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Background: Propionate metabolism may affect tumor growth and

aggressiveness, but the role of propionate metabolism-related genes (PMRGs)

in glioblastoma (GBM) remains poorly understood.

Methods: Differentially expressed PMRGs (DE-PMRGs) were identified by

comparing differentially expressed genes (DEGs) between GBM and normal

tissues using TCGA-GBM, GSE42669, GSE162631 datasets. Functional

enrichment analysis of DE-PMRGs was performed, followed by univariate Cox

regression and least absolute shrinkage with selection operator (LASSO) analysis

to identify potential prognostic biomarkers. In addition, prognostic models were

developed and validated using independent cohorts. Genomic enrichment

analysis (GSEA) was used to assess immune-related pathways in different risk

subgroups. Finally, biomarker expression was confirmed using quantitative

reverse transcription polymerase chain reaction (qRT-PCR).

Results: Differential expression analysis identified a total of 180 DE-PMRGs,

which were strongly associated with drug response and insulin signaling

pathways. Six biomarkers (SARDH, ACHE, ADSL, PNPLA3, MAPK1 and SREBF2)

were identified to be associated with prognosis. The accuracy of the prognostic

model was confirmed using the GSE42669 dataset, with risk score and MGMT

promoter status identified as independent prognostic factors. GSEA showed

enrichment of immune response activation and cell cycle regulatory pathways.

qRT-PCR validation showed up-regulation of PNPLA3 and SARDH, and down-

regulation of ADSL, in tumor tissues.

Conclusions: This study identified six PMRGs (SARDH, ACHE, ADSL, PNPLA3,

MAPK1 and SREBF2) as potential prognostic biomarkers for glioblastoma. These

biomarkers reveal the role of propionate metabolism in the progression of

glioblastoma and may serve as important indicators of patient prognosis and

treatment strategies.
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1 Introduction

Glioblastoma (GBM) is a highly aggressive brain tumor

classified as WHO grade IV, characterized by its severe

malignancy, high recurrence rates, and unfavorable prognosis (1).

Currently, the standard treatment for GBM involves surgical

removal of the tumor, followed by adjuvant radiotherapy and

chemotherapy (2). Even with these treatments, the median

survival time for GBM patients is under 15 months, and the five-

year survival rate is still below 5% (3, 4). It remains a great challenge

to assess the prognosis of GBM and adopt more effective therapeutic

measures to improve patients’ survival time and quality of life.

Therefore, exploring the regulatory mechanisms of GBM

progression and potential prognostic markers is crucial for

evaluating prognosis and improving treatment outcomes for GBM.

Cellular metabolism is a process of breakdown and buildup of

nutrients in the cell, but also embodies the characteristics and

functions of the cell (5). Moreover, metabolic reprogramming has

emerged as a key hallmark of tumors. Metabolic enzymes and their

byproducts play significant roles in the initiation and progression of

tumors (6, 7). Amino acid metabolic reprogramming plays a key

role in gliomas (8). Studies show that reprogramming amino acid

metabolism not only promotes glioma cell proliferation but also

enhances tumor stress tolerance by influencing signal transduction

and altering epigenetic states. Additionally, metabolic changes in

specific amino acids contribute to immune evasion and

chemotherapy resistance in gliomas. Given that both amino acid

metabolism and propionate metabolism are critical components of

the complex tumor metabolic network, further exploration of

propionate metabolism-related genes in glioblastoma (GBM)

holds significant scientific importance. Propionate metabolism is

crucial for normal physiological processes in the body, and its

disruption can contribute to the development of various diseases.

Research indicates that disturbances in propionate metabolism

result in the accumulation of methylmalonic acid (MMA) in cells

and tumors, which enhances the invasiveness of tumor cells (9). A

study by Ana P. Gomes and colleagues utilized the triple-negative

breast cancer (TNBC) 4T1 cell line to develop a model for lung

metastasis in breast cancer. Results suggested that changes in

propionate metabolism may affect the progression and

aggressiveness of cancer, and further affect the anticipated

outcomes for patients (10). Additionally, genes associated with
Abbreviations: PMRGs, Propionate metabolism-related genes; GBM,

Glioblastoma; GEO, Gene expression omnibus; GSEA, Gene set enrichment

analysis; LASSO, Least absolute shrinkage and selection operator; qRT-PCR,

Quantitative real time polymerase chain reaction; MMA, Methylmalonic acid;

TNBC, Triple-negative breast cancer; PMRGs, Propionate metabolism; HCC,

Hepatocellular carcinoma; GO, Gene ontology; KEGG, Kyoto encyclopedia of

genes and genomes; HR, Hazard ratios; SARDH, Sarcosine dehydrogenase;

ADSL, Adenylosuccinate lyase; TNBC, Triple negative breast cancer; PAPLA3,

Patatin-like phospholipase domain-containing protein 3; SREBP2, Sterol

regulatory element binding protein 2; ACHE, Acetylcholinesterase; CHB,

Chronic hepatitis B.

