used to address class 
imbalance, and LASSO regression aided in selecting key predictors such as tumor 
size, histology, chemotherapy, and surgery. Model performance was assessed via 
accuracy, sensitivity, specificity, F1 score, and AUC, with external validation 
performed using an independent cohort from Fujian Provincial Maternity and 
Children’s Hospital. 

Results: The XGBoost model achieved an AUC of 0.98 (95% CI: 0.975–0.986) in 
the training set and 0.847 (95% CI: 0.823–0.871) in external validation. The model 
demonstrated high sensitivity and robust performance in identifying lymph 
node-positive  cases.  Tumor  size  ≥5  cm,  histological  subtype,  and  
chemotherapy were key predictive features, with SHAP analysis identifying 
tumor size as the most influential factor. 

Conclusion: We present the first machine learning model specifically developed 
for predicting lymph node positivity in OC, validated across large, diverse 
cohorts. To facilitate clinical translation, we developed a free, user-friendly 
online calculator, which allows clinicians to quickly estimate lymph node 
positivity risk using patient-specific clinical parameters. This tool can be 
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accessed at http://127.0.0.1:6818 and serves as a practical, evidence-based aid to 
support individualized treatment decisions and potentially improve patient 
outcomes. Future studies should integrate molecular data and broaden 
external validation to enhance generalizability. 
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1 Introduction 

Ovarian cancer (OC) remains one of the most lethal 
gynecological malignancies worldwide, with high mortality rates 
largely due to late-stage diagnosis and metastasis at the time of 
presentation (1, 2). Despite advances in treatment, the five-year 
survival rate for patients diagnosed at advanced stages remains 
dismally low, emphasizing the urgent need for improved diagnostic 
and predictive tools. Lymph node involvement is a critical factor in 
OC prognosis, influencing treatment decisions and outcomes. 
However, accurately predicting lymph node positivity remains 
challenging due to the heterogeneity of the disease and the 
complexity of tumor biology (3, 4). 

Current research on lymph node positivity in OC largely 
focuses on traditional statistical methods and clinicopathological 
parameters. Several studies have identified factors such as tumor 
grade, histological subtype, tumor size, and laterality as significant 
predictors of lymph node involvement (5–7). However, these 
approaches are often limited by the presence of missing data, 
multicollinearity among variables, and the lack of interpretability 
in high-dimensional settings. Additionally, traditional models tend 
to perform poorly in imbalanced datasets, where positive lymph 
node cases are relatively rare, resulting in limited sensitivity and 
predictive accuracy. 

Machine learning (ML) techniques have emerged as powerful 
tools for predictive modeling, particularly in cases where complex, 
non-linear relationships exist among variables. In recent years, ML 
algorithms, such as gradient boosting, random forests, and 
XGBoost, have shown significant promise in the field of oncology, 
providing higher accuracy and robustness than traditional methods 
(8). ML models are particularly advantageous in handling high-
dimensional data and imbalanced datasets, allowing for the 
inclusion of a wide range of clinical and demographic factors that 
may contribute to disease progression. Furthermore, methods like 
Synthetic Minority Over-sampling Technique (SMOTE) enable 
these models to improve performance on rare outcomes, such as 
lymph node positivity, by generating synthetic samples for 
underrepresented classes. This advancement is crucial in clinical 
applications, where the identification of high-risk patients can lead 
to more timely and targeted interventions. 

Despite the potential of ML in OC prognosis, relatively few 
studies have applied these techniques specifically to predict lymph 
02 
node positivity. Most existing models have focused on general 
survival outcomes or broad metastatic predictions without delving 
into lymph node involvement, which plays a unique role in OC 
spread and management (9, 10). Moreover, the lack of external 
validation in many studies raises concerns about the generalizability 
of these models across diverse patient populations. Therefore, there 
remains a significant gap in developing a robust, validated model for 
predicting lymph node involvement in OC, which could support 
clinicians in making more informed decisions on surgical staging 
and adjuvant therapy. 

