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Objectives: To develop a novel automatic delineation model, the Multi-Scale

Channel Attention U-Net (MCAU-Net) model, for gallbladder segmentation on

CT images of patients with liver cancer.

Methods: We retrospectively collected the CT images from 120 patients with

liver cancer, based on which ground truth wasmanually delineated by physicians.

The images and ground truth constitute a dataset, which was proportionally

divided into a training set (54%), a validation set (6%), and a test set (40%). Data

augmentation was performed on the training set. Our proposed MCAU-Net

model was employed for gallbladder segmentation and its performance was

evaluated using Dice Similarity Coefficient (DSC), Jaccard Similarity Coefficient

(JSC), Positive Predictive Value (PPV), Sensitivity (SE), Hausdorff Distance (HD),

Relative Volume Difference (RVD), and Volumetric Overlap Error (VOE) metrics.

Results: On the test set, MCAU-Net achieved DSC, JSC, PPV, SE, HD, RVD, and

VOE values of 0.85 ± 0.22, 0.79 ± 0.23, 0.92 ± 0.14, 0.84 ± 0.23, 2.75 ± 0.98, 0.18

± 0.48, and 0.22 ± 0.42, respectively. Compared to the control models, U-Net,

SEU-Net and TransUNet, the MCAU-Net improved DSC 0.06, 0.04 and 0.06, JSC

by 0.09, 0.06 and 0.09, PPV by 0.08, 0.08 and 0.05, SE by 0.05,0.05 and 0.07,

and reduced HD by 0.45, 0.28 and 0.41, RVD by 0.07, 0.03 and 0.07, VOE by 0.04,

0.02 and 0.08 respectively. Qualitative results revealed that MCAU-Net produced

smoother and more accurate boundaries, closer to the expert delineation, with

less over-segmentation and under-segmentation and improved robustness.

Conclusions: The MCAU-Net model significantly improves gallbladder

segmentation on CT images. It satisfies clinical requirements and enhances the

efficiency of physicians, particularly in segmenting complex anatomical structures.
KEYWORDS

deep learning, U-Net, gallbladder, automatically delineated, multi-scale
channel attention
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1 Introduction

According to global cancer statistics in 2022 (1), liver cancer

ranks the third leading cause of cancer-related deaths worldwide,

with increasingly growing annual incidence and mortality rates in

many regions, which necessitates precise treatment for liver cancer

to improve patients’ survival rates. Radiotherapy (RT) plays a vital

role in the multidisciplinary comprehensive treatment of liver

cancer, especially in locally advanced or unresectable cases (2–4).

RT uses high-energy rays and precise dose distribution to kill or

inhibit tumor growth, thereby extending patients’ survival period

and improving their quality of life (5–7).

However, RT effect relies on the precise delineation of the tumor

and its surrounding adjacent organs, which ensures the dose

concentration on the tumor area, thereby inhibiting tumor growth

and reducing radiation exposure to normal tissues and potential side

effects (8–10). Presently, the delineation of tumors and their

surrounding organs are primarily and manually performed by

physicians. This process is time-consuming and susceptible to inter-

and intra-observer variability, which poses a tremendous challenge to

clinical workflows (11–13). Consequently, automated delineation

becomes imperative.

Atlas-based automatic delineation software commonly applied

in clinical practice can’t satisfy the need of high-precision

segmentation when faced with images with complex structures or

diverse variability (14, 15). For instance, the liver and its adjacent

organs tend to manifest complex anatomical structures and blurred

boundaries on CT images, provoking overwhelming challenges for

precise automatic delineation.

In recent years, the continuous development of artificial intelligence

facilitated its application in medical image delineation and made

significant progress in image segmentation. Many studies have

employed deep learning-based automatic segmentation approach to

the delineation of organs at risk (OARs) of liver cancer. However, most

existing automateddelineationmethodsprimarily focus on tumor target

volumes and a few key organs, often neglecting the gallbladder (16–18).

In the process of RT, the gallbladder, a critical organ adjacent to the liver,

is inevitably radiated and excessive radiationdosesmay cause side effects

such as acute cholecystitis and biliary tract injury, seriously affecting the

patient’s treatment outcomes and quality of life.

Accurate gallbladder delineation can not only effectively reduce or

avoid side effects, but it also facilitates more dose concentration on the

tumor target area, thus obtaining superior dose distribution and

optimization of the RT plan. Therefore, it becomes extremely essential

to develop an efficient and reliable automated method for

gallbladder delineation.

Although deep learning has made significant progress in recent

years in the domain of medical image segmentation, there still exist

some limitations in the existing deep learning models when they cope
Abbreviations: RT, Radiotherapy; OARs, Organs at Risk; HU, Hounsfield Unit;

ROI, Region of Interest; MCAU-Net, Multi-Scale Channel Attention U-Net;

MCA, Multi-Scale Channel Attention; cSE, Spatial Squeeze and Channel

Excitation; DSC, Dice Similarity Coefficient; JSC, Jaccard Similarity Coefficient;

PPV, Positive Predictive Value; SE, Sensitivity; HD, Hausdorff Distance; RVD,

Relative Volume Difference; VOE, Volumetric Overlap Error.
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with complicated CT images of patients with liver cancer.When faced

with the complex anatomical relationships between the liver and

gallbladder, these models are often limited and susceptible to noise

and blurred boundaries, thereby exhibiting unstable segmentation.