Frontiers in Oncology 02
propionate metabolism (PMRGs) may be linked to the prognosis

of patients with hepatocellular carcinoma (HCC) (11). However,

the role of PMRGs in the pathogenesis of GBM remains unclear.

This study investigates the genes involved in propionate

metabolism in GBM and develops a risk prediction model based

on six specific genes to assess their functional significance and

prognostic potential. Additionally, we conducted a thorough

analysis of the relationship between this prognostic model,

immune cell infiltration, and somatic mutations. Additionally,

scRNA-seq data were integrated to identify cell clusters associated

with key prognostic genes in GBM.We also validated the expression

of these six genes in tumor and adjacent tissues using quantitative

reverse transcription polymerase chain reaction (qRT-PCR) in

vitro. These findings could contribute to personalized diagnostics,

enhance prognostic predictions, and inform treatment decisions for

patients with GBM.
2 Materials and methods

2.1 Data source

The TCGA-GBM dataset (https://www.cancerimagingarchive.

net/collection/tcga-gbm/) comprises RNA sequencing data from

144 GBM samples, of which 141 include survival information, along

with 5 normal samples. This dataset served as the training cohort.

The GSE42669 dataset was obtained from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).

This dataset (GPL6244) contains RNA sequencing data from 58

GBM tissue samples, each with corresponding survival data, and

was used as the validation cohort. We then identified 604 PMRGs

from the GeneCards database with a relevance score exceeding 7

(see Supplementary Table S1). Information for the single-cell

dataset GSE162631 was acquired from the TISCH database.
2.2 Identification of DEGs

The DEGs between GBM and normal groups were identified

using the DESeq2 package (version 3.44.3) (12) in the TCGA-GBM

dataset, with a significance threshold of P value < 0.05, baseMean >

50, and |log2FC| > 1. The results of the differential analysis were

visualized using a volcano plot created with the ggplot2 package

(version 3.3.5) (13). The expression levels of the top 100 DEGs

between the two groups were presented using a heatmap.
2.3 Screening and functional enrichment of
PMRGs

DE-PMRGs were identified by overlapping DEGs with PMRGs.

Following this, Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses for the DE-

PMRGs were performed using the clusterProfiler package (version

3.16.0) (14), applying a significance threshold of P < 0.05.
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2.4 Screening for biomarkers and
construction of risk model

The 141GBM samples were divided into a training cohort of 99

samples and an internal testing cohort of 42 samples, following a 7:3

ratio. A univariate Cox regression analysis (15) was conducted on the

DE-PMRGs to identify possible candidate genes. Subsequently,

LASSO analysis was conducted using the identified candidate

genes. The selected genes were then used as biomarkers for this

study. Patients were categorized into high-risk and low-risk groups

based on the optimal thresholds derived from the risk scores

c a l c u l a t e d u s i n g t h e b i om a r k e r s . R i s k s c o r e =

on
l coef (genei)*expression(genei). And the K-M survival curves

were drawn. The survivalROC package (version 1.0.3) (16) was

used to draw the Receiver Operating Characteristic (ROC) curves,

assessing the model’s predictive accuracy. Correlation analyses

between clinicopathological factors and the risk model in the

TCGA training cohort were conducted using chi-square tests. The

risk model was validated using additional cohorts, including the

internal testing cohort and the GSE42669 dataset.
2.5 Independent prognostic analysis

Independent prognostic analyses were conducted on clinical

characteristics, including IDH mutation status and MGMT

promoter methylation, as well as the risk score in the TCGA

training cohort.
2.6 Clinical features and survival analysis

First, the risk scores were compared across various clinical

subgroups. Next, survival analysis was conducted using the survival

package (version 3.4-0) (17) to evaluate different clinical

characteristics within the two risk subgroups, with Kaplan-Meier

curves generated to illustrate the findings.
2.7 Functional enrichment of two risk
subgroups