Our primary objective was to create a tool that could accurately 
assess lymph node positivity risk in OC patients, thereby assisting 
clinicians in identifying patients who may benefit from  more

aggressive staging and tailored treatment strategies. In addition to 
model development, we aimed to ensure external validity by testing 
our model on a separate dataset from a regional hospital, confirming 
its applicability across different clinical settings. Ultimately, this study 
provides a novel approach to OC prognosis, leveraging machine 
learning to address a clinically relevant question that has been 
challenging to answer with traditional methods. The resulting 
online calculator offers a practical, evidence-based tool for clinical 
use, supporting improved decision-making and potentially 
enhancing patient outcomes. 
2 Method 

2.1 Data sources and study population 

This retrospective analysis leveraged data from the SEER 
database, spanning the years 2000 to 2021, to identify patients 
with a diagnosis of OC. The SEER database provides a 
comprehensive  repository  of  clinical  and  demographic  
information at a national level, supporting population-based 
epidemiological research. Our initial cohort included 120,309 
patients with OC. However, 93,465 individuals were excluded due 
to incomplete key data, specifically unknown T stage (N=54,119), 
indeterminate lymph node status (N=6,185), unspecified tumor size 
(N=32,105), and missing marital status (N=1,056), as visualized 
in Figure 1. 

To assess the model’s robustness and external validity, we 
included a separate validation cohort comprising 550 patients 
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diagnosed with OC at Fujian Provincial Maternity and Children’s 
Hospital. All patients in this external cohort had confirmed OC 
diagnoses and complete data for the predictors used in the model. 
2.2 Identification of risk factors and model 
development 

We applied the Least Absolute Shrinkage and Selection 
Operator (LASSO) regression approach to pinpoint significant 
clinical predictors for lymph node positivity in ovarian cancer. 
LASSO uses an L1 penalty, which selectively reduces certain 
coefficients to zero, isolating the most predictive variables. This 
method is particularly useful in high-dimensional data settings as it 
mitigates multicollinearity and provides a more interpretable 
model. Our analysis incorporated a variety of clinical factors, 
including patient age, race, marital status, household income, 
laterality, histology subtype, radiation therapy, surgery, 
chemotherapy, and tumor size. A 10-fold cross-validation strategy 
was employed to optimize the regularization parameter l, 
minimizing prediction error and reducing the risk of overfitting. 
The final model incorporated critical predictors such as 
chemotherapy status, histology, surgical intervention, laterality, 
tumor  grade ,  tumor  s i ze ,  mar i ta l  s ta tus ,  race ,  and  
household income. 
2.3 Model development and performance 
assessment 

To forecast lymph node positivity, we developed and compared 
several machine learning algorithms, including Logistic Regression 
Frontiers in Oncology 03 
(LR), Random Forest (RF), Gradient Boosting Machine (GBM), 
Extreme Gradient Boosting (XGBoost), Naive Bayes (NB), and 
Classification and Regression Trees (CART). Logistic regression 
served as a linear baseline model, while Random Forest was selected 
for its robustness and capacity to manage non-linear relationships 
via an ensemble of decision trees. Both GBM and XGBoost employ 
iterative corrections to previous errors, with XGBoost offering 
enhanced regularization and computational efficiency. Naive 
Bayes was included for its simplicity and ability to handle high-
dimensional data, whereas CART provided an interpretable 
decision tree structure for classification. 

To address the imbalance in the dataset, where lymph node 
positivity was relatively rare, we applied the Synthetic Minority 
Over-sampling Technique (SMOTE) to the training data. SMOTE 
generates synthetic instances by interpolating between existing 
minority samples, thereby balancing the class distribution and 
improving the models’ sensitivity to rare outcomes. 

