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© 2025 Gedeonová, Bianchi, Štembı́rek,
Hrdinka, Chyra, Buchtová, Hurnı́k, Blažek and
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1Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia,
2Department of Craniofacial Surgery, Faculty of Medicine, University of Ostrava, Ostrava, Czechia,
3Health Research Centre, Faculty of Medicine, University of Ostrava, Ostrava, Czechia, 4Institute of
Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia, 5Department of
Hematooncology, University Hospital Ostrava, Ostrava, Czechia, 6Department of Hematology, Faculty
of Medicine, University of Ostrava, Ostrava, Czechia, 7Department of Experimental Biology, Faculty of
Science, Masaryk University, Brno, Czechia, 8Institute of Molecular and Clinical Pathology and Medical
Genetics, University Hospital Ostrava, Ostrava, Czechia, 9Institute of Molecular and Clinical Pathology
and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia, 10Clinic of
Oncology, University Hospital Ostrava, Ostrava, Czechia
Oral squamous cell carcinoma (OSCC), a subset of head and neck cancers,

primarily originates in the epithelial tissues of the oral cavity. Despite

advancements in treatment, the mortality rate for OSCC remains around 50%,

underscoring the urgent need for improved prognostic markers. This review

explores the role of the BRCA1 and BRCA2 genes—traditionally associated with

breast and ovarian cancers—in the context of OSCC. We discuss the molecular

pathways involving BRCA genes, their potential as diagnostics and prognostic

biomarkers, and their implications for personalized treatment strategies,

including addressing chemotherapy resistance. Furthermore, this review

emphasizes the significance of genome stability in cancer progression and

examines both current and emerging methodologies for detecting BRCA

mutations in OSCC patients. Despite limited prevalence of BRCA mutations in

OSCC compared to other cancers, their role in DNA repair and therapeutic

response underscores their potential as clinical biomarkers. However,

standardized, multicenter studies are still needed to validate their utility in

OSCC management. A better understanding of the role of BRCA genes in

OSCC could pave the way for more effective therapeutic approaches and

improved patient outcomes.
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Introduction

Oral squamous cell carcinoma (OSCC), a subtype of Head and

Neck Squamous Cell Carcinoma (HNSCC), typically originates in the

epithelial tissue of the gingiva, tongue, buccal mucosa, palate, and oral

floor (1). While OSCC ranks as the sixteenth most common cancer

globally, it is the second most widespread in certain high-risk regions

(e.g., South Asia) (2), particularly due to the consumption of

carcinogen-containing products (3). In contrast, the increasing

incidence of oropharyngeal squamous cell carcinomas in Western

countries, including the USA, has been linked to an increase in

oropharyngeal human papillomavirus (HPV) infection (4). OSCC

arises from multifactorial interactions between genetic mutations,

environmental exposures, and immune dysregulation, making

personalized treatment approaches particularly challenging (5)

(Figures 1A–D). The progression to invasive OSCC involves a

series of cellular changes, beginning with epithelial hyperplasia,

progressing through various grades of dysplasia, and culminating in

invasive carcinoma. These changes are driven by genomic alterations

(6), which disrupt the balance between oncogenic and suppressor

signaling pathways (5).

Oncogenic pathways, such as EGFR, PI3K/AKT/mTOR, JAK/

STAT, MET, Wnt/b-catenin, and RAS/RAF/MAPK, are often

abnormally activated in OSCC, while tumor suppressor pathways

like TP53/RB, p16/Cyclin D1/Rb, and NOTCH are frequently

inactivated (5).

Among these genomic alterations, BRCA1 and BRCA2—genes

traditionally associated with breast and ovarian cancers—are

emerging as key players in OSCC due to their roles in

maintaining genomic stability and regulating DNA damage

repair. This review explores the potential of BRCA1 and BRCA2
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as prognostic markers in OSCC by elucidating their involvement in

molecular pathways and their diagnostic or therapeutic

implications. We also aim to provide insights into their

significance in OSCC management and patient outcomes.
BRCA genes and their role in
genome stability

Maintaining genome stability is crucial for cellular survival,

necessitating an effective DNA damage response (DDR). DDR

mechanisms repair double-strand breaks (DSBs) through two

primary mechanisms: non-homologous end-joining (NHEJ) and

homologous recombination (HR) (7) (Figure 2A).

The BRCA proteins–BRCA1 and BRCA2–play integral roles in

HR-mediated DSB repair (8). The BRCA1 is characterized by two

structural domains: the zinc-binding RING domain at the N-terminus

and two phosphopeptide-binding BRCT domains at the C-terminus,

facilitating complex protein interactions necessary for DNA repair (9).