The GSEA enrichment analysis was performed on two risk

subgroups by the clusterProfiler software package (v 3.16.0) (14) (|

NES| > 1, NOM P < 0.05). Finally, the top 10 results for GO and

KEGG significance were visualized individually.
2.8 Mutation analysis

The somatic mutation dataset was sourced from the GDC

database. Mutational differences among various risk subgroups

were analyzed using the maftools package (v 2.4.10) (18). The 15

genes with the highest mutation frequencies were visualized through
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waterfall plots. In addition, the pathways with high frequency of

mutational oncogenic pathways in two risk subgroups were screened

and visualized using the OncogenicPathways package.
2.9 Immune microenvironment analyses

The stromal score, immune score, ESTIMATE score, and tumor

purity were calculated for the two subtypes using the ESTIMATE

package (version 1.0.13). Next, the abundance of 64 cell types in

each sample of the TCGA-GBM dataset was evaluated using Xcell

(http://xCell.ucsf.edu/). The results were presented using box plots

and heatmaps for better visualization. Finally, the relationship

between these cell types and risk scores was examined. The MCP-

counter algorithm (http://github.com/ebecht/MCPcounter) was

utilized to impute the content of the 10 cell types (8 immune

cells, fibroblast and epithelial cell) between the two risk subgroups.

The results were shown by heatmap, box plot and radar plot.

Finally, the relationship between the 10 cells and risk scores was

illustrated in the correlation lollipop plot.
2.10 Single-cell RNA seq analysis

This study utilized the GSE162631 single-cell dataset for data

annotation. Clustering results were visualized using UMAP

techniques (19). Following this, biomarker expression was

analyzed within individual cell clusters, with the findings

illustrated through clustering plots and heatmaps.
2.11 Expression validation

In the TCGA-GBM dataset, the expression differences of

biomarkers between GBM and normal groups were compared

using the rank-sum test. The results were presented by box-plots.
2.12 Quantitative real-time polymerase
chain reaction

In this study, a total of 5 pairs samples of patients from the

Second Hospital of Hebei Medical University were utilized qRT-

PCR, including 5 GBM tumor samples and 5 control tissue samples.

The Ethics Committee of the Second Hospital of Hebei Medical

University approved the study (2024-AE160), and all patients

provided informed consent.

First, the total RNA of the frozen control and tumor sample was

extracted a by TRIzol reagent, after which RNA detection was

performed based on the NanoPhotometer N50. Then, an equal

amount of mRNA was reverse transcribed to synthesize cDNA by

SureScript-First-strand-cDNA-synthesis-kit, and the cDNA was

diluted 5-20 times with ddH2O (RNase/DNase free). Next, the

qPCR reaction was performed with 2 x Universal Blue SYBR Green
frontiersin.org
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qPCR Master Mix kit according to the following reaction system:

predenaturation at 95°C for 1 min; Denatured 20s at 95°C, annealed

20s at 55°C, extended 30s at 72°C; 40 cycles. Finally, the gene

expression level was calculated by the 2-DDCT method. Primer

sequences for the genes can be seen in Supplementary Table S2.
2.13 Statistical analysis

All bioinformatics analyses were undertaken in R language. And

the Spearman was employed to perform the correlation analysis.
3 Results

3.1 Screening and functional enrichment of
DE-PMRGs

A total of 6502 DEGs between the GBM and normal groups

were gained, including 3446 up-regulated genes and 3056 down-

regulated genes (Figure 1A, Supplementary Table S3). Of these, the

expression of the top 100 DEGs was displayed in Figure 1B. Then,

180 DE-PMRGs (ABHD5, AGTR1, ALOX5, AR, BRCA1, CCL5

and so on) were screened by overlapping 6502 DEGs and 604

PMRGs (Figure 1C, Supplementary Table S4). Among the 180

differentially expressed propionate metabolism - related genes (DE -

PMRGs), a total of 108 genes were up - regulated and 72 genes were

down - regulated. The results of the enrichment analysis revealed

that the DE-PMRGs implicated 1612 GO-BP entries, 55 GO-CC

entries, 142 GO-MF entries and 143 KEGG pathways. The

enrichment results of DE-PMRGs showed that GO-BP entries

were mainly involved in the response to drug, steroid metabolic

process, etc.; GO-CC entries were mainly involved in the vesicle

lumen, mitochondrial matrix, etc.; GO-MF entries were mainly

involved in the amide binding, signaling receptor activator activity,

etc. (Figures 1D–F, Supplementary Table S5). KEGG enrichment

result included insulin signaling pathway, AMPK signaling

pathway, etc. (Figure 1G, Supplementary Table S6).
3.2 Biomarkers screening and risk model