We evaluated model performance using a set of comprehensive 
metrics: accuracy, sensitivity, specificity, F1 score, and the area 
under the receiver operating characteristic curve (AUC). Accuracy 
provided a measure of overall model correctness, while sensitivity 
and specificity quantified the model’s ability to correctly identify 
true positives and true negatives, respectively. The F1 score, 
particularly valuable in imbalanced datasets, balanced sensitivity 
and precision. AUC served as an indicator of the model’s 
discrimination capability across various thresholds. Additionally, 
precision-recall curves focused on the trade-off between precision 
and recall for the minority class, and calibration curves verified the 
agreement between predicted probabilities and actual outcomes. To 
further interpret model predictions, we utilized SHAP (SHapley 
Additive exPlanations) values to evaluate the contributions of 
individual predictors within the training data. This approach 
FIGURE 1 

Study cohort selection flowchart. 
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provided insights into the relative influence of each variable, 
enhancing our understanding of the underlying factors driving 
the model’s decision-making processes. 

For external validation, we used an independent dataset of OC 
patients from Fujian Provincial Maternity and Children’s Hospital. 
This cohort was not involved in the training phase, allowing us to 
rigorously assess model generalizability across different clinical 
settings.  The same evaluation metrics—accuracy, sensitivity, 
specificity, F1 score, and  AUC—were applied to confirm the 
model’s robustness in an independent sample. 
3 Result 

A total of 26844 OC patients from the SEER database were 
included in this study, of whom 5795(22%) presented with lymph 
node positive, while 21049(78%) had no evidence of metastasis. The 
external validation cohort consisted of 550 patients diagnosed with 
Frontiers in Oncology 04
OC at the Fujian Provincial Maternity and Children’s Hospital 
between 2018 and 2021, 118(21%) of whom had lymph node 
positive. Detailed cohort information is presented in Table 1. 
Table 2 summarizes the baseline characteristics of OC patients 
with and without lymph node positive. Significant differences were 
observed between the groups in several key areas. 

The final predictive model was refined to include nine key 
variables, chosen for their consistency along the regularization path 
and their substantial impact on reducing cross-validation error. 
These variables demonstrated robust predictive power in assessing 
metastasis risk among ovarian cancer patients (Figures 2A, B). 
Notably, the selected features likely encompass several critical 
factors highlighted in the feature importance plot (Figure 3), 
including chemotherapy, histology, surgery, and laterality—factors 
well-established as pivotal in the prognosis and progression of 
ovarian cancer. 

We evaluated the performance of seven machine learning 
algorithms to predict lymph node positivity in ovarian cancer, 
=

TABLE 1 Baseline characteristics of ovarian cancer patients from SEER database and external validation cohort. 

Categories Training set (N 26844) Validation set (N =550) P- value 

Age (years) 

mean (SD) 61.32 ± 15.06 63.15 ± 14.52 0.003 

Race 0.236 

Black 1549 (6%) 41 (7%) 

Other 3507 (13%) 73 (13%) 

White 21788 (81%) 436 (79%) 

Marital status 0.527 

Divorced 2725 (10%) 43 (8%) 

Separated 13748 (51%) 284 (52%) 

Unmarried 255 (1%) 5 (1%) 

Widowed 5702 (21%) 125 (23%) 

Married 151 (1%) 4 (1%) 

Single 4263 (16%) 89 (16%) 

Household income 

<$60000 2365 (9%) 41 (7%) 

$60000 - $99,999 18791 (70%) 398 (73%) 

$100,000+ 5688 (21%) 111 (20%) 

Laterality 0.866 

Bilateral 7690 (29%) 157 (29%) 

Left 8116 (30%) 163 (30%) 

Paired site 3059 (11%) 69 (13%) 

Right 7979 (30%) 161 (29%) 

Histology recode 0.991 

adenomas and adenocarcinomas 8348 (31%) 173 (31%) 