The RING domain, in combination with BRCA1-associated RING

domain protein 1 (BARD1), forms a heterodimer that exhibits E3-

ubiquitin ligase activity, essential for tagging damaged DNA and

proteins for repair processes (10–12) (Figure 2B).

Similarly, BRCA2 contains several functional domains that

interact with RAD51 recombinase, crucial for mediating the HR

process. For instance, the N-terminal domain interacts with PALB2,

a key scaffolding protein in the BRCA complex (13, 14); the central

part of BRCA2 contains eight BRC repeats essential for binding

RAD51 (15); and the C-terminus mediates DNA interactions via

the DNA binding domain (DBD), which contributes to the

initiation and stabilization of the repair process (16) (Figure 2C).
FIGURE 1

OSCC Tumor Location and Treatment Modalities. (A-D) Most common sites of OSCC occur in the oral cavity. (A) OSCC growing endophytically on
the right side of the tongue. (B) OSCC of the floor of the oral cavity extending to the tongue and the mucosa of the alveolar ridge on the right. (C)
OSCC affecting the alveolar process of the upper jaw on the right side. (D) OSCC located on the lingual side of the lower jaw’s alveolar process on
the right side. (E) Schematic representation of commonly used OSCC treatment strategies. Created in https://BioRender.com.
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The HR pathway of DDR employs various proteins to

accurately repair DNA without introducing mutations. Initial

sensors recognize the break, and signaling mediators engage

effectors to restore the damage (Figure 2A). Proteins such as

ATM and ATR are the first to detect DNA disruption and initiate

repair mechanisms. BRCA1 is recruited to DSBs through the

Abraxas–RAP80 protein complex (17) and interacts with the

MRN complex (MRE11-RAD50-NBS1), facilitating the

recruitment of CtIP protein, which catalyzes DNA end resection

alongside exonuclease EXOI (18).

BRCA1 also plays a central role in facilitating BRCA2

recruitment to DSBs, subsequently binds RAD51 and initiates HR

on the single-stranded DNA (ssDNA) (19). The BRCA1-interacting

protein 1 (BRIP1) binds to BRCA1 at the BRCT domain, unwinding

DNA during HR and enabling the recruitment of RAD51 (20). This

process begins with the formation of a D-loop DNA structure by

RAD51, enabling template-directed DNA synthesis (21).

Polymerase d extends the invading strand, and DNA ligase seals

the strand breaks, fully restoring DNA integrity (22).

In addition to DSB repair, genome stability is also compromised

by interstrand crosslinks (ICLs). The Fanconi anemia (FA) pathway

plays a crucial role in repairing ICLs. At least 19 proteins are

involved in this pathway, including BRCA1 (FANCS), BRCA2

(FANCD1), RAD51 (FANCR) and BRIP1 (FANCJ). The FA

pathway core complex recognizes ICLs and facilitates the

monoubiquitination of Fanconi anemia group D2 protein

(FANCD2), which is essential for activating the pathway. The

monoubiquitinated FANCD2 interacts with BRCA1, allowing the

recruitment of HR repair machinery, including BRCA2 and

RAD51. BRIP1 is also recruited to unwind the DNA and support
Frontiers in Oncology 03
the repair process, resolving crosslinks and enabling the DNA

repair proteins to access the damage (23).

In the context of OSCC, disruptions in BRCA1 and BRCA2 due

to mutations or dysregulations significantly impair the HR and FA

pathways, leading to genomic instability and contributing to

carcinogenesis. This underscores the importance of BRCA1 and

BRCA2 not only in hereditary cancers but also in the

pathophysiology of OSCC, positioning them as potential

therapeutic targets and valuable prognostic biomarkers (24).
The role of BRCA genes in
OSCC tumorigenesis

The role of BRCA genes in maintaining genomic integrity

suggests their potential significance in multiple cancers, including

OSCC. Recent research on BRCA gene alterations in OSCC has

employed various approaches, including proteomic, genomic, and

differential gene expression studies. Immunohistochemistry (IHC)

is commonly used to examine BRCA protein distribution in

tumorous tissues, while quantitative PCR (qPCR) evaluates

differential gene expression (25–27). However, more precise

sequencing methods are needed to identify specific gene

mutations, which could provide deeper insights into the genetic

underpinnings of OSCC (28–30).