A total of six biomarkers related to propionate metabolism were

identified: SARDH, ACHE, ADSL, PNPLA3, MAPK1, and SREBF2

(Figures 2A–C). Figure 2D displays the penalty coefficients for these

six biomarkers. Based on an optimal threshold of 0.8556, patients

were categorized into high-risk (n = 57) and low-risk groups (n =

42) (Figure 2E). Survival analysis indicated that the low-risk group

from the training set exhibited a higher survival rate (Figure 2F).

ROC curve analyses demonstrated that the model exhibited good

predictive performance, with AUC values exceeding 0.70 for 1-, 3-,

and 5-year survival rates (Figure 2G). Correlation analysis revealed

a significant link between the risk score and the coding status of

IDH (Table 1, Figure 2H).
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Next, we employed an internal testing cohort and an external

validation cohort to assess the model’s predictive performance.

The risk profile plots and survival curves from the validation

cohorts confirmed consistency with the training set results

(Figures 3A–D). Additionally, the AUC values for the validation

cohorts were all above 0.65 (Figure 3E–F). In the internal testing

cohort, risk scores showed a significant correlation with tumor

grade (P < 0.05), whereas in the validation cohort, there was no

correlation with clinical traits (Tables 2, 3, Figures 3G, H).

Ultimately, two significant factors were identified through

analytical screening: the risk score and the MGMT promoter

(Figures 4A, B).
3.3 Clinical characterization and survival
analysis between two risk subtypes

Clinical characteristic analysis revealed a significant difference

in risk scores between IDH subgroups (Figure 5A), while no

significant difference was observed among MGMT promoter

subgroups (Supplementary Figure S1). Survival analysis

demonstrated significant differences in survival rates between the

two risk subgroups across all clinical categories (Figures 5B–E).
3.4 Analysis of biological processes in two
risk subgroups

GSEA was performed to explore the regulatory pathways and

molecular functions of the two risk subgroups. GO terms were

mainly enriched to such as activation of immune response

(NES=2.02), acute inflammatory response (NES=2.4), etc.

(Figure 6A, Supplementary Table S7). KEGG mainly enrichment

results included cell cycle (NES= -1.78), ECM receptor interaction

(NES=2.12), etc. (Figure 6B, Supplementary Table S8).
3.5 Mutation analysis of two risk subgroups

The mutation outcomes for the different risk subgroups were

illustrated via waterfall plots respectively. Then, Figure 7A

illustrated the 15 mutated genes in the former high-risk group,

including EGFR (40%), TTN (35%), PTEN (29%), TP53 (27%),

MUC16 (21%), CALN1 (15%), NF1 (13%), LRP2 (12%), GLYR1

(11%), RB1 (11%), CSMD3 (9%), GRM3 (9%), PIK3R1 (9%),

PKHD1 (9%), and PIK3CG (8%). Next, 15 mutated genes were

analyzed in the low-risk group, including TP53 (57%), PTEN

(25%), EGFR (20%), TTN (20%), ATRX (18%), IDH1 (16%),

PIK3CA (14%), RYR2 (14%), FLG (12%), MUC16 (12%),

DOCK5 (11%), PKHD1 (11%), RIMS2 (11%), SCN9A (11%), and

SPTA1 (11%) (Figure 7B). In the two risk groups, the top 8

mutational oncogenic pathways in terms of frequency included

the RTK-RAS, WNT, NOTCH, Hippo, PI3K signaling pathway,

and so on (Figures 7C, D).
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FIGURE 1

Screening and functional enrichment of DE-PMRGs. (A) Gene volcano plot of tumor vs normal samples. Red dots indicate that the gene expression
is up-regulated, blue dots indicate that the gene expression is down-regulated, and gray dots indicate that there is no significant difference in these
genes. (B) Heatmap of tumor vs normal sample top100 differential genes. Each small square represents each gene, and its color indicates the
expression level of that gene, the higher the expression level the darker the color (red is high expression, blue is low expression). (C) Venn diagram
of the intersection of differential genes and propionate metabolism genes. (D-F) Clustering diagram of GO-BF, CC, and MF enrichment systems.
Different colors indicate different entries enriched to. (G) Clustering diagram of KEGG enrichment system. Different colors indicate different entries
enriched to.
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FIGURE 2

