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Risk stratification in
neuroblastoma patients
through machine learning in the
multicenter PRIMAGE cohort
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Leonor Cerda-Alberich3, Diana Veiga-Canuto4,
Blanca Martı́nez-de-Las-Heras3,4, Adela Cañete-Nieto4,
Sabine Taschner-Mandl5, Barbara Hero6, Thorsten Simon6,
Ruth Ladenstein7, Luis Marti-Bonmati3,4

and Angel Alberich-Bayarri 1
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Valencia, Spain, 2Medical Studies Department, Quantitative Imaging Biomarkers in Medicine, Quibim
Inc., New York, NY, United States, 3Biomedical Imaging Research Group, La Fe Health Research
Institute, Valencia, Spain, 4Pediatric Oncology and Hematology Section, La Fe University and
Polytechnic Hospital, Valencia, Spain, 5Sabine Taschner-Mandl Taschner-Mandl Group, St. Anna
Children’s Cancer Research Institute, Vienna, Austria, 6Department of Pediatric Oncology and
Hematology, University Children’s Hospital of Cologne, Medical Faculty, University of Cologne,
Cologne, Germany, 7Clinical Trials Unit, St. Anna Children’s Cancer Research Institute, Vienna, Austria
Introduction: Neuroblastoma, the most prevalent solid cancer in children,

presents significant biological and clinical heterogeneity. This inherent

heterogeneity underscores the need for more precise prognostic markers at

the time of diagnosis to enhance patient stratification, allowing for more

personalized treatment strategies. In response, this investigation developed a

machine learning model using clinical, molecular, and magnetic resonance (MR)

radiomics features at diagnosis to predict patient’s overall survival (OS) and

improve their risk stratification.

Methods: PRIMAGE database, including 513 patients (discovery cohort), was used

for model training, validation, and testing. Additional 22 patients from different

hospitals served as an external independent cohort. Primary tumor segmentation

on T2-weighted MR images was semi-automatically edited by an experienced

radiologist. From this area, 107 radiomics features were extracted. For the

development of the prediction model, radiomics features were harmonized

following the nested ComBat methodology and nested cross-validation

approach was employed to determine the optimal preprocessing and

model configuration.

Results: The discovery cohort yielded a 78.8 ± 4.9 and 77.7 ± 6.1 of C index and

time-dependent area under de curve (AUC), respectively, over the test set, with a

random survival forest exhibiting the best performance. In the independent

cohort, a C-index of 93.4 and a time-dependent AUC of 95.4 were achieved.

Interpretability analysis identified lesion heterogeneity, size, and molecular
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variables as crucial factors in OS prediction. The model stratified neuroblastoma

patients into low-, intermediate-, and high-risk categories, demonstrating a

superior stratification compared to standard-of-care classification system in

both cohorts.

Discussion: Our results suggested that radiomics features improve current risk

stratification systems in patients with neuroblastoma.
KEYWORDS

risk stratification, neuroblastoma, overall survival, pediatric, machine learning, PRIMAGE
1 Introduction

Neuroblastoma (NB) is the most frequent solid cancer of early

childhood, accounts for 7%–10% of all childhood cancers (1–3), and

significantly benefits from imaging at every step of the patient

journey. Most NB cases are diagnosed before the age of 5 years, and

the median age at diagnosis is 22 months (4). Significant

heterogeneity in tumor features and patient outcomes define NB

(5–7), with approximately 60-70% of the cases being metastatic at

presentation, usually in lymph nodes, liver, bone, and bone marrow

(4). Due to the large clinical and biological divergency of NB, several

staging systems have been created for risk stratification of patients.

At present, two major systems are used: The International

Neuroblastoma Staging System (INSS) and the International

Neuroblastoma Risk Group (INRG) staging system. The INSS,

developed in 1986, is a postsurgical system that classifies patients

according to the disease location, lymph node status, and extent of

surgical resection (8, 9). The INRG, created in 2005, has largely

replaced INSS, with the aim of stratifying patients regardless of

surgical resection. It incorporates the presence of image defined risk

factors (IDRF) to categorize locoregional tumors as L1 (IDRF

absent) or L2 (IDRF present) and the presence of metastasis

confined to special location (bone marrow, liver and/or skin) in

children younger than 18 months as MS or any metastasis as M

which is different from the MS definition (10, 11). As a result, the

majority of current therapeutic strategies rely on INRG risk

classification scores combining several clinical, imaging,

pathologic, and genetic traits that have been linked to survival.