To address the above-mentioned issue, this study proposed a

novel channel attention module and incorporated it into the U-Net

to construct a novel model, Multi-Scale Channel Attention U-Net

(MCAU-Net), which was applied to gallbladder segmentation on

CT images of the patients with liver cancer. We aimed to satisfy the

demand to enhance the quality of RT plans for liver cancer,

especially in the aspect of patient safety and treatment efficacy.

The implementation of automated gallbladder delineation

contributes to reducing physicians’ workload, diminishing manual

delineation errors and strengthening delineation consistency and

accuracy, thus providing more reliable data for precise RT.
2 Materials and methods

2.1 Data process

We retrospectively collected CT images of 120 patients with liver

cancer and these images were captured from different models of CT

scanners (Details were provided in Supplementary Part 1). Inclusion

criteria are as follows: a). Complete gallbladder was included in the CT

images. b). The gallbladder was clearly visible. c). The scans were

conducted according to the standard clinical protocol for liver cancer

staging.We preprocessed the input images usingHounsfieldUnit (HU)

value conversion, window width and window level adjustment, and

adaptive histogram equalization. Initially, the images were transformed

into HU values by the HU value conversion to prepare them for the

adjustment of window width and window level. Subsequently,

adjustments to the window width and window level were executed

specifically for the visibility of the liver and gallbladder regions,

enhancing the contrast in these regions and making the key

anatomical structures more clearly visible on the images. After that,

adaptive histogram equalization was applied to increase the contrast of

the region of interest (ROI), further improving the visibility of key

anatomical structures and clarifying the boundaries between the

gallbladder and liver on the CT image. This allowed the model to

more accurately locate and segment the target region. Finally, the images

were normalized to a range of 0-1 using a normalization method.

We divided the dataset proportionally into a training set (54%),

a validation set (6%), and a test set (40%) to effectively evaluate the

model’s performance. This kind of division ensures the robustness of

the model, avoids overfitting, and provides sufficient data for model

evaluation. Furthermore, to address the issue of high costs for data

acquisition, data augmentation was performed on the training set,

including rotation, shifting, shearing, and zooming, ultimately yielding

a total of 7,834 CT images and the dataset is as shown in Figure 1.
2.2 Module and architecture

Our proposed model evolved from the U-Net model, most

commonly used in medical image segmentation, with the features
frontiersin.org
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of a symmetrical encoder-decoder architecture, endowing the model

with the capability of extracting features layer by layer and efficiently

restoring them step by step. The U-Net model also adopts skip

connections to compensate lost detailed features in deep networks,

thereby effectively improving the segmentation performance.

However, the U-Net model still exists some limitations. First,

when handling target regions with complex morphologies and

strong background noise, it fails to effectively distinguish the

difference between the target region and the background, so when

it segments such complex anatomical organs as the liver, the

gallbladder region may be segmented mistakenly or overlooked.

Additionally, the U-Net model performs unsatisfactorily in

capturing multi-scale features. It cannot fully obtain the features

of the target region at different scales, which restricts its

segmentation of small target regions such as the gallbladder region.

To address the above-mentioned issues, we have introduced a

novel Multi-scale Channel Attention Block (MCA Block) into the
Frontiers in Oncology 03
U-Net to construct an improved model, MCAU-Net, as shown in

Figure 2. MCAU-Net is designed to strengthen the U-Net’s ability to

capture features at different scales by introducing a channel attention

mechanism across different scales to increase the model’s focus on the

target area and reduce the interference from background noise. This

module falls into two parts: one is a multi-scale feature extraction

moduleused toobtain features of the gallbladder at different scales, and

the other is a channel attention module responsible for channel

importance re-weight of the input features at different scales.

First of all, the module extracts multi-scale features of the input

image through 2D convolutions with kernel sizes of 3, 5, and 7

respectively or 5, 7, and 9 respectively, hence effectively obtaining

morphological characteristics of the target region at different scales.

Subsequently, these multi-scale features are integrated, and a 1×1

2D convolution is applied to restore the channel dimensions.

Similarly, the channel attention module also employs different

scales. It conducts average pooling operations of 2 and 4 on the
FIGURE 1

Dataset. (A) Input standard image (CT image). (B) Corresponding label image (Ground truth). (C) Gallbladder drawn in 3D.
FIGURE 2

Multi-scale Channel Attention Block (MCA Block).
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obtained feature channels to compress the size of the feature

maps, thereby extracting more representative global features. After

that, global average pooling is performed on both the original input

and the feature maps compressed by the average pooling layers,

thereby integrating the spatial dimension information into the

channel dimension information. Subsequently, the integrated channel

information is weighed by cSE, Spatial Squeeze and Channel Excitation

attention mechanism, with key features highlighted and irrelevant

background information suppressed, whereby the model further

improves its segmentation performance in complex backgrounds.

The advantage of themulti-scale channel attentionmodule consists

in its ability to fully integrate channel information from different scales,

making the model more robust in complex backgrounds. Acquisition

and integration of multi-scale features endows the model with stronger

efficiency in capturing the gallbladder and its surrounding complex

structures. Furthermore, by assigning importanceweights to channels at

different scales, the multi-scale channel attention mechanism not only

concentrates themodel’s attention on key features, but also promotes its

focusonbetter correlating featuredependenciesbetween featuremapsof

different scales.