Biomarkers screening. (A) Forest plot of one-way cox results. The left side represents genes and their corresponding P and HR values; the red
squares on the right side indicate HR values greater than 1, the green squares indicate HR values less than 1, and the lines on either side of the
squares are the 95% confidence limits for the HR values. (B) LASSO logistic regression coefficient penalty plot. The horizontal coordinate deviance
indicates the proportion of residuals explained by the model, showing the relationship between the number of characterized genes as a function of
the proportion of explained residuals (dev), and the vertical coordinate is the coefficients of the genes. (C) LASSO Logic Coefficient Penalty Plot. The
horizontal coordinate is log(Lambda) and the vertical coordinate represents the cross-validation error. As the penalty coefficients lambda are varied,
the coefficients of most of the variables are finally compressed to 0, and the most lambda value is selected at the minimum of the 10-fold cross-
validation error. (D) Penalty coefficient histogram, yellow bars indicate HR greater than 1, blue bars indicate HR less than 1. (E) Risk curves and
scatter plots for high and low risk groups. Blue color indicates low risk group and red color indicates high risk group. (F) KM survival curve for Risk
score. The vertical coordinate of the graph indicates the survival rate and the horizontal coordinate indicates the total survival time. The red curve
indicates the high-risk group and the blue curve indicates the low-risk group. (G) 1, 3, and 5 year ROC curves to assess risk modeling. Pink indicates
1 year, blue indicates 3 years, and red indicates 5 years. (H) Correlation profiles of riskscore with each clinical trait. The top of the heatmap
represents the different clinical traits, and in the heatmap, each small square represents each gene, and its color indicates the size of the expression
of that gene, the larger the expression the darker the color.
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FIGURE 3

Risk model construction and validation. (A) Test Sets - Risk Curves for High and Low Risk Groups. Blue color indicates low risk group and red color
indicates high risk group. (B) KM survival curve for test set-Risk score. The vertical coordinate of the graph indicates the survival rate and the
horizontal coordinate indicates the total survival time. The red curve indicates the high-risk group and the blue curve indicates the low-risk group.
(C) Validation Set - Risk Curves for High and Low Risk Groups. Blue color indicates low risk group and red color indicates high risk group. (D) KM
survival curve for validation set-Risk score. The vertical coordinate of the graph indicates the survival rate and the horizontal coordinate indicates the
total survival time. The red curve indicates the high-risk group and the blue curve indicates the low-risk group. (E) Test Set-ROC Curves for
Assessing Risk Model Validity. Red indicates one year, blue indicates three years, and pink indicates five years. (F) Validation Set-ROC Curves for
Assessing Risk Model Validity. Red indicates one year, blue indicates three years, and pink indicates five years. (G) An overview of the correlation
between the test set-riskscore and each clinical trait. The different clinical traits are indicated above the heatmap. In the heatmap, each small square
represents each gene, and its color indicates the magnitude of the gene’s expression, with the larger the expression the darker the color. (H) An
overview of the correlation between the Validation set-riskscore and each clinical trait. The different clinical traits are indicated above the heatmap.
In the heatmap, each small square represents each gene, and its color indicates the magnitude of the gene’s expression, with the larger the
expression the darker the color.
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3.6 Immune-related analysis between two
risk subgroups

The differential analysis demonstrated that there were

significant differences in stromal scores, ESTIMATE scores and

tumour purity between risk subgroups (Figures 8A–C), and no

differences for immune score (Figure 8D). Of these, stromal and

ESTIMATE scores were lower in the low-risk group and tumour

purity was lower in the high-risk group. The Xcell analysis revealed

a total of 13 differential cells (astrocytes, naive CD4+ T cells, cDC,

epithelial cells and so on) between the two risk subgroups

(Figures 8E, F). In addition, the results of the correlation analysis

illustrated that there were 10 cells (basophils, naive CD4+ T cells,

CD4+ Tcm, epithelial cells, fibroblasts, hepatocytes, NK cells, NKT,

preadipocytes, and sebocytes) significantly associated with the risk

score (Figure 8G). The correlation analysis based on the MCP-

counter algorithm illustrated that only fibroblasts were significantly

associated with risk scores (Figure 8H). The remaining results were

presented in Supplementary Figure S2.
3.7 Expression analysis of biomarkers in
different cell types

The cells were classified into 5 cell types (CD8 T cell, endothelial

cell, microglia cell, Mono/Macro cell, and mural cell), and the

distribution were visualized using UMAP (Figure 9A). MAPK1 was

expressed in CD8 T cell, endothelial cell, microglia cell and Mono/

Macro cell, with the highest expression in CD8 T cell (Figure 9B).