This applies for the original INRG Classification System (10), and

the revised version in 2021 by the Children’s Oncology Group

(COG) (12), that classifies patients into low-, intermediate-, and

high-risk groups (12, 13) based on their INRG stage, age at

diagnosis, histology, and presence of molecular and pathologic

biomarkers, such as MYCN amplification status, DNA ploidy,

and segmental chromosomal aberrations. Treatment options and

survival outcomes largely differ between risk groups, with low-risk
02
patients experiencing a 5-year overall survival rate of 98% with no

or minimal treatment compared to 62% of high-risk patients (12)

despite an intense treatment.

The complex biological and clinical heterogeneity inherent in

NB foster the development of more accurate prognostic markers

and improved survival prediction tools at diagnosis to refine patient

stratification and better tailor treatments. This could be especially

relevant for patients with poor prognosis and high risk, who would

be ideal candidates for treatment intensification strategies and close

monitoring. In recent years, artificial intelligence (AI) has generated

high expectations for improving cancer diagnosis, prognosis, and

therapy, with machine learning approaches bringing exciting

progress in digital pathology and diagnostics, and enriching

foundational and drug-discovery research (14). Radiomics, the

extraction of mineable data from medical images that allow

tumor heterogeneity and phenotypic assessments (15), has

opened up new avenues for clinical outcome prediction when

combined with AI-based methods (16).

For AI radiomics models to achieve generalizability towards

predicting clinical endpoints in oncology, the creation of

international high-quality multi-omics registries is essential,

especially in diseases with a low incidence, such as NB (2.9 cases

per million children) (17). These real-world data repositories foster

collaboration and facilitating a deeper understanding of the

intricacies of oncological conditions with low prevalence. In this

context, the PRIMAGE (PRedictive In-silico Multiscale Analytics to

support cancer personalized diaGnosis and prognosis, Empowered

by imaging biomarkers) (18) EU-funded project was conceived for

the development of computational analysis methods of medical

images applied to childhood cancer. This initiative has culminated

in the largest and highest quality database of NB in Europe, with a

total of 1,138 patients integrating imaging data alongside diagnostic,

treatment, and outcome information.

In this work, we aimed to develop a machine learning-based

model for the prediction of overall survival (OS) and risk

assessment in children with NB within the PRIMAGE project.
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2 Materials and methods

2.1 Dataset creation

The dataset used for model’s development was a subset of

PRIMAGE patients (18), consisting of patients diagnosed between

2002 and 2021 who participated in the SIOPEN trials (19, 20). The

inclusion criteria were as follows: 1) availability of a transversal T2-

weighted (T2w) MR imaging series, with or without fat suppression

including the primary tumor; 2) availability of clinical and

molecular data; and 3) patient’s OS defined as the time between

diagnosis and either death or the last available follow-up.

Two different cohorts of patients were divided to develop the

machine learning model, the discovery cohort for model training,

validation, and testing; and the independent cohort, to validate the

final model in a population from different centers. The discovery

cohort was composed of 1,032 patients with NB, of whom 524 had

available transversal T2w MRI exam of the primary tumor, with or

without fat suppression. From the discovery cohort, 11 of 524

patient, were excluded due to missing information of follow-up or

death. The independent cohort consisted of 106 patients, of which

23 met the specified inclusion criteria. From the independent

cohort, one patient was excluded due to the lack of follow-up

data. Finally, 513 patients for the discovery cohort and 22 cases

for the independent cohort were included. The complete process is

summarized in Figure 1 which specifies the number of patients

excluded in each step.

2.1.1 Image analysis and pre-processing
MR examinations were obtained from multiple hospitals and

scanners, with different acquisition protocols. Table 1 provides an
Frontiers in Oncology 03
overview of the MR parameters from both discovery and

independent cohorts.

To harmonized image quality, MR images underwent image

denoising (21) through non-local means filter (22) and N4 bias field

correction (23). Subsequently, spatial resampling was executed

through b-splines interpolation to a common voxel size of 1x1x6

mm3. Finally, intensity normalization was applied through z-score

normalization. Furthermore, during radiomics features extraction, a

gray value discretization was applied, fixing the bin width of 5 to

maintain a direct correlation with the original intensity scale.