(Continued) 
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assessing metrics such as accuracy, precision, recall, F1 score, and 
AUC. Consistent with prior studies, models trained with 
oversampl ing  t echniques  outper formed  those  us ing  
undersampling. Detailed performance metrics for each model are 
provided in Table 3. Among the oversampled models, all achieved 
an AUC above 0.6, with XGBoost delivering the highest 
performance, reaching an AUC of 0.98 (95% CI: 0.975–0.986) on 
the training set (Figure 4A). Comparison of AUC values between 
XGBoost and traditional logistic regression showed that XGBoost 
offered significantly enhanced diagnostic accuracy and predictive 
power. The precision-recall curve for XGBoost demonstrated an 
AUC of 0.988, underscoring its strong capacity to handle the 
Frontiers in Oncology 05 
imbalanced dataset, where lymph node-positive cases are 
underrepresented (Figure 4B). The calibration curve for XGBoost 
showed excellent agreement between predicted probabilities and 
observed outcomes, indicating robust calibration (Figure 4C). The 
SHAP summary plot illustrates the influence of various features in 
the XGBoost model’s predictions for lymph node positivity in 
ovarian cancer patients (Figure 5), with tumor size ≥5 cm

emerging as the most impactful factor. Larger tumor sizes were 
associated with a significantly higher likelihood of lymph node 
positivity, while smaller tumors correlated with lower risk. 

In external validation, XGBoost continued to perform well, 
achieving an AUC of 0.847 (95% CI: 0.823–0.871) (Figure 6A). The 
=

TABLE 1 Continued 

Categories Training set (N 26844) Validation set (N =550) P- value 

Histology recode 0.991 

complex mixed and stromal neoplasms 866 (3%) 20 (4%) 

cystic, mucinous and serous neoplasms 13756 (51%) 280 (51%) 

epithelial neoplasms 1337 (5%) 26 (5%) 

germ cell neoplasms 673 (3%) 13 (2%) 

other 1233 (5%) 26 (5%) 

specialized gonadal neoplasms 539 (3%) 92 (2%) 

Grade 0.253 

Grade I 1018 (4%) 15 (3%) 

Grade II 1764 (7%) 32 (6%) 

Grade III 4289 (16%) 76 (14%) 

Grade IV 2738 (10%) 54 (10%) 

Unknown 17035 (63%) 373 (67%) 

Radiation recode 0.648 

None/Unknown 26354 (98%) 538 (98%) 

Yes 490 (2%) 12 (2%) 

Chemotherapy recode 0.256 

No/Unknown 8205 (31%) 181 (33%) 

Yes 18639 (69%) 369 (67%) 

Surgery 0.717 

None 4793 (18%) 102 (19%) 

Yes 22051 (82%) 448 (81%) 

Tumor Size (cm) <0.001 

<5 6382 (24%) 427 (78%) 

5-10 13067 (49%) 52 (9%) 

>10 7395 (28%) 71 (13%) 

Lymph node positive 0.981 

No 21049 (78%) 432 (79%) 

Yes 5795 (22%) 118 (21%) 
SD, standard deviation. 
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=

TABLE 2 Baseline characteristics of ovarian cancer patients with and without lymph node positive in SEER database. 

Categories Without Lymph node positive 
(N 21049) 

Lymph node positive 
(N =5795) 

P- value 

Age (years) 

Mean (SD) 61.26 ± 15.11 61.54 ± 14.88 

Race 0.476 

Black 1196 (6%) 353 (6%) 

White 17094 (81%) 4694 (81%) 

Other 2759 (13%) 748 (13%) 

Marital status 0.381 

Divorced 2122 (10%) 603 (10%) 

Separated 10791 (51%) 2957 (51%) 

Unmarried 207 (1%) 48 (1%) 

Widowed 4488 (21%) 1214 (21%) 

Married 126 (1%) 25 (1%) 

Single 3315 (16%) 948 (16%) 

Household income 0.313 

<$60000 4426 (21%) 1262 (22%) 

$60000 - $99,999 14748 (70%) 4043 (70%) 

$100,000+ 1875 (9%) 490 (8%) 

Laterality <0.001 

Bilateral 5883 (28%) 1807 (32%) 

Left 6492 (31%) 1624 (28%) 

Paired site 2344 (11%) 715 (12%) 