The expressed of SREBF2 was highly in microglia cell (Figure 9C).

Expression analysis showed that the expression levels of SARDH,

ACHE, ADSL and PNPLA3 in each type of cells were almost zero

(Supplementary Figure S3A). This was consistent with the results of

the clustering charts (Supplementary Figure S3B).
3.8 Expression validation of biomarkers

In the TCGA-GBM dataset, the expression levels of six

biomarkers were significantly different between GBM and normal
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groups, and the biomarkers except ADSL were lower in the GBM

group (Figure 10A). The expression of biomarkers was further

confirmed using qRT-PCR. There were no significant differences in

the expression levels of the three genes—MAPK1, SREBF2, and

ACHE—between the control and tumor groups. In contrast, the

expression levels of PNPLA3 and SARDH were significantly elevated

in the tumor group compared to the control group, while ADSL

expression was notably reduced in tumor tissues (Figure 10B).
4 Discussion

GBM is a highly aggressive brain tumor characterized by a high

recurrence rate and poor prognosis. Despite appropriate treatment,

patients experience low five-year survival rates and diminished

quality of life (20, 21). As research on GBM deepens, more and

more researchers are beginning to pay attention to the role of

metabolic reprogramming in GBM (22, 23). It has been shown that

dysregulation of propionate metabolism leads to the accumulation

of MMA in cells and tumors, which can increase the invasiveness of

cancers (10). Malignant tumors frequently exhibit abnormal

metabolic activity; however, similar disease phenotypes can arise

from different molecular causes. Therefore, categorizing patients

based on their molecular profiles could aid in developing more

precise treatment prediction models (11, 24). Considering the
TABLE 1 Correlation analysis of risk score and IDH coding status.

Risk-Level

Total High Low
P-value

(N=73) (N=41) (N=32)

IDH

IDHmut-non-codel 6 (8.2%) 0 (0%) 6 (18.8%) 0.0137

IDHwt 67 (91.8%) 41 (100%) 26 (81.3%)

MGMT.promoter

Methylated 30 (41.1%) 15 (36.6%) 15 (46.9%) 0.518

Unmethylated 43 (58.9%) 26 (63.4%) 17 (53.1%)
TABLE 2 Correlation of risk scores with tumor grade in internal testing.

Risk-Level

Total High Low
P-value

(N=32) (N=22) (N=10)

IDH

IDHmut-non-codel 1 (3.1%) 0 (0%) 1 (10.0%) 0.681

IDHwt 31 (96.9%) 22 (100%) 9 (90.0%)

MGMT.promoter

Methylated 13 (40.6%) 6 (27.3%) 7 (70.0%) 0.0584

Unmethylated 19 (59.4%) 16 (72.7%) 3 (30.0%)
fr
TABLE 3 Correlation of risk scores with tumor grade in
validation cohorts.

Risk-Level

Total High Low
P-value

(N=55) (N=28) (N=27)

Age (years)

<=60 40 (72.7%) 17 (60.7%) 23 (85.2%) 0.0829

>60 15 (27.3%) 11 (39.3%) 4 (14.8%)

Gender

F 25 (45.5%) 11 (39.3%) 14 (51.9%) 0.506

M 30 (54.5%) 17 (60.7%) 13 (48.1%)
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scarcity of research on whether propionate metabolism disorder

affects the progression of GBM, we were inspired by the above study

to explore whether such disorder could impact the occurrence and

development of GBM. Therefore, we attempted to identify

biomarkers associated with propionate metabolism and construct

risk models using bioinformatics approaches. Our goal is to provide

new insights for the survival assessment and targeted therapy of

GBM patients.
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This study aimed to develop and validate prognostic indicators

for GBM by examining genes related to propionate metabolism. We

identified 180 DE-PMRGs between the GBM and control groups.