2.1.2 Primary tumor segmentation and radiomics
features extraction

Before radiomics feature extraction, segmentation of the

primary tumor was performed. A semi-automatic approach was

employed through an AI-based NB segmentation model developed

within the PRIMAGE project (24). The resulting segmentations

underwent thorough examination and were edited by an

experienced radiologist. Once images were prepared and

segmented, 107 radiomics features were extracted using

PyRadiomics (v3.0) (25) to obtain shape, first-order, and second-

order features from the primary tumor. Both segmentation and

radiomic extraction were performed on PRIMAGE platform, based

on Quibim Precision (Quibim SL, Valencia, Spain) (26).
2.2 Database curation and
feature engineering

The AI model was developed using clinical and molecular

variables at diagnosis, together with radiomics features extracted
FIGURE 1

Overview of the PRIMAGE Cohort and patient selection process for the discovery and independent cohorts. The consort diagram details the
inclusion and exclusion criteria applied to the 1137 NB patients in the PRIMAGE cohort. The discovery cohort (left) included 513 patients after
excluding cases with missing information. The independent cohort (right) comprised 22 patients after applying the same criteria. The INRG
classification system of each cohort is provided with the corresponding case numbers.
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fromMRI scans. For this purpose, an initial pre-processing step was

required, in which a curation of the clinical database and the

harmonization of radiomics features were performed.

A careful selection of the most important variables within the

PRIMAGE platform was undertaken, adhering to the criteria set

forth by clinical and molecular experts. Normalization of lactate

dehydrogenase (LDH) was performed based on each patient’s

respective normal value. New variables were generated, based on

the data available in the PRIMAGE platform, to precisely indicate

tumor location, the presence of clinical symptoms, and the results of

bone marrow tests. Additionally, low-frequency categorical

variables were combined and grouped into alternative categories,

with a subsequent implementation of dummy encoding. The

clinical and molecular variables incorporated in the model

development are detailed in Supplementary Information 1.

Missing values were imputed during the training phase using

the MICE (Multiple Imputation by Chained Equations) algorithm

(27) for variables with less than 20% of missing data. Each missing

value was imputed three times, with the final value being the

median or the mode for numerical and categorical variables,

respectively. For variables with 20-30% missing values, such as

tumor histology type and tumor differentiation grade, reliable

imputation was not feasible. Consequently, these variables were

instead dummy encoded, handling missing values as an additional

class which was subsequently excluded from analysis. Variables
Frontiers in Oncology 04
exceeding 30% missing data, such as INRG staging system

were discarded.

2.2.1 Data harmonization
For radiomics features harmonization, Nested ComBat

methodology was employed to identify the optimal approach for

correcting the two main batch effects: MR scanner manufacturer

and magnetic field. This methodology provides a sequential

workflow for radiomics features harmonization to compensate for

the multicenter heterogeneity caused by multiple batch effects (28).

The batch effects were identified using a Cramer’s V and Theil’s

U test.

Differences in radiomics features before and after ComBat

harmonization were assessed with statistical tests and effect size

measures. Discrepancies were considered significant if they were

accompanied by a p-value < 0.05 and an effect size that was at least

of a medium magnitude. For variables following a normal

distribution, the t-test supplemented with Cohen’s D (medium

effect >= 0.5), and the ANOVA test complemented by eta

squared (medium effect >= 0.06) were employed. In the case of

variables that deviated from normality, the Mann-Whitney U test

along with a common language effect size (medium effect >= 0.3)

and the Kruskal-Wallis test paired with eta squared (medium effect

>= 0.06) were utilized. For variables with medium and large effect

sizes, it was determined that these effects were due to outliers in the
TABLE 1 Summary of MR acquisition parameters for the discovery and independent cohorts.

MR Acquisition
Parameters

Discovery Cohort
N = 513

Independent Cohort
N = 22

p-value

n (%)
Median
[IQR]

n (%)
Median
[IQR]

Manufacturer
▪ Siemens
▪ Philips
▪ GE
▪ Unknown

274 (53.4)
125 (24.4)
83 (16.2)
31 (6.0)

–

6 (27.3)
11 (50.0)
5 (22.7)

0

– 0.071

Magnetic field (T):
▪ 1.5
▪ 3

423 (82.5)
90 (17.5)

– 22 (100)
0

– 1.000

Echo time (ms)
–

92.0
[80.0 – 103.0]

–
99.8

[86.1 – 108.3]
0.124

Repetition time (ms)
–

3180.4
[1600.0 – 4910.0]

–
2939.5

[2013.9 – 5591.0]
0.407

Slice thickness (mm)
–

4.0
[3.6 – 5.0]