For the reduction of the model’s parameter count and the costs,

the proposed multi-scale channel attention module is only inserted

into the downsampling part, that is, replacing the two convolutional

operations used for feature extraction with the multi-scale attention

module. For the upsampling part, residual connections and Batch

Normalization layers are adopted to ensure the stability of

model training.
2.3 Loss function, evaluation metrics, and
baseline models

Class imbalance is a common issue in medical image

segmentation, particularly when the target region (such as the

gallbladder) occupies a relatively small portion on the entire image.

In the case of class imbalance, the traditional cross-entropy loss

function may perform unsatisfactorily because it assigns greater weight

to the large number of background pixels (non-target regions), which

provokes the model to be more inclined to predict pixels as

background. As shown in Supplementary Part 2, we calculated the

percentage of gallbladder pixels on the total pixels before augmenting

the training set and found that the pixels of the gallbladder only

accounted for approximately 0.55% of the total, indicating that the

gallbladder data can be categorized as extremely imbalanced data.

To address this issue, we adopt Dice Loss as the loss function,

which directly measures the overlap proportion between the

prediction and the ground truth with more sensitivity to the

segmentation of small target regions. The expression for Dice

Loss is shown in Equation 1:

LDice = 1 −

2o
N

i=1
pigi + �o

o
N

i=1
pi +o

N

i=1
gi + �o

(1)
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where pi denotes the predicted value of the ith pixel by the

model, gi denotes the true label value of the ith pixel, N represents

the total number of pixels, and ò is a very small positive number

used to avoid a zero denominator.

A series of evaluation metrics, including the Dice Similarity

Coefficient (DSC), Jaccard Similarity Coefficient (JSC), Positive

Predictive Value (PPV), Sensitivity (SE), Hausdorff Distance (HD),

Relative Volume Difference (RVD), and Volumetric Overlap Error

(VOE) are used to quantitatively and comprehensively assess the

model’s performance. DSC and JSC are overlap-based metrics that

measure the similarity between the predicted segmentation and the

ground truth, ranging from 0 to 1 with 1 indicating the optimal

segmentation. PPV quantifies the proportion of correctly predicted

positive pixels, emphasizing the accuracy of the positive predictions,

while SE measures the model’s sensitivity to true positive pixels,

indicating how effectively the model captures the true segmented

regions. HDmeasures the distance between the farthest points of two

irregular shapes and is often utilized to evaluate the boundary

segmentation accuracy. RVD evaluates the relative volume

difference between the predicted segmentation and the ground

truth. The closer the RVD is to 0, the more accurate the

segmentation is. Similarly, VOE measures volume overlap error

between the predicted segmentation and the ground truth

(Formulas are provided in Supplementary Part 3).

Besides, we conducted comparative experiments, with three

commonly used models in image segmentation, U-Net, SEU-Net,

and TransUNet as the control groups, to validate the effectiveness of

the proposed MSAU-Net model.
a. U-Net (19), the most commonly used model in the field

of medical image segmentation, mainly consists of

downsampling, upsampling, and skip connections. The

downsampling part is responsible for extracting feature

information from the target region, while the upsampling

part gradually restores the spatial resolution of the image.

Through the skip connection mechanism, the features

extracted during downsampling are conveyed to the

corresponding upsampling layers to compensate for the

high-resolution features lost during downsampling, thereby

improving segmentation accuracy.

b. SEU-Net (20) is an improved model, which is constructed

by introducing Squeeze-and-Excitation module into U-Net.

The Squeeze-and-Excitation module enhances the model’s

focus on important features by recalibrating the

relationships between channels. Specifically, the Squeeze-

and-Excitation module performs global average pooling on

the features of each channel to generate a global receptive

field for the channel, and then learns the weight

coefficients of each channel through fully connected

layers. In this way, the model can automatically learn

and emphasize the feature channels that are more

contributive to the segmentation, while suppressing

irrelevant or interfering information, thereby improving

segmentation performance.
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Fron
c. TransUNet (21): TransUNet is a hybrid model that combines

the strengths of U-Net and Transformer-based architectures.

The model incorporates transformer to improve the model’s

ability to capture long-range dependencies and contextual

information on medical images. This helps address the

limitations of traditional CNN-based architectures, such as

U-Net, by enhancing the model’s global receptive field and

making it more effective in handling complex structures and

diverse medical image modalities.
2.4 Model environments and
training hyperparameters

The models were constructed using TensorFlow software

version 2.4.0 (Google Brain Team,2015; Mountain View, CA,

USA) and Keras software version 2.4.3, with Python 3 as the

programming language, Windows 10 64-bit as operating system

(Microsoft Corp., Redmond, WA, USA), Intel Core i9-10900 KF @

3.70 GHz (Intel Corp., Santa Clara, CA, USA)as the CPU, NVIDIA

GTX3090 24 G (NVIDIA Corp., Santa Clara, CA, USA) as the

graphics card, and 128GB memory.

The remaining hyperparameters are listed in Table 1. The Batch

Size indicates the number of training samples processed before the

model’s internal parameters are updated. The Block Number

specifies the count of layers or blocks within the network,

affecting the model’s depth and complexity in feature extraction.

The Epoch count represents how many times the entire dataset is

passed through the neural network, crucial for the thorough

training of the model. The Learning Rate is vital for determining

the step size at each iteration towards minimizing the loss function,

while Decay Steps and Decay Rate manage the frequency and scale

at which the learning rate is reduced, allowing for finer adjustments

and more stable convergence as training progresses.
3 Results

3.1 Module testing

To explore the effect of the diverse number of MCA Blocks on

model performance, we performed a series of comparative
tiers in Oncology 05
experiments, where we inserted different numbers of MCA Blocks

into the encoder of the U-Net to construct three variant models

respectively, named MCAU-Net-1(with 1 MCA block), MCAU-

Net-2(with 2 MCA blocks), and MCAU-Net-3(with 3

MCA blocks).