Enrichment analysis revealed that 180 DE-PMRGs were associated

with various pathways, including the insulin signaling pathway and

the AMPK signaling pathway. Numerous studies indicate that the

insulin signaling pathway plays a crucial role in the onset and

progression of GBM (25, 26). Insulin and insulin analogues bind to
FIGURE 4

Independent prognostic analysis of risk models. (A) Forest plot of independent prognostic-univariate cox results. The left side represents genes and
the corresponding P and HR values; the red squares on the right side indicate HR values greater than 1, the green squares indicate HR values less
than 1, and the lines on either side of the squares are the 95% confidence intervals for that HR value. (B) Forest plot of independent prognostic-
multifactorial cox results. The left side represents genes and their corresponding P and HR values; the red squares on the right side indicate HR
values greater than 1, and the green squares indicate HR values less than 1, and the lines on both sides of the squares are the 95% confidence
intervals of the HR values. The lines on both sides of the squares are the 95% confidence intervals of the HR values.
FIGURE 5

Clinical characterization and survival analysis between two risk subtypes. (A) Correlation of risk models with IDH traits. where the horizontal
coordinates represent the different IDH subgroups and the vertical coordinates represent the values at risk. (B, C) IDH-KM (B: IDHmut,C: IDHwt)
survival curves. Blue color indicates low risk group and red color indicates high risk group. (D, E) MGMT.promoter-KM (D:Methylated, E:
Unmethylated) survival curves. Blue color indicates low risk group and red color indicates high risk group.
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insulin receptor, insulin-like growth factor receptor and hybrid

receptors, activating the mitogen-activated protein kinase signaling

pathway (MAPK signaling pathway), phosphatidylinositol 3 kinase

signaling pathway (PI3K) and other possible signaling pathways in

cells, promote cell mitosis, proliferation and anti-apoptosis, and

increased risk of tumor formation and metastasis (27, 28). Through

further research into the regulatory network of AMP-activated

protein kinase (AMPK), it has been found that AMPK may exert

dual functions of promoting and inhibiting tumor development

through different signaling pathways in different types of tumor

cells and specific development stages (29–32). Metformin, a classic

anti-diabetic drug and an AMPK activator, has also attracted the

attention from the cancer community (33, 34). Based on the

enrichment analysis findings, we hypothesize that DE-PMRGs

may influence the onset and progression of GBM by modulating

or interacting with the insulin and AMPK signaling pathways.

These findings also provide further insights into the potential

molecular mechanisms of PMRGs in GBM.

In addition, six biomarkers (SARDH, ACHE, ADSL, PNPLA3,

MAPK1 and SREBF2) related to propionate metabolism were

obtained by further screening. SARDH and ACHE exhibit hazard

ratios (HR) greater than 1, while PNPLA3, SREBF2, MAPK1and

ADSL consistently display HR values less than 1. In addition, qRT

-PCR validation revealed significant differences in the expression of

PNPLA3, SARDH, and ADSL in the control and tumour groups.
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We hypothesize that SARDH was more likely to act as a risk factor

in the development of GBM, while ADSL was regarded as

protective factors.

The Sarcosine Dehydrogenase (SARDH) gene encodes an

enzyme predominantly found in the mitochondrial matrix of the

liver. This enzyme plays a crucial role in the metabolism of

sarcosine, a derivative of glycine, and is tightly regulated through

a functional feedback mechanism (35). A deficiency in sarcosine

dehydrogenase results in a condition known as sarcosinemia (36).

Recent studies have linked SARDH methylation to tumor growth

and invasion. Additionally, overexpression of SARDH in prostate

cancer models has been shown to inhibit tumor growth (35, 37).

Furthermore, research indicates that SARDH may hinder the onset

and progression of colorectal cancer by downregulating specific

chemokine genes, namely CXCL1 and CCL20 (38). However, the

role of SARDH in GBM has not been clearly reported. The findings

of our study suggest that SARDH may potentially serve as a risk

factor, and its precise underlying mechanism warrants

further investigation.