–
4.0

[3.0 – 5.0]
0.971

Pixel Spacing X (mm)
–

0.74
[0.55 – 0.94]

–
0.64

[0.51 – 0.84]
0.187

Pixel Spacing Y (mm)
–

0.74
[0.55 – 0.94]

–
0.64

[0.51 – 0.84]
0.188
P-values forManufacturer and Magnetic field were calculated with a chi-square test, while the Mann-Whitney U Test was used for the other numerical parameters due to the lack of normality.
MR, magnetic resonance; IQR, interquartile range.
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original variables that could not be corrected through

harmonization, leading to their exclusion from the analysis.
2.3 Model development

A nested cross-validation was applied as training methodology

with a 5x5 configuration for the development of the OS prediction

model, maximizing the concordance index (C index). To avoid

introducing bias when performing the cross-validation splits, each

partition was equitably stratified by the INRG classification system

and the patients’ censored status. In addition, it was assessed that

there were no significant differences in any of the partitions for

some of the most important clinical variables such as age, MYCN

status, sex, and INSS staging, employing a t-test or ANOVA for

numerical variables, and a chi-square test for categorical variables.

In the inner loop training phase, the harmonization step was

applied to the test/validation partition using transfer learning

ComBat (29). For feature selection, two approaches were tested: a

univariate Cox model which ranks the most informative features and

the maximum relevance minimum redundancy (MRMR) algorithm

(30). Finally, the state-of-the-art machine learning algorithms were

assessed for survival prediction, including Cox’s proportional hazards

model, random survival forest, extra random survival trees, and

XGBoost survival embeddings (31, 32). This internal cross-

validation was conducted automatically with the Optuna

framework (v3.1) (33) for the hyperparameters optimization,

combining all feature selection methods with different number of

variables, with the machine learning models to identify the best-

performing pipeline. Since the nested cross-validation generates

different model configurations for each outer loop, the

configuration with the best performance and minor differences

between partitions was selected as the final model, see Figure 2.
Frontiers in Oncology 05
Models were trained and validated in the discovery cohort and

subsequently, once the final model was selected, tested in the

external independent cohort. For model’s interpretability the

SHAP (SHapley Additive exPlanations) values were calculated to

show the relationships established by the model when making

predictions, both at a model level and at patient level to ensure

explainability in decision-making processes (34).

Finally, to provide the risk stratification, a set of thresholds were

defined to classify patients into three groups based on their OS

predicted probabilities: low, intermediate, and high risk. The

classification thresholds were determined by optimizing the

differences between the three survival groups in the training

partitions via a LogRank test.
3 Results

3.1 Patient characteristics

Baseline patient curated characteristics, including selected clinical

and molecular variables after model development, are summarized in

Table 2. There were no significant differences observed in the

distributions of these variables between the discovery and

independent cohorts, and OS was also comparable, as shown in the

Kaplan-Meier curves in the Supplementary Figure 1. The statistical

differences between the discovery cohort and the patients without

MRI studies were also assessed (Supplementary Table 1). Differences

between both cohorts were found for the normalized values of LDH

and for age. However, in the case of the former, normalization

ensured consistency in the model’s performance. Similarly, both

cohorts had a median age above the 18-month clinical evaluation

threshold, indicating they represented similar patient populations

with poor prognosis and higher metastatic risk.
FIGURE 2

Workflow of the nested cross-validation scheme for training and validating the OS model. The diagram illustrates the step-by-step nested CV
process applied to the discovery cohort to optimize the model configuration. The outer folds were used to test the optimal parameters determined
in the inner folds. The best configuration was selected as the final model and its feature importance and risk stratification were assessed before
making inference in the independent cohort.
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3.2 Radiomics features extraction
and harmonization

A total of 107 radiomics features were extracted from the

primary tumor delineated over the T2w MR images and

harmonized. To address the two batch effects, MR manufacturer
Frontiers in Oncology 06
differences and magnetic field strength, both combinations were

evaluated. The combination that minimized the number of

radiomic features with significant differences, following the nested

ComBat methodology, was chosen as the harmonization pipeline.

The optimal sequential harmonization process was defined as a

first step for MR manufacturer and then magnetic field strength,
TABLE 2 Clinical and molecular data for the discovery and independent cohorts showing balanced distributions.