The three variants were evaluated respectively using

quantitative indicators and the results are presented in Table 2

and Figure 3. The results indicate that MCAU-Net-1 achieved

satisfactory DSC and JSC values. Furthermore, MCAU-Net-2

further improved the DSC and JSC, reaching values of 0.85 ± 0.22

(DSC) and 0.79 ± 0.23 (JSC) respectively. This demonstrates the

model’s enhanced capability in segmenting the target region.

However, when the number of MCA Blocks increased to 3

(MCAU-Net-3), the model performed less effectively, compared to

MCAU-Net-1 and MCAU-Net-2, with only the PPV slightly

increasing to 0.93 ± 0.17, but a slight decrease in both the DSC

and the JSC and increase in the HD and the VOE,which indicates that

the model may experience feature redundancy with too many MCA

Blocks, resulting in a slight decrement in segmentation performance.

Overall, MCAU-Net-2 achieved superior performance across

multiple indicators, suggesting that moderate increase in the

number of MCA Blocks can effectively improve segmentation of

the model. However, an excessive number of attention modules

and convolutional modules might provoke a slight decline in

model performance.

Furthermore, the box plots reveal that MCAU-Net-2 presents

smaller interquartile ranges and 1.5IQR and bigger median and

mean values across most evaluation metrics. This indicates that

MCAU-Net-2 outperforms MCAU-Net-1 and MCAU-Net-3 in

terms of model robustness and generalization, and provides

relatively ideal segmentation performance while maintaining low

computational complexity.
3.2 Ablation study of multi-scale feature
extraction block

To identify the optimal multi-scale levels for the multi-scale

feature extraction block, we conducted further ablation experiments.

To explore the impact of different convolution kernel sizes on model

performance and memory consumption, we tested two combinations

of different convolution kernel sizes: 3, 5, 7 and 5, 7, 9.
TABLE 1 Network Training parameters.

Model Batch Size Block Number Epoch Learning Rate Decay Steps Decay Rate

U-Net 4 80 3e-6

SEU-Net 4 80 6e-5 1200 0.96

TransUNet 4 80 6e-4 1000 0.96

MCAU-Net 4 1 80 4e-4 800 0.96

MCAU-Net 4 2 80 5e-4 800 0.96

MCAU-Net 4 3 80 4e-4 800 0.96
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As illustrated in Table 3, the combination of kernel sizes 3, 5, 7

demonstrated superior performance compared to that of kernel

sizes of 5, 7, 9 across all evaluated metrics, among which the DSC

for the combination of 3, 5, 7 was 0.85 ± 0.22, better than a DSC of

0.83 ± 0.24 for the combination of 5, 7, 9. Additionally, the JSC (0.79

± 0.23) for the combination of 3, 5, 7 was also higher than 0.76 ±

0.25, the JSC for the combination of 5,7,9, suggesting a higher
Frontiers in Oncology 06
accuracy in gallbladder segmentation. The PPV for the combination

of 3, 5, 7 was 0.92 ± 0.14, which was higher than 0.90 ± 0.17, the

PPV for the combination of 5,7,9. This also indicates that the

combination of 3, 5, 7 is more effective in reducing false positives in

non-gallbladder regions.

As for boundary fitting capability, HD for the combination of 3,

5, 7 was 2.75 ± 0.98, which was lower than 2.90 ± 1.03, HD for the

combination of 5, 7, 9, reflecting more precise fitting to the

gallbladder boundary. Additionally, SE also showed a slight

improvement, with a value of 0.84 ± 0.23 for the combination of

3, 5, 7, a bit higher than 0.82 ± 0.25 for the combination of 5, 7, 9.

This indicates that the combination of 3, 5, 7 has an enhanced

coverage rate and reduced detection omission in capturing

gallbladder region features. Similarly, RVD and VOE presented

improvements with values of 0.18 ± 0.48 vs. 0.20 ± 0.47 and 0.22 ±

0.42 vs. 0.25 ± 0.45, respectively, reflecting a more accurate volume

measurement with less discrepancy and fewer overlap errors.

Overall, the experimental results demonstrate that the smaller

kernel size combination of 3, 5, 7 exhibits higher segmentation

accuracy, lower false positive rates, and better boundary fitting

capability in gallbladder segmentation tasks. Additionally, smaller
FIGURE 3

(A) Comparison of DSC for the three models. (B) Comparison of JSC for the three models. (C) Comparison of PPV for the three models.
(D) Comparison of SE for the three models. (E) Comparison of HD for the three models. (F) Comparison of RVD for the three models.
(G) Comparison of VOE for the three models. (H) Summary of evaluation metrics (DSC, JSC, PPV, SE, HD, RVD, VOE) for the three models.
TABLE 2 Quantitative comparison of different models.