Right 6330 (30%) 1649 (28%) 

Histology recode <0.001 

adenomas and adenocarcinomas 6708 (32%) 1640 (28%) 

complex mixed and stromal neoplasms 686 (3%) 180 (3%) 

cystic, mucinous and serous neoplasms 10568 (50%) 3188 (55%) 

epithelial neoplasms 1037 (5%) 300 (5%) 

germ cell neoplasms 546 (2%) 127 (2%) 

specialized gonadal neoplasms 539 (3%) 92 (2%) 

other 965 (5%) 268 (5%) 

Grade 0.017 

Grade I 794 (3.77%) 224 (3.86%) 

Grade II 1344 (6.38%) 420 (7.24%) 

Grade III 3349 (15.91%) 940 (16.22%) 

Grade IV 2108 (10.01%) 630 (10.87%) 

Unknown 13454 (63.93%) 3581 (61.81%) 

Radiation recode 0.254 

None/Unknown 20654 (98%) 5700 (98%) 

(Continued) 
F
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model displayed a balanced performance, with relatively high 
sensitivity that enhances its ability to identify lymph node-
positive cases, although specificity was moderate, suggesting some 
false positives. Overall, the model achieved a high F1 score (0.866) 
(Table 3) and  AUC (Figure 6B), confirming its efficacy on 
validation data. 

Finally, we developed an online calculator to assess the risk of 
lymph node positivity in ovarian cancer patients, which can be used 
in clinical settings (Figure 7). The tool is available at http:// 
127.0.0.1:6818. By clicking on the website and entering the 
corresponding clinical variables, a score will be generated, 
allowing the evaluation of the risk of lymph node metastasis. 
Frontiers in Oncology 07 
4 Discussion 

This study developed and validated a machine learning model 
to predict lymph node positivity in OC patients, addressing an 
important clinical challenge. Our primary finding is that machine 
learning, particularly the XGBoost algorithm, demonstrates high 
predictive accuracy, sensitivity, and generalizability in assessing 
lymph node involvement. Through comprehensive evaluation 
using multiple metrics—accuracy, sensitivity, specificity, F1 score, 
and AUC—we confirmed the robustness of our model both in the 
SEER cohort and the external validation dataset. This tool, available 
as an online calculator, provides a practical solution for clinicians to 
=

TABLE 2 Continued 

Categories Without Lymph node positive 
(N 21049) 

Lymph node positive 
(N =5795) 

P- value 

Radiation recode 0.254 

Yes 395 (2%) 95 (2%) 

Chemotherapy recode <0.001 

No/Unknown 6624 (31%) 1581 (27%) 

Yes 14425 (69%) 4214 (73%) 

Surgery 0.006 

None 3688 (18%) 1105 (19%) 

Yes 17361 (82%) 4690 (81%) 

Tumor Size (cm) 0.339 

<5 5029 (24%) 1353 (24%) 

5-10 10264 (49%) 2803 (48%) 

>10 5756 (27%) 1639 (28%) 
SD, standard deviation. 
A 
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FIGURE 2 

Selection of predictive variables using Lasso logistic regression. (A) Lasso coefficient profiles of the variables. Each curve represents a predictor; the 
X-axis corresponds to the log-transformed regularization parameter (lambda), and the Y-axis shows the coefficient values. As the penalty increases, 
many coefficients shrink to zero. (B) Selection of optimal lambda via 10-fold cross-validation. The plot shows the mean squared error for each value 
of lambda. The dotted line indicates the lambda with the minimum cross-validation error. 
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assess lymph node positivity risk, potentially guiding treatment 
planning and surgical staging decisions. 