Characteristics Discovery Cohort
N = 513

Independent Cohort
N = 22

p-value

n (%) Median [IQR] n (%) Median [IQR]

Sex
▪ Male
▪ Female

264 (50.5)
259 (49.5)

– 14 (63.6)
8 (36.4)

–

1.000

Age at diagnosis (months)
–

22.0
[8.9 – 43.0]

–
23.0

[10.0 – 31.5]
0.994

LDH normalized
–

1.5
[0.91 – 3.1]

–
1.7

[1.2 – 3.2]
0.320

MYCN
▪ Amplified
▪ No amplified
▪ Missing data

113 (21.6)
371 (70.9)
39 (7.5)

–
2 (9.1)
17 (77.3)
3 (13.6)

–

1.000

Risk group INRG
▪ Low
▪ Intermediate
▪ High
▪ Missing data

125 (23.9)
42 (8.0)
281 (53.7)
75 (14.3)

–

9 (40.9)
7 (31.8)
4 (18.2)
2 (9.1)

–

0.847

Staging INSS
▪ 1
▪ 2/3
▪ 4
▪ 4s
▪ Missing data

25 (4.7)
157 (30.0)
289 (55.3)
37 (7.1)
15 (2.9)

–

2 (9.1)
11 (50.0)
5 (22.7)
0
4 (18.2)

–

0.699

Grade of differentiation of the tumor
▪ Undifferentiated
▪ Poorly differentiated
▪ Differentiating
▪ Missing data

41 (7.8)
242 (45.3)
42 (8.0)
198 (37.9)

–

2 (9.1)
10 (45.4)
4 (18.2)
6 (27.3)

–

0.136

Histology type of the tumor
▪ Neuroblastoma
▪ Ganglioneuroma or intermixed ganglioneuroblastoma
▪ Missing data

413 (71.0.)
34 (6.5)
76 (14.5)

–
19 (86.4)
2 (9.1)
1 (4.5)

–

1.000

Bone marrow results
▪ Positive
▪ Negative

271 (51.8)
252 (48.2)

– 5 (22.7)
17 (77.3)

–

0.321

Clinical symptoms
▪ Positive
▪ Negative
▪ Missing data

244 (46.7)
207 (39.5)
72 (13.8)

–
10 (50.0)
11 (45.4)
1 (4.6)

–

0.189

Tumor location: abdomen
▪ Positive
▪ Negative
▪ Missing data

390 (74.6)
112 (21.4)
21 (4.0)

–
10 (50.0)
11 (45.4)
1 (4.6)

–

0.781

Tumor location: other location
▪ Positive
▪ Negative
▪ Missing data

163 (31.2)
311 (59.5)
49 (9.3)

–
13 (59.1)
9 (40.9)
0

–

0.230
P-values for categorical features were calculated with a chi-square test, while the Mann-Whitney U Test was used for numerical variables due to the lack of normality.
INRG, International Neuroblastoma Risk Group Classification System; INSS, International Neuroblastoma Staging System; IQR, interquartile range; LDH, lactate dehydrogenase.
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yielding the greatest reduction in significant differences, see Table 3.

As a result, the number of variables showing differences were

reduced to 12 for the MR manufacturer and to 7 for the magnetic

field. Most variables continued exhibiting differences post-

harmonization had a small effect size, indicating minimal

influence. Finally, 10 features were excluded from the analysis due

to medium and larger effect sizes measures, see Supplementary

Table 2. Therefore, a total of 97 radiomics features were finally

inputted to the ML models.
3.3 OS prediction model and
risk stratification

After the nested cross-validation, the random survival forest

with a set of eight features emerged as the top-performing model for

the overall survival prediction with a C index and a time-dependent

AUC of 78.8 ± 4.9 and 77.7 ± 6.1 (mean ± standard deviation),

respectively, in the test sets of the discovery cohort. The model

performance was tested in the independent cohort, where an

improved C index and time-dependent AUC of 93.4 and 95.4

were obtained. Table 4 provides a summary of the model metrics

in both cohorts.

The random survival forest model assigned a risk score to each

patient, allowing classification into three survival groups low,

intermediate, and high risk based on their OS probabilities. The

classification thresholds were optimized in the training partition

using a LogRank test to maximize differences between the groups:

patients with predicted risk scores below 6.3 were classified as low

risk, those with scores above 16.1 as high risk, and those with

intermediate scores as intermediate risk.