Several studies have investigated the role of BRCA proteins in the

transformation of oral leukoplakia (OLK) to OSCC. Vora et al. (31)

conducted a detailed evaluation of BRCA1 expression in specimens

from 77 patients with early-stage and locally advanced SCC of the

tongue and 18 patients with leukoplakia of the tongue, utilizing IHC
FIGURE 2

Overview of DNA Damage Response (DDR) and BRCA1/2 Functions in OSCC. (A) Schematic illustration of the DNA damage response (DDR)
pathways, highlighting the roles of non-homologous (NHEJ) and homologous recombination (HR) in repairing double-strand breaks (DSBs). The
involvement of BRCA1 and BRCA2 in HR-mediated repair of damaged DNA is depicted. Created at https://BioRender.com. (B, C) Lollipop schematic
diagrams of BRCA1 and BRCA2 proteins, illustrating their structural domains and interactions with other HR-related proteins and enzymes necessary for
DNA repair. Single-point mutations in BRCA1 and BRCA2 genes retrieved from online databases (COSMIC, cBioPortal, dbSNP, ClinVar), are indicated by
lollipop markers.
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techniques with a semi-quantitative staining intensity score ranging

from negative (no staining) to 3+ (31). Their findings indicated that

BRCA1 protein levels were higher in OLK compared to OSCC,

suggesting potential downregulation during tumorigenesis. Among

OLK samples with a staining intensity of 2+, hyperplastic tissues

exhibited lower BRCA1 expression compared to dysplastic tissues.

The distribution of BRCA1 in all evaluated tissues was predominantly

cytoplasmic, and the protein was completely absent in 66% of OSCC

samples, suggesting that the loss of BRCA1 function is relevant to

neoplastic transformation. Vora et al. further noted that the observed

cytoplasmic staining of BRCA1 may be attributed to naturally

occurring alternatively spliced variants of BRCA1 that lack most of

the exon 11 sequences and do not possess a nuclear localization

signal. These cytoplasmic variants were prevalent in OSCC tissues.

Interestingly, among patients with a family history of cancer, 63%

expressed BRCA1 were with 1+ (80%) and 2+ (20%) staining

intensities. In early-stage disease, BRCA1-positive patients exhibited

reduced relapse-free survival compared to BRCA1-negative patients.

However, no correlation was observed between clinicopathological

parameters and BRCA1 expression. Additionally, a positive

correlation between BRCA1 and c-myc expression, used as a

predictor of unfavorable prognosis, was identified, further

supporting the dynamic role of BRCA1 across different stages of

OSCC development. These findings underscore the need for further

research to validate BRCA1 as a prognostic marker.

BRCA1 and gH2AX were proposed as independent prognosis

markers of OSCC by Oliveira-Costa et al. (2014), who evaluated

protein and RNA levels (25). gH2AX,a phosphorylated histone protein
correlated with DNA damage (32), was positively associated with poor

overall survival. Interestingly, BRCA1 was detected predominantly in

the cytoplasm, an unusual localization under conditions of cellular

stress induced by DNA damage. These findings emphasize the need

for further investigation into BRCA1 expression patterns and their

clinical significance. Cytoplasmic localization of BRCA1/2, which

typically reflects impaired functionality, has been documented in

various cancers, including breast, prostate, gastric, colorectal, and

pancreatic cancers (33–35). BRCA1 mutations in the BRCT domain

are known to alter its nuclear localization, driving cytoplasmic

retention and loss of nuclear repair functionality (36, 37). Chen

et al. (38) demonstrated that BRCA1 was entirely mislocalized to

the cytoplasm in breast cancer cells (39). Interestingly, cytoplasmic

BRCA1/2 expression has been linked to better prognosis in breast and

gastric cancers but is less explored in OSCC (33, 40).

A more recent study by Irani and Rafidazeh (2020) further

explored the expression profiles of BRCA1 and BRCA2 in OSCC

through retrospective analysis (26). Their findings indicated that

63.3% of intermediate and high-grade OSCC tissues exhibited

moderate to strong cytoplasmic BRCA1 immunoreactivity, while

only 28.3% displayed nuclear BRCA1 expression. Similarly, BRCA2

expression was entirely cytoplasmic, with 55.01% of intermediate

and high-grade tissues showing moderate to strong cytoplasmic

immunoreactivity. Only four low-grade samples (two for each

protein) displayed strong cytoplasmic BRCA1/2 expression.

Importantly, BRCA1 was also detected at the invasive front and
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in the detached tumor cells, suggesting its possible involvement in

epithelial-mesenchymal transition (EMT) processes via regulation

of E-cadherin and vimentin levels (41). These findings suggest that

the aberrant subcellular localization of BRCA1/2, along with their

expression at the invasive front, plays an essential role in OSCC

pathogenesis and could serve as prognostic markers.