Previous studies have predominantly relied on conventional 
statistical models and clinicopathological parameters to predict 
lymph node involvement in OC. While factors such as tumor 
grade(Grade I to IV or well-differentiated to undifferentiated), 
histological subtype, tumor size, and laterality have been 
Frontiers in Oncology 08
consistently identified as predictors, traditional models are often 
constrained by their limited ability to handle high-dimensional 
data, missing values, and multicollinearity (11–13). Moreover, the 
predictive performance of these models typically suffers in 
imbalanced datasets, which is a common issue in studies on 
lymph node positivity where positive cases are rare. For example, 
logistic regression models may struggle with imbalanced data, 
FIGURE 3 

Feature importance in the final XGBoost model. Feature importance scores ranked by weight. Features such as chemotherapy, histology, and 
surgery show high importance in predicting lymph node metastasis. 
TABLE 3 Performance metrics of machine learning models for predicting lymph node positive in ovarian cancer patients. 

Model Accuracy Sensitivity Specificity F1_Score AUC 

Training set 

Logistic 0.624 0.02 0.99 0.039 0.712 

Random forest 0.64 0.047 1 0.089 0.927 

Gbm 0.694 0.364 0.895 0.473 0.962 

Xgboost 0.879 0.787 0.935 0.831 0.982 

Naive bayes 0.623 0 1 0.676 0.783 

Cart 0.644 0.212 0.905 0.31 0.694 

Validation set 

Xgboost 0.711 0.286 0.968 0.427 0.847 
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leading to reduced sensitivity and an inability to generalize well 
across diverse patient populations. 

In contrast, our study leveraged advanced machine learning 
techniques, which are inherently more suited to handling complex, 
high-dimensional, and imbalanced datasets. By employing 
XGBoost, we addressed the non-linear relationships between 
clinical features and lymph node positivity, which conventional 
models may overlook. Moreover, applying SMOTE allowed us to 
mitigate the effects of class imbalance, thereby enhancing the 
model’s sensitivity and overall predictive power. Unlike previous 
models that primarily focus on survival outcomes or broad 
metastatic risk, our approach specifically targets lymph node 
involvement, addressing a clinically relevant aspect of OC 
progression that can significantly influence treatment decisions. 

The final XGBoost model incorporated nine key predictors, 
including tumor size, histology, chemotherapy, surgery, laterality, 
tumor grade, marital status, race, and household income. Among 
these, tumor size emerged as the most influential factor, with larger 
tumors (≥5 cm) being strongly associated with lymph node 
positivity. This finding aligns with existing literature, as larger 
tumors are more likely to facilitate lymphatic spread. Other 
predictors, such as histological subtype and laterality, also showed 
significant associations with lymph node involvement, consistent 
with known biological mechanisms in OC (14–16). 

The SHAP analysis provided further insight into the model’s 
decision-making process, highlighting how each variable 
contributed to the risk assessment. For instance, chemotherapy 
and surgery were notable predictors, suggesting that patients who 
had undergone these treatments might exhibit different lymph node 
involvement risks due to alterations in tumor biology or immune 
response. Such detailed interpretability not only enhances our 
understanding of OC progression but also provides clinicians 
with a transparent tool for assessing individual patient risks. 

Our model addresses a critical gap in OC management by 
providing an evidence-based tool for predicting lymph node 
involvement, thereby aiding in personalized treatment planning. 
Accurate lymph node assessment is crucial for determining the 
extent of surgical staging, selecting patients for lymphadenectomy, 
and identifying those who may benefit from adjuvant therapy. 
Frontiers in Oncology 09
Traditional methods for lymph node assessment, such as sentinel 
lymph node biopsy or extensive lymphadenectomy, are invasive 
and associated with morbidity. By offering a non-invasive 
prediction tool, our model enables more targeted interventions, 
potentially reducing unnecessary procedures and their associated 
complications. Moreover, the model’s online calculator offers an 
accessible platform for clinicians, allowing them to input readily 
available clinical data and receive an immediate risk assessment. 
This practical tool can be particularly valuable in resource-limited 
settings where comprehensive imaging or molecular testing may 
not be feasible. 