Figure 3A illustrates the predicted risk distribution of patients in

both the training and test sets of the random survival forest model,

showcasing the thresholds selected during training and applied to the

test set. Most patients who died (orange) were observed to fall within the

intermediate-risk (yellow) and high-risk (red) groups, demonstrating

the model’s ability to discriminate between patient risk levels. In

addition, Figures 3B, C show the interpretability analysis with SHAP

values. It is observed that this model consisted of a combination of

clinical variables and radiomics features. The most important variable

was MYCN status, closely followed by LDH value, see Figure 3B.

Positive values ofMYCN (i.e., MYCN amplification) or very high values

of LDH aligned with high-risk. Regarding radiomics variables, the

model included the skewness, which measures the asymmetry of the

distribution of voxel intensities of the primary tumor about the mean

value (highly heterogeneous tissues show higher absolute skewness than

homogeneous ones), and the maximum 2D diameter, which is related

with tumor size. For both variables, higher values of these features were

associated with a higher risk, see Figure 3C.
3.4 Comparison with INRG
classification system

The stratification capability of the random survival forest model

was compared to that offered by the INRG classification system,
Frontiers in Oncology 07
assessing the Kaplan-Meier curves with a LogRank test of the

different risk groups in the final model test set of the discovery

cohort and in the independent cohort, see Figure 4 and Table 4.

As observed in Table 4, Kaplan-Meier curves obtained from the

random survival forest model for the high-risk group demonstrated

significant differences when compared to the low- and

intermediate-risk groups in both cohorts. However, no significant

differences were observed between the low and intermediate curves.

On the other hand, the INRG classification system bordered on

significance for distinguishing high-risk group with low- and

intermediate-risk groups in the discovery cohort and did not

provide significant differences across all risk group comparisons

in the independent cohort. Visually, Figure 4 also showed a greater

overlap between the confidence intervals of the high-risk group and

the other groups in the INRG, whereas the random survival forest

model exhibits less overlap, particularly in the independent cohort.
4 Discussion

The integration of AI methodologies with clinical research has

become increasingly significant. This study examines the efficacy of

a random survival forest model developed to improve stratification

in NB patients, highlighting the potential of radiomics features to

enhance existing risk stratification systems.

Thus, our model successfully captured meaningful

relationships, enabling accurate predictions with a C index and a

time-dependent AUC of 78.8 ± 4.9 and 77.7 ± 6.1 in the discovery

cohort, and a value of 93.4 and 95.4 in the independent cohort. The

comparison of stratifications revealed that the random survival

forest model was able to effectively discriminate patients at high-

risk from those at low- and intermediate-risk. This discriminatory

capability was significant, particularly when compared to the INRG
TABLE 3 Number of radiomics features with differences before and after
harmonization caused by the batch effects: manufacturer and
magnetic field.

Original Differences
by Batch Effect (n)

Radiomics Features with
Differences after
Harmonization (n)

Manufacturer 72

Harmonization Pipeline 1: Manufacturer +
Magnetic Field

Differences
by Manufacturer

12

Differences by
Magnetic Field

7

Magnetic Field 31

Harmonization Pipeline 2: Magnetic Field
+ Manufacturer

Differences
by Manufacturer

14

Differences by
Magnetic Field

19
Nested Combat harmonization was applied to correct possible differences caused by the
manufacturer and magnetic field batch effects for radiomics features. The optimal
harmonization pipeline was Manufacturer + Magnetic Field, which minimized the number
of significant differences.
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classification system, which partially failed to achieve effective

discrimination in both the discovery and validation cohorts, as

indicated in Table 4. Consequently, our results of a model

incorporating standard clinical, molecular, and radiomics
Frontiers in Oncology 08
information suggest a better patient stratification system in

comparison to the existing clinical standard.

Importantly, the interpretability analysis of this model revealed

that clinical and molecular variables played a pivotal role in the
FIGURE 3

Predicted risk distributions and interpretability of the random survival forest model. (A) The predicted risk distributions for the training and test
datasets, stratified into low-risk (<6.3, green), intermediate-risk (6.3–16.1, yellow), and high-risk (>16.1, red) categories based on the model’s risk
scores. Bars represent the counts of patient who survived (blue) and those who died (orange) according to the ground truth. (B) Feature importance
with SHAP values, showcasing the absolute impact of each feature on the model’s predictions. (C) SHAP dependence plot showing the relationship
between feature values and their impact on risk predictions. Red markers indicate high feature values, while blue markers represent low values.
Positive SHAP values indicate a higher predicted risk, while negative values indicate lower risk.
TABLE 4 Random survival forest performance evaluation.