MCAU-Net-1 MCAU-Net-2 MCAU-Net-3

DSC 0.84 ± 0.23 0.85 ± 0.22 0.78 ± 0.27

JSC 0.77 ± 0.24 0.79 ± 0.23 0.71 ± 0.27

PPV 0.91 ± 0.16 0.92 ± 0.14 0.93 ± 0.17

SE 0.83 ± 0.25 0.84 ± 0.23 0.74 ± 0.28

HD 2.81 ± 1.02 2.75 ± 0.98 3.01 ± 1.08

RVD 0.20 ± 0.46 0.18 ± 0.48 0.25 ± 0.31

VOE 0.23 ± 0.42 0.22 ± 0.42 0.36 ± 0.52
The values in bold represent the highest scores achieved.
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kernel s izes means fewer parameters , decreasing the

computational burden.
3.3 Ablation study of different modules

To further evaluate the individual and synergistic contributions

of the multi-scale feature extraction and channel attention

mechanisms in the MCAU-Net model, we conducted a series of

ablation studies. The ablation experiments were designed to

quantitatively assess the impact of each module on segmentation

performance, thereby validating the necessity and effectiveness of

integrating these components. In the ablation study, we selected the

number of each module to be 2. As shown in Table 4, embedding

either multi-scale feature extraction or the channel attention

mechanism alone can improve model performance, but the best

results are achieved when both modules are incorporated.

Specifically, the MCA Block achieves optimal values across all

metrics. These results demonstrate that the combination of multi-

scale feature extraction and multi-scale channel attention can

significantly enhance the overall segmentation performance and

play a crucial role in gallbladder segmentation. Therefore,

integrating these two mechanisms is essential for improving the

model’s generalization ability and segmentation effectiveness.
Frontiers in Oncology 07
3.4 Comparison of binary cross entropy
and dice loss

As shown in Table 5, the quantitative results demonstrate that

the MCAU-Net model performs better based on Dice loss (DL)

than on the Binary Cross Entropy Loss (BCEL) across all metrics,

with significant improvements. Specifically, DSC improved from

0.80 ± 0.20 (BCEL) to 0.85 ± 0.22 (DL), JSC from 0.71 ± 0.22

(BCEL) to 0.79 ± 0.23(DL), PPV from 0.83 ± 0.21(BCEL) to 0.92 ±

0.14 (DL), SE from 0.81 ± 0.22(BCEL) to 0.84 ± 0.23(DL); HD

lowered from 3.22 ± 1.02(BCEL) to 2.75 ± 0.98 (DL), RVD from

0.29 ± 0.67 (BCEL) to 0.18 ± 0.48 (DL) and VOE from 0.25 ± 0.31

(BCEL) to 0.22 ± 0.42(DL). Qualitative results (as illustrated in

Figure 4) reveal that the MCAU-Net model based on BCEL exhibits

blurring in the segmented image possibly because of BCEL’s

limitations when dealing with class imbalance. Since the

background typically occupies a larger proportion, the BCEL

tends to prioritize the classification of background pixels during

training, posing less accurate discrimination of the target regions

and manifesting as blurriness.
3.5 Quantitative results

We chose the MCAU-Net 2(Here after MCAU-Net), the best

among the three variants, to be compared with U-Net, SEU-Net and

TransUNet. Table 6 presents the quantitative results of U-Net, SEU-

Net, TransUNet, and MCAU-Net on multiple segmentation

evaluation metrics. The MCAU-Net outperforms U-Net, SEU-Net

and TransUNet on most evaluation metrics. The MCAU-Net

increased the DSC by 0.06, 0.04 and 0.06 respectively, and the

JSC by 0.09, 0.06 and 0.09 respectively compared to U-Net, SEU-

Net and TransUNet, indicating that MCA block greatly enhances

the model’s ability to accurately capture the target region.

Additionally, MCAU-Net significantly improved PPV and SE,

achieving values of 0.92 ± 0.14 and 0.84 ± 0.23, respectively. These

enhancements indicate the model’s accurate prediction and

comprehensive detection capabilities for positive sample regions.

Meanwhile, the reduction in HD by MCAU-Net suggests its better

performance than the control group and better spatial consistency
TABLE 3 Ablation study of different kernel size.

Kernel
size (3,5,7)

Kernel
size (5,7,9)

DSC 0.85 ± 0.22 0.83 ± 0.24

JSC 0.79 ± 0.23 0.76 ± 0.25

PPV 0.92 ± 0.14 0.90 ± 0.17

SE 0.84 ± 0.23 0.82 ± 0.25

HD 2.75 ± 0.98 2.90 ± 1.03

RVD 0.18 ± 0.48 0.20 ± 0.47

VOE 0.22 ± 0.42 0.25 ± 0.45
The values in bold represent the optimal values achieved.
TABLE 4 Ablation study of different modules.

Baseline
Multi-scale Feature
Extraction Block

Multi-scale cSE
Block

MCA Block

DSC 0.79 ± 0.23 0.83 ± 0.24 0.84 ± 0.23 0.85 ± 0.22

JSC 0.70 ± 0.24 0.75 ± 0.25 0.77 ± 0.24 0.79 ± 0.23

PPV 0.84 ± 0.20 0.90 ± 0.18 0.92 ± 0.15 0.92 ± 0.14

SE 0.79 ± 0.24 0.80 ± 0.26 0.82 ± 0.24 0.84 ± 0.23

HD 3.20 ± 1.02 2.87 ± 1.05 2.84 ± 1.03 2.75 ± 0.98

RVD 0.25 ± 0.53 0.21 ± 0.57 0.19 ± 0.45 0.18 ± 0.48

VOE 0.26 ± 0.38 0.26 ± 0.46 0.24 ± 0.43 0.22 ± 0.42
The values in bold represent the optimal values achieve. (The models in the ablation study were U-Net).
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in reproducing the boundaries of the target region, with

segmentation closer to the true boundaries.
3.6 Qualitative results

The qualitative results are shown in the Figures 5 and 6,

indicating that the U-Net model (Column C) can roughly identify

the target area, but it exhibits deficiencies in capturing edge details
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and recognizing the scope of the target area, making it prone to

over-segmentation, under-segmentation, and scattered points.