A major strength of our study is that it represents the first 
machine learning-based model developed specifically to predict 
lymph node positivity in ovarian cancer. While previous research 
has focused on general survival outcomes or broad metastatic 
predictions, none have targeted lymph node involvement—a 
critical factor influencing OC treatment decisions and prognosis. 
By addressing this clinically relevant issue, our study fills an 
important gap in OC research, providing a novel and specialized 
tool for clinicians. In addition, we utilized a large, nationally 
representative dataset (SEER) for model training, combined with 
external validation on an independent cohort from Fujian Provincial 
Maternity and Children’s Hospital. This extensive approach enhances 
the generalizability of our findings, addressing a common limitation 
in predictive modeling studies that often lack validation across 
diverse populations. Furthermore, our application of XGBoost and 
SMOTE exemplifies the utility of machine learning in handling 
complex, imbalanced datasets, a common challenge in the clinical 
oncology setting. Another unique advantage of our study is the 
interpretability of the model through SHAP values, which allows 
clinicians to understand how each predictor contributes to the overall 
prediction. This transparency fosters trust in the model’s outputs and 
provides insight into the underlying factors associated with lymph 
node positivity in OC, which traditional models rarely achieve. 

However, despite these strengths, several limitations of this study 
should be acknowledged. First, as a retrospective analysis based on 
the SEER database, our study may be subject to inherent selection 
bias and residual confounding, which cannot be fully eliminated. 
Second, although the SEER database provides a large and 
FIGURE 4
 

Model performance of XGBoost on the training dataset. (A) ROC curve of the XGBoost model. The model achieved an AUC of 0.98 (95% CI: 0.975–
 
0.986), indicating excellent diagnostic performance. (B) Precision-recall curve. The AUC for the PR curve was 0.988, reflecting strong performance
 
on the imbalanced dataset. (C) Calibration curve. Predicted probabilities closely matched observed outcomes, indicating good model.
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representative sample, it lacks important clinical details such as FIGO 
staging, genetic profiles (e.g., BRCA1/2 mutation status), molecular 
markers, and information on residual disease or chemotherapy 
regimens. These factors are known to influence lymph node 
metastasis risk and treatment decisions and would further enhance 
the predictive accuracy and clinical utility of the model if available. 
Frontiers in Oncology 10 
Third, while the external validation cohort showed good 
generalizability, it was limited to a single center in China.

Validation in broader, multi-center, and international settings is 
necessary to confirm the model’s applicability across different 
populations and healthcare systems. Finally, although our model 
demonstrated high sensitivity in identifying lymph node-positive 
FIGURE 5 

SHAP summary plot for the XGBoost model. SHAP values showing the impact of each feature. Tumor size ≥5 cm emerged as the most influential 
variable, followed by laterality, chemotherapy, and histology. 
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FIGURE 6 

External validation of the XGBoost model on the independent cohort. (A) ROC curve on external validation dataset. The model achieved an AUC of 
0.847 (95% CI: 0.823–0.871), confirming strong generalization ability. (B) Precision-recall curve showed AUC of XGBoost(0.904). 
FIGURE 7 

Web-based interface for clinical use. The tool allows clinicians to input patient data and receive immediate risk estimates for lymph node positivity. 
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cases, its moderate specificity may lead to some false-positive 
predictions. While this trade-off may be acceptable in clinical 
scenarios where prioritizing high-risk detection is critical, future 
versions of the model should aim to optimize the balance between 
sensitivity and specificity to minimize unnecessary interventions. 
5 Conclusion 

In conclusion, our study marks a significant advancement as the 
first machine learning model specifically designed to predict lymph 
node positivity in ovarian cancer. Through innovative machine 
learning techniques and rigorous external validation, we provide a 
robust, interpretable, and practical tool that enhances clinical 
decision-making in OC. This model offers clinicians an evidence-
based approach to assess lymph node positivity risk, aiding in surgical 
and treatment planning and ultimately contributing to improved 
patient outcomes. Future research should build on these findings, 
incorporating molecular data and validating the model in diverse 
clinical populations to further refine its utility in ovarian cancer care. 
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