The nucleotide synthesis pathway can be divided into two types

according to the source of substrate: the salvage pathway and the de

novo pathway. To support unlimited cell proliferation, the

metabolic demand for nucleotide biosynthesis in tumor cells

increases substantially (39). Adenylosuccinate lyase (ADSL) is an

essential enzyme in the de novo purine synthesis pathway. The
FIGURE 6

Differential analysis and enrichment analysis of high-risk and low-risk groups. (A) Top10-GO pathways enriched by high and low grouping. Show
top10 GO paths. (B) Top10-KEGG pathways enriched by high and low grouping. Show top10 KEGG paths.
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ADSL gene was discovered to have potential role in breast and

prostate malignancies early in 1987, and has been found to be up-

regulated in a variety of cancer types (40). Recent studies have

shown that ADSL promotes the development of prostate cancer by

regulating the expression of cell cycle genes (41). In addition, ADSL

expression was higher in triple negative breast cancer (TNBC) than

in other breast cancer subtypes and normal breast tissues, and

ADSL knockout inhibited the proliferation and invasion of TNBC

cells both in vitro and in vivo (42). However, research on the role of

ADSL in GBM mechanism is still scarce. Recent research has found

that fumaric acid produced by ADSL also plays a role in promoting

tumour growth in GBM (43). Through database and in vitro

validation, we also found that ADSL is differentially expressed in

GBM and normal tissues, suggesting that it is a key gene in GBM

and that targeting ADSL may affect the development of GBM.

However, due to the limited sample size in our experiment, further

research needs to be conducted.

In the available studies, patatin-like phospholipase domain-

containing protein 3 (PAPLA3) is mainly associated with fat

metabolism and has been extensively studied in hepatic diseases

such as non-alcoholic fatty liver disease and hepatocellular

carcinoma (44–46). The role of PNPLA3 in GBM remains poorly

elucidated. In light of our findings, further investigation is

warranted to determine whether PNPLA3 functions as a

protective factor in GBM.
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Cholesterol is a vital component of cell membranes, and sterol

regulatory element binding protein 2 (SREBP2) plays a crucial role

in maintaining cholesterol balance in the body. SREBP2 is encoded

by the SREBF2 gene (47). Abnormal activation of SREBP2 and its

downstream target genes can influence the development of various

diseases by disrupting cholesterol metabolism. Research indicates

that SREBP2 levels are significantly elevated in hepatocellular

carcinoma HepG2 cells compared to normal liver cells (LO2)

(48). Wen et al. (49) demonstrated that reducing SREBP2

expression modified cellular metabolism in colon cancer, leading

to inhibited tumor growth and decreased levels of cancer stem cell-

related genes. Additionally, disruptions in cholesterol metabolism

can impact the onset and progression of glioblastoma GBM (50).

Given its pivotal role in regulating cholesterol metabolism-related

genes, SREBF2 is anticipated to be an important target for the

treatment of GBM.

Acetylcholinesterase (ACHE) is a key enzyme in biological

nerve conduction. At cholinergic synapses, ACHE can degrade

acetylcholine, terminate the excitatory effect of neurotransmitters

on the postsynaptic membrane, and ensure the normal

transmission of nerve signals in the organism. ACHE is involved

in cell development and maturation. Moreover, ACHE activity is

increased in various primary tumor tissues and in the serum of

some cancer patients (51–53). As we shown in the results of the

study, ACHE in GBM is more likely to be a risk factor of role.
FIGURE 7

Mutation analysis of two risk subgroups. (A) Waterfall map of the top15 most mutated genes in the high-risk group. Different colors indicate different
mutation profiles. (B) Waterfall plot of the top15 most mutated genes in the low risk group. Different colors indicate different mutation profiles.
(C) Frequency of mutational oncogenic pathways in high-risk groups. Fraction of pathway affected on the left and Fraction of samples affected on
the right. (D) Frequency of mutational oncogenic pathways in low risk groups. Fraction of pathway affected on the left and Fraction of samples
affected on the right.
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Interestingly, our qRT-PCR results did not support this hypothesis

(P>0.05), which we postulated could be attributed to the limited

sample size utilized in our study. Consequently, further

investigations employing larger sample sizes are warranted.

The mitogen-activated protein kinase 1 (MAPK1, ERK1/2)

serves as a dual-functioning kinase and transcription factor in

normal physiological conditions, playing crucial roles in
Frontiers in Oncology 12
proliferation and immunity processes (54). The expression of

MAPK1 was significantly upregulated as a tumor promoter in the

context of GBM (55). Our study also observed a significant disparity

in MAPK1 expression between GBM and normal samples, with

MAPK1 