Despite these promising findings, variability across studies raises

questions about methodological differences. Specifically, Vora et al. (31)

used an antibody targeting the N-terminal region of BRCA1 (clone

MS13), while Irani and Rafidazeh employed the MS110 antibody,

whose immunogen was undisclosed (26, 31). Interestingly, Oliveira-

Costa et al. used the same antibody as Vora et al. but reported findings

more consistent with those of Irani and Rafidazeh. This suggests that

factors beyond antibody selection, such as sample size, patient

demographics, and study design, may also contribute to observed

differences. Additionally, the choice of experimental endpoints, such as

whether cytoplasmic versus nuclear localization is prioritized, may

further influence conclusions across studies. Standardized

methodologies and larger cohorts will be critical to reconciling

these discrepancies.

Beyond their subcellular localization, genomic studies have

provided further insights into BRCA1/2 mutations in OSCC

pathogenesis. Exome sequencing of OLK and OSCC has

identified BRCA1 and BRCA2 as key markers distinguishing

progressive from non-progressive lesions (42). Using multivariate

analysis, researchers demonstrated that BRCA1/2 expression

decreases with lesion severity, from normal tissue to OSCC.

Interestingly, these findings contrast with earlier studies, possibly

due to differences in methodology.

High-resolut ion array-based comparat ive genomic

hybridization (aCGH) has revealed frequent mutations in DDR

pathway genes, including BRCA1, BRCA2, FANCD2, and FANCG,

in over 25% of OSCC samples (43). Amplifications in BRCA1 and

FANCG were observed in 33% and 29% of samples, respectively,

while deletions in BRCA2 and FANCD2 occurred in 38% and 33%

of samples. These findings highlight the critical role of the FA/

BRCA pathway, which is central to DDR, in OSCC pathogenesis.

BRCA1 (FANCS) and BRCA2 (FANCD1) are integral components

of this pathway, which is responsible for repairing DNA interstrand

crosslinks and maintaining genomic stability.

Disruptions in the FA/BRCA pathway, such as BRCA1/2

mutations, impair DNA damage repair processes, leading to

increased genomic instability and heightened susceptibility to

malignancies, including OSCC. Supporting this, studies on Fanconi

anemia (FA)—a genetic disorder caused by mutations in one of 22

genes involved in the FA pathway—highlight a strong connection

between FA gene dysfunction and OSCC. FA patients frequently

develop OSCC, underscoring the importance of BRCA1/2 and other

FA pathway genes in the disease’s pathogenesis (44). The high

prevalence of OSCC in FA patients provides indirect evidence that

alterations in BRCA1/2 contribute to tumorigenesis in non-FA

populations as well. These findings reinforce the potential of BRCA

genes as biomarkers for identifying genomic instability in OSCC and

highlight their importance as therapeutic targets in this malignancy.
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Discussion

Oral squamous cell carcinoma (OSCC) develops through a

complex interplay of genetic and environmental factors,

contributing to its aggressive nature and genomic instability.

Identifying metabolic, molecular, and immune characteristics that

serve as predictive and prognostic markers remains a significant

challenge. Despite advances in therapy and research, the overall

survival rate for OSCC patients has stagnated at around 50%,

primarily due to challenges such as late-stage diagnosis, limited

availability of reliable biomarkers, and resistance to conventional

therapies (25, 45–47). This highlights the urgent need for more

effective biomarkers and therapeutic targets to improve early

detection, prognostication, and treatment strategies.

BRCA1 and BRCA2 genes are well-known for their critical roles

in DDR, particularly in HR, a highly accurate DNA repair

mechanism (48). While mutations in these genes have been

extensively studied in breast and ovarian cancers (49), their

significance in other malignancies, including OSCC, is an emerging

area of research. Alterations in BRCA gene expression, even in the

absence of frequent mutations, have been implicated in OSCC

tumorigenesis. Recent studies suggest that BRCA1 and BRCA2

expression patterns vary with tumor grade, potentially reflecting

their roles in tumor progression (25–27). However, precise data on

the frequency of BRCA mutations in OSCC remain limited. While

somatic BRCA mutations in breast and ovarian cancers range

between 5–20% (47, 50, 51), and pathogenic BRCA2 mutations

occur in 2% of pancreatic cancers (52), mutations in OSCC or

HNSCC are believed to be rare (25, 26, 28–31, 43, 53). The rarity

of BRCAmutations in OSCCmay reflect differences in tissue-specific

genetic instability and environmental exposures that shape the

mutational landscape (51).

Despite the low prevalence of BRCA mutations in OSCC, their

altered expression and functional roles in DNA repair highlight

their potential as biomarkers. Genomic profiling of OSCC samples

has identified occasional BRCA1 and BRCA2 mutations, suggesting

their contributions to tumor onset and progression (28–30).