Evaluation Random Survival Forest Performance

Discovery Cohort (Test) Independent Cohort

C index 78.8±4.9 93.4

Time-dependent AUC 77.7±6.1 95.4

Brier’s score* 12.5±0.9 15.7

Baseline for reference** 25.2±2.9 -

LogRank test (p-value) RSF model (n) INRG (n) RSF model (n) INRG (n)

Low vs Intermediate 0.48 (39 vs 43) 0.43 (25 vs 16) 0.12 (13 vs 7) 0.43 (9 vs 7)

High vs Low <0.005 (21 vs 39) 0.05 (62 vs 25) <0.005 (2 vs 13) 0.56 (4 vs 9)

High vs Intermediate <0.005 (21 vs 43) 0.05 (62 vs 16) <0.005 (2 vs 7) 0.90 (4 vs 7)
*Lower is better. **Random prediction model as reference.
INRG, International Neuroblastoma Risk Group Classification System; RSF, random survival forest.
On top, model metrics on the test partition in the discovery cohort and in the independent cohort. At bottom, LogRank test p-values for Kaplan-Meier curves based on the INRG classification
system and random survival forest stratification for both cohorts.
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prediction, with radiomics variables serving as complementary fine-

tuning support. Thus, the random survival forest model relied on a

set of eight predictive variables, three laboratory biomarkers

(MYCN, LDH, and bone marrow test results), three subclasses of

different staging systems from INSS and INRG, and two radiomic

variables (skewness and 2D maximum diameter) from the

multitude of feature combinations automatically evaluated during

the training process. The most influential variable was MYCN

status, closely followed by LDH value. MYCN amplification and

very high values of LDH favored predictions of higher risk.

Regarding variables with a moderate impact on the model’s

output, clinical variables such as INRG high-risk group, INSS

stage 4 and bone marrow positive values indicated a higher risk

prediction. Conversely, 2/3 INSS staging tended to suggest a lower

risk for patient prediction. It is important to note that all those

clinical and molecular variables are interconnected and

demonstrate a degree of correlation. Hence, MYCN is a very
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significant factor in defining a high-risk patient according to the

INRG criteria, and together with elevated levels of LDH, both have

been reported as important risk factors (10). Additionally, the

majority of patients with bone marrow involvement exhibit

metastases, which is one of the conditions for classifying a patient

at stage 4 of the INSS (8). These factors are recognized as critical risk

determinants, reinforcing the model’s dependence on them for

accurate risk stratification in NB.

Regarding radiomics variables, skewness and maximum 2D

Diameter Slice, which reflect heterogeneity and tumor size,

respectively, exhibited a more complex behavior. In both cases,

very high values contributed to increased risk, while intermediate

and lower values contributed to risk reduction. This indicates that

more heterogeneous and larger lesions are correlated with

predictions of higher risk for patients. From a clinical perspective,

lesion heterogeneity is one of the most critical factors in

neuroblastoma research, as it has been hypothesized that more
FIGURE 4

Comparison of Kaplan-Meier survival curves with 95% confidence intervals for predicted risk groups and INRG. The survival curves are stratified by
the predicted risk groups provided by the random survival forest model (left) and the INRG classification system (right). Results are shown for both
the discovery cohort (top) and the independent cohort (bottom). The risk groups (low, intermediate, and high) are color-coded, and confidence
intervals highlight the variability of the survival estimates.
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heterogeneous lesions are also the most aggressive (35). Therefore,

the selection of a variable of this nature in the final model further

supports this hypothesis through empirical data.

Notably, the relationships identified by the random survival forest

model among clinical, molecular, and radiomic variables are consistent

with those established by the current criteria (10). In this way, the

staging systems serve as a foundation for the additional contribution

provided by the rest of variables when generating predictions for each

patient. This integration highlights the practicality of the model for

real-world applications, offering a streamlined approach to patient

stratification. The application of the model in clinical practice could be

straightforward, requiring only laboratory variable results (estimated

time 2-4 weeks). Staging could be inferred directly from the images,

similar to radiomics, which could be extracted from lesions segmented

automatically or semi-automatically (24).

A recent review on employing machine learning techniques in

NB prediction models revealed the minimal application of

radiomics in this field, with no predictive models incorporating

radiomics for OS prediction or patient stratification (36). This

highlights a critical gap in NB research, which our study aims to

address. Existing studies combining these approaches have

predominantly focused on predicting specific variables, such as

bone marrow involvement (37, 38)and MYCN amplification (39),

primarily using CT and, to a lesser extent, MR images. Studies

predicting broader outcomes, such as the presence of metastases,

grade of differentiation, or mortality, remain rare (38). While these

studies report positive outcomes, their objective differ from ours, as

they do not primarily focus on OS prediction and risk stratification.