Comparatively, the SEU-Net, as shown in Figures 5 and 6

(Column D), has presented improved focus on the target area,

strengthened suppression of background noise, and relatively

reduced scattered points and over-segmentation/under-

segmentation. However, the SEU-Net still exhibits some scattered

points where there are complex structures around the gallbladder.

Additionally, when dealing with larger areas (the third row of

figures), the model struggles to outline complete contours, leading

to less accurate segmentation results.

TransUNet exhibits certain improvement in the detailed edge

segmentation and large region procession, as shown in Figures 5

and 6 (Column E). This may be attributable to the introduction of

the Transformer mechanism, which can better capture global

information and features of edge details. However, TransUNet

has provoked no significant segmentation improvements and still

presents obvious under-segmentation and notable deficiencies

when processing large regions.

By contrast, the MCAU-Net, as depicted in Figures 5 and 6

(Column F), delineates the boundary of the target area more

accurately, decreases the scattered points, and fully identifies the

structural contours of larger areas with more similarity to the

ground truth. Overall, the MCAU-Net significantly outperforms
FIGURE 4

Gallbladder segmentation by MCAU-Net based on BCEL and on DL. (A) CT image. (B) Ground truth (C) Segmentation by MCAU-Net based on BCEL
(D) Segmentation by MCAU-Net based on DL.
TABLE 5 Comparison of binary cross entropy loss and dice
loss function.

BCEL DL

DSC 0.80 ± 0.20 0.85 ± 0.22

JSC 0.71 ± 0.22 0.79 ± 0.23

PPV 0.83 ± 0.21 0.92 ± 0.14

SE 0.81 ± 0.22 0.84 ± 0.23

HD 3.22 ± 1.02 2.75 ± 0.98

RVD 0.29 ± 0.67 0.18 ± 0.48

VOE 0.25 ± 0.31 0.22 ± 0.42
The values in bold represent the optimal values achieve.
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U-Net, SEU-Net and TransUNet in terms of segmentation accuracy

and robustness, and demonstrates higher accuracy and

completeness particularly when dealing with complex structures

and larger target areas.
3.7 Box plots

The boxplots in the Figure 7 show the segmentation performances

of differentmodels. As illustrated inFigure 7, theMCAU-Net obtained

a significantly higher median and mean in most evaluation metrics

compared to U-Net, SEU-Net and TransUNet, indicating its

significant advantage in segmentation accuracy. This reveals that
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MCAU-Net effectively enhances the recognition ability for target

areas, especially performing excellently in complex backgrounds and

boundary detail segmentation. Moreover, the smaller interquartile

range of MCAU-Net implies that its segmentation performance

fluctuates less across different image samples, demonstrating

higher stability.

In summary, the box plots demonstrate that MCAU-Net

significantly outperforms U-Net, SEU-Net and TransUNet in terms

of segmentation accuracy, performance stability, and consistency.

These advantages ensure that MCAU-Net delivers higher

segmentation quality and reliability in complex medical image

segmentation, fully validating the effectiveness and practicality of the

proposed MCA block in enhancing model performance.
FIGURE 5

Qualitative results of the segmentation models. (A) Original images. (B) Ground truth (C) Segmentation by U-Net model (D) Segmentation by
SEU-Net model (E) Segmentation by TransUNet model (F) Segmentation by MCAU-Net model.
TABLE 6 Quantitative comparison of different models.

U-Net SEU-Net TransUNet MCAU-Net

DSC 0.79 ± 0.23 0.81 ± 0.21 0.79 ± 0.25 0.85 ± 0.22

JSC 0.70 ± 0.24 0.73 ± 0.23 0.70 ± 0.25 0.79 ± 0.23

PPV 0.84 ± 0.20 0.84 ± 0.21 0.87 ± 0.20 0.92 ± 0.14

SE 0.79 ± 0.24 0.79 ± 0.23 0.77 ± 0.27 0.84 ± 0.23

HD 3.20 ± 1.02 3.03 ± 1.03 3.16 ± 1.07 2.75 ± 0.98

RVD 0.25 ± 0.53 0.21 ± 0.44 0.25 ± 0.55 0.18 ± 0.48

VOE 0.26 ± 0.38 0.24 ± 0.38 0.30 ± 0.46 0.22 ± 0.42
The values in bold represent the optimal values achieve.
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3.8 Parameter comparison and
inference time

The comparison of parameters number, FLOPs (Floating Point

Operations Per Second) and inference time among U-Net, SEU-

Net, TransUNet, and MCAU-Net (Shown in Table 7) reflects the

computational complexity of each model.