Studies on oral leukoplakia (OLK) further suggest that BRCA1

and BRCA2 expression levels may distinguish high-risk dysplastic

lesions that progress to carcinoma from those that remain benign (42,

54). Thus, assessing BRCA1/2 expression using standardized IHC

scoring could help stratify patients based on their progression risk,

enabling more targeted interventions. These findings underscore the

potential utility of BRCA genes as early biomarkers in OPMD,

offering an opportunity to identify patients at greatest risk of

developing OSCC and enabling timely intervention.

The functions of BRCA1 and BRCA2 in DNA repair and cell cycle

regulation are of particular interest because defects in these processes

lead to genomic instability, a hallmark of carcinogenesis. Proper cell

cycle regulation and DNA repair are essential for maintaining the

integrity of the oral epithelium, which is highly susceptible to

mutagenic damage from external factors such as tobacco, alcohol,

and HPV infection, as well as internal cellular processes (5, 55).

Studies suggest that DDR processes, including BRCA1 activity, are

activated during the early stages of OSCC to mitigate genomic
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instability and support tumor survival. Increased expression of

BRCA1 and other DNA repair proteins, such as p53, g-H2AX,

RAD51, and 53BP1, has been observed in early OSCC development,

highlighting the potential of these molecules, particularly BRCA1, as

prognostic biomarkers (25, 55, 56). The potential involvement of

BRCA genes in treatment response has also gained attention. Standard

care for locally advanced OSCC typically includes surgery followed by

adjuvant radiotherapy, with or without chemotherapy (57)

(Figure 1E). However, treatment resistance remains a significant

obstacle (58). Molecular targeted therapies using specific antibodies

against epidermal growth factor receptor (EGFR) and programmed

cell death protein 1 (PD-1) have shown promise (59). BRCA1

expression has been implicated in modulating chemotherapy-

induced DNA damage, influencing responses to chemotherapeutic

agents such as cisplatin and paclitaxel (60, 61). Increased BRCA1

expression may enhance DNA repair, reducing sensitivity to DNA-

damaging agents like cisplatin, while simultaneously increasing

sensitivity to microtubule-targeting agents such as paclitaxel and

docetaxel (62–64). Similarly, in tongue squamous cell carcinoma,

the BRCA1-miR-593-5p-MFF axis regulates cisplatin sensitivity by

modulating mitochondrial fission and apoptosis, further highlighting

the complex role of BRCA1 in therapeutic responses (64).

Like BRCA1, BRCA2 plays a critical role in maintaining

genomic stability (Figures 2B, C), and its mutations may impair

DNA repair pathways, increasing susceptibility to oncogenic

mutations in oral tissues (27). This has significant implications

for targeted therapies, particularly Poly(ADP-ribose) polymerase

(PARP) inhibitors(PARPi). PARPi block the activity of PARP

enzymes, which are involved in repairing single-strand DNA

breaks (65–67). In cells with BRCA mutations, where HR is

dysfunctional, PARP inhibition leads to the accumulation of

unrepaired DNA damage, resulting in cell death through

synthetic lethality (68, 69). Given that OSCC often exhibits

aberrant DNA repair pathways, including nucleotide excision

repair (NER), base excision repair (BER), and double-strand

break repair (DSBR) (70–73), PARPi represent a promising

therapeutic strategy. However, emerging resistance mechanisms,

such as secondary mutations restoring homologous recombination,

highlight the need for combination strategies to enhance efficacy

(74). Incorporating genetic analysis and molecular profiling into

standard diagnostic protocols could identify OSCC patients most

likely to benefit from PARPi and other targeted therapies, thereby

improving outcomes.In summary, BRCA1 and BRCA2 are central

to maintaining genomic stability by facilitating the repair of DNA

double-strand breaks through homologous recombination. Their

mutations or dysregulation in OSCC can disrupt DNA repair

mechanisms, leading to genomic instability and oncogenic

transformation. While their role in OSCC is not as well-defined

as in breast and ovarian cancers, emerging evidence suggests that

BRCA1 and BRCA2 contribute to tumor initiation, progression,

and therapeutic resistance (25–27, 53, 75). Moreover, their

involvement in the Fanconi anemia pathway and interactions

with other DDR proteins underscore their significance in complex

repair networks. Future studies focusing on the standardization of

methodologies, larger cohorts, and detailed molecular analyses are
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essential to validate BRCA1 and BRCA2 as biomarkers and

therapeutic targets in OSCC. Such advances could pave the way

for more personalized and effective treatment strategies, ultimately

improving patient outcomes.
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