Furthermore, these studies typically involve smaller patient cohorts

and lack independent validation analysis, limiting their

generalizability compared to our approach. However, recent

research has started to address these shared objectives, focusing

on improving risk stratification in NB patients through innovative

methodologies. For instance, a study utilizing multi-omics data,

such as gene expression and copy number alterations (CNA), has

demonstrated improved stratification within a super high-risk

group validated in two separate datasets (40). This is in line with

other studies in which emerging genomic biomarkers, such as BDP1

variants I1264M and V1347M, have shown potential in enhancing

clinical outcome predictions in NB patients (41). Interestingly,

another recent study has employed a similar approach to ours,

using a random survival forest model based on intratumoral

microbial gene abundance data extracted from RNA-seq to

enhance risk stratification (42). This method identified subgroups

with significant differences in survival and improved stratification

within the evaluated sample compared to the COG classification.

However, the sample size was again limited, with 120 patients and

no external validation. Thus, our study represents an important

advancement by using a significantly larger patient cohort than

prior studies, incorporating a preliminary external independent

validation set, and merging radiomics with additional clinical NB

parameters. These contributions not only address existing gaps, but

also open avenues for including different -omics variables to

potentially enhance stratification in the future.

Our study has, however, some limitations, one of which is the

size of the cohorts employed. Thus, the discovery cohort, with over
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500 patients, can be considered small when compared to the current

standards, such as the INRG (10), which is based on data frommore

than 8,800 patients. It is worth mentioning that to address this

limitation and to extract the most valuable information from the

data, our cohort was split; a nested cross-validation methodology

with 5x5 folds was applied to ensure robust training and testing,

enabling us to assess performance across the entire dataset. On the

other hand, the relatively small size of the external independent

cohort, with only 22 patients meeting all inclusion criteria, could be

also identified as a limitation. However, it is important to emphasize

that the results obtained in this cohort were very promising, with a

C Index of 93.4 and good patient stratification. Nevertheless, these

findings should be considered a preliminary assessment due to the

limited sample size. Increasing the number of patients with

additional external prospective cohorts from different institutions

would help enhance the statistical power of the analysis and validate

the robustness of the findings. Another limitation concerns the

distribution of patients across the different risk groups. Specifically,

more than 50% of the patients in the discovery cohort were

classified as high-risk according to the INRG system, while the

intermediate-risk class was underrepresented with only 8% of cases.

This imbalance may have introduced a bias in the model towards

the high-risk group, potentially resulting in a higher baseline risk.

Consequently, some patients classified as high-risk by INRG might

have been categorized into an intermediate-risk group by the

model, which may have hindered the model’s ability to accurately

discriminate these patients. However, the classification of high-risk

patients using this model could help identify super high-risk

patients relative to the INRG scale by pinpointing the subgroup

of patients exhibiting the most pronounced decline in the survival

curves. Including more low- and intermediate-risk patients in the

discovery cohort would likely improve the stratification, by allowing

the model to better learn the characteristics of these groups. Overall,

there is a necessity of future studies involving larger and more

diverse external datasets to confirm and refine the model’s

performance across broader and more representative patient

populations. It is also important to note that the treatment was

not considered in the development of the models. As treatment may

change throughout a patient’s disease progression onto second-line

treatment, this could have contributed to variations in patient

survival times. Finally, radiomics features were exclusively

extracted from intra-tumoral regions, disregarding the potentially

predictive relevance of the peri-tumoral zones and adjacent organs.

In future studies, it would also be of interest to include new -omics

data that could further increase the model performance. This effort

would significantly enhance confidence in interpreting the results,

allowing for a more reliable assessment of the model’s performance.

Despite these limitations, our study represents a significant step

forward in advancing risk stratification for neuroblastoma patients,

highlighting the potential or radiomics and machine learning in

this setting.

In conclusion, the implemented random survival forest model

integrating radiomic features with standard clinical and molecular

variables enabled the successful and reproducible stratification of

patients with NB. The model effectively stratified NB patients into

low-, intermediate-, and high-risk categories, suggesting the potential
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of radiomics features to enhance existing risk stratification systems.

Further external prospective validation is now imperative, as it holds

the promise of providing additional evidence to advance patient care

and information in the clinical decision-making for NB patients.
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