In terms of FLOPs, MCAU-Net requires 2.01e+05 M

computations, higher than that of U-Net (9.66e+04 M) and SEU-

Net (1.12e+05 M), indicating that MCAU-Net demands increased

computation. However, these additional parameters and

computational costs contribute to better model performance, as

illustrated by the quantitative results in the previous chapters. In

contrast, TransUNet requests the highest FLOPs value: 2.77e+05 M,

but its segmentation performance shows either limited

improvement or, in some cases, a slight decline compared to

MCAU-Net. This observation suggests that the increased

computational demand of TransUNet does not proportionally

result in improved segmentation performance. MCAU-Net, on

the other hand, demonstrates a more efficient utilization of

computational resources, yielding superior performance with a

lower computational burden compared to transformer-

based architectures.
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Regarding inference time, MCAU-Net’s inference time is 100.47

seconds, slightly longer than 77.92 (U-Net’s) and 79.98 seconds

(SEU-Net’s), but still significantly lower than 168.88 seconds

(TransUNet’s). This indicates that MCAU-Net not only

outperforms Transformer-based architectures in terms of

computational complexity, but also achieves better segmentation

results with relatively lower inference time. For real-time or near-

real-time clinical needs, MCAU-Net’s inference efficiency holds

high practical value.

Although its inference time is a little longer than that of U-Net

and SEU-Net, MCAU-Net exhibits better segmenation. It’s

suggested that MCAU-Net may be more suitable for scenarios

where quick and precise decision-making is crucial, such as

clinical settings where rapid analysis of medical images is

required. The ability to maintain a balance between segmentation

accuracy and inference speed makes MCAU-Net a promising

candidate for various medical image analysis tasks.

MCAU-Net demonstrates a good balance between model

complexity and segmentation effectiveness, providing superior

accuracy and robustness in the segmentation of complex

anatomical structures such as the gallbladder. This comparison

highlights the trade-off: although MCAU-Net involves a higher

computational load, its enhanced architecture brings significant
FIGURE 6

Qualitative overlay results of the segmentation models. (A) Original images. (B) Ground truth (C) Segmentation by U-Net model (D) Segmentation by
SEU-Net model (E) Segmentation by TransUNet model (F) Segmenation by MCAU-Net model.
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improvements in segmentation quality, making it particularly

suitable for clinical scenarios where high precision is required.
3.9 Analysis of failure cases

Despite the overall excellent performance, our proposed models

still presents significant prediction biases in certain specific

scenarios. To explore the potential factors accounting for the

failed cases, we analyzed gallbladder segmentation images from

the test set that exhibited poor qualitative results. As shown in

Figure 8, the model is more prone to missing or misclassifying

segmentation when the gallbladder volume is extremely small with

surrounding tissues that have extremely similar gray level or

morphology to the gallbladder, or whose gray level distribution is

complex. This might be attributed to the limitations of the attention

mechanism in feature extraction of extremely small targets and
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scenarios with complex surrounding structures. Additionally, such

samples account for a relatively low proportion in the training data,

challenging the model’s robustness and generalization. Future

research may further promote the robustness of the model in

various complex scenarios by including more diverse samples and

adopting such strategies as Adaptive Saliency Detection.
4 Discussion

Deep learning-based automatic segmentation is rapidly

prevailing in medical image segmentation and becoming a major

research focus, and it has exhibited significant potential especially in

complex tasks such as tumor and organ segmentation.

Compared to traditional manual segmentation, deep learning

models, with the support of large-scale datasets, can automatically
FIGURE 7

Quantitative comparison of segmentation by the four models across various metrics. (A) DSC comparison (B) JSC comparison (C) PPV comparison
(D) SE comparison. (E) HD comparison (F) RVD comparison. (G) VOE comparison.
TABLE 7 Comparison of parameter counts and FLOPS(M).

U-Net SEU-Net TransUNet MCAU-Net

Total params 1,940,817 1,986,505 103,239,195 3,507,705

Trainable params 1,940,817 1,985,481 95,786,331 3,504,281

FLOPS(M) 9.66e+04 1.12e+05 2.77e+05 2.01e+05

Inference Time(s) 77.92 79.98 168.88 100.47
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extract image features, significantly improve segmentation

efficiency and ensure a certain degree of consistency and

objectivity, thereby reducing subjective and inter-and- intra

-observer variability. Despite the outstanding performance of

deep learning technology in the field of automatic segmentation,

there still exist numerous challenges, especially when dealing with

multi-scale, fine structures, and complex background noise, where

the accuracy and robustness of the model may be limited.

Through introducing a plug-and-play MCA Block, our proposed

model,MCAU-Net, significantly enhances segmentationperformance

while maintaining the simplicity of the U-Net structure.

MCA Block integrates multi-scale feature extraction and

multi-scale channel attention mechanisms, which promotes the

model’s ability to capture feature information at different scales.

The results of multi-scale ablation experiments revealed that the

proposed multi-scale network demonstrated consistent convergence

and generalizability, effectively segmenting various gallbladder

structures on the images, including challenging scenarios with

complex anatomical boundaries. Furthermore, by effectively

weighting the feature channel information of different sizes and

highlighting key channel features, it better correlates the

dependencies between feature maps of different scales, which

produces higher accuracy and robustness in segmentation, especially

in small target areas and complex backgrounds. The experimental

results indicated that the MCAU-Net not only maintained high

segmentation accuracy, but it also effectively alleviated the issues

such as scattered points and failure to segment large areas in the

control groupmodels.This improvement resulted fromthe full capture

of multi-scale information as well as benefited from the effective

weighting of the multi-scale channel attention mechanism and the

correlation between featuremaps of different scales. It enhanced long-
Frontiers in Oncology 12
distance dependency relationships, thereby solving the problem of

under-segmentation in large areas.

When DSC is greater than 0.7, the results are regarded acceptable

(22–25). Our proposed MCAU-Net model achieved a DSC of 0.85 in

experiments, significantly surpassing the benchmarks in this field. The

significant improvement validatedourmodel’s superiority ingallbladder

segmentation and its reliability and applicability in clinical settings. We

further compared our model with some currently proposed models in

gallbladder segmentation. Salimi et al. (26)developeda residualnetwork,

HighRes3DNet, for organ segmentation in CT images. Their results

revealed that the average DSC and JSC values for the gallbladder were

0.79 ± 0.2 and 0.69 ± 0.21, respectively. In comparison, our proposed

MCAU-Net achieved a higherDSCvalue of 0.85, indicating a significant

improvement in segmentation accuracy and demonstrating its superior

segmentation performance.

Likewise, Shen et al. (27) proposed a deep learningmodel based on

spatial attention and deformable convolution for multi-organ

segmentation in abdominal CT images, their proposed model

achieved certain improvements in the gallbladder segmentation,

with DSC, JSC, and HD values of 0.8046, 0.7036, and 22.97,

respectively. In comparison, our proposed MCAU-Net has achieved

superior performance on these metrics, with further improvements in

DSCand JSC, anda furtherdecrease inHDvalue.These improvements

not only demonstrated MCAU-Net’s higher accuracy and robustness

in segmentationprecisionandboundarydescription, but also validated

its reliability and effectiveness in dealing with complex anatomical

structures and suggest its enhanced potential for clinical applications.

Lin et al. (28) proposed a V-Attention U-Net model for the

segmentation of OARs in abdominal images (such as the

gallbladder). Their results revealed that the V-Attention U-Net

achieved DSC of 0.7595 ± 0.1925 and HD of 7.21 ± 13.03 in
FIGURE 8

Failure cases analysis (A). CT image (B). Ground Truth (C). Segmentation by MCAU-Net.
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gallbladder segmentation. Compared to that, the MCAU-Net model

proposed in this study exhibited superior performance in

segmentation accuracy and boundary description, achieving a higher

DSC and a lower HD value. This fully demonstrated the powerful

performance of MCAU-Net in gallbladder segmentation. These

comparisons further validated MCAU-Net’s advantages in dealing

with complex anatomical structures and improving segmentation

consistency, making it more potential for clinical applications.

However, this study also has certain limitations. First, the

introduction of multi-scale feature extraction has increased the

computational requirements and memory consumption of the model

to some extent despite the significant progress made by MCAU-Net in

multiple aspects.Therefore, future researchwill focusonexploringmore

lightweight model designs to reduce computational complexity and

enhance the operability and practicality of the model in clinical

applications. Second, the model in this study adopts a single-modal

design (based on CT images), which may limit its generalization in

multi-modal medical images (such as MRI, ultrasound, etc.). As such,

future work will consider extending the model to multi-modal data to

fully utilize the complementary information provided by different

imaging techniques, further improving segmentation performance

and model applicability. Third, despite the overall satisfactory

performance of our model in gallbladder segmentation, there are still

somesampleswithpoor segmentation results,whichmightbeattributed

to the limitations of the attention mechanism in feature extraction for

extremely small samples, especially when there are numerous complex

and similar structures surrounding the target. Furthermore, the

insufficient number of extremely small samples in the training set

provokes the model’s difficulty in ensuring perfect robustness and

generalization in such scenarios. In the future study, we will focus on

addressing these limitations, whichwill help promote the dissemination

and application of MCAU-Net in a wider range of clinical scenarios.

In summary, MCAU-Net provides an efficient, robust, and

practical solution for automatic gallbladder segmentation. Its

advantages in segmentation accuracy, boundary description, and

handling of complex structures have the potential to be extended to

other medical image segmentation tasks, thereby further advancing

the intelligentization of medical image segmentation and providing

reliable technical support for clinical diagnosis and treatment. In

the future, we will continue to optimize model performance, reduce

computational complexity, and expand its scope of application to

achieve broader clinical use.
Data availability statement

The datasets generated and/or analysed during the current study

are not publicly available due to protection of patient privacy but are

available from the corresponding author on reasonable request.

Ethics statement

The studies involving humans were approved by The Affiliated

Hospital of Qingdao University (QYFYWZLL29223). The studies

were conducted in accordance with the local legislation and

institutional requirements. Written informed consent for
Frontiers in Oncology 13
participation was not required from the participants or the

participants' legal guardians/next of kin in accordance with the

national legislation and institutional requirements.

Author contributions

YZ: Data curation, Formal Analysis, Investigation, Resources,

Writing – original draft. XW: Formal Analysis, Investigation,

Methodology, Software, Writing – original draft. KF: Investigation,

Methodology, Validation, Visualization,Writing – original draft. ML:

Data curation, Investigation, Methodology, Resources, Writing –

original draft. LS: Data curation, Investigation, Methodology,

Resources, Writing – original draft. XH: Conceptualization, Data

curation, Funding acquisition, Investigation, Resources, Supervision,

Validation, Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by National Natural Science Foundation of China,

grant number 52075277.

Acknowledgments

We thank the relevant personnel for its linguistic assistance

during the preparation of this manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1528654/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2025.1528654/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1528654/full#supplementary-material
https://doi.org/10.3389/fonc.2025.1528654
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2025.1528654
References
1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global
cancer statistics 2022: GLOBOCAN estimates of incidence andmortality worldwide for 36
cancers in 185 countries. CA: Cancer J Clin. (2024) 74:229–63. doi: 10.3322/caac.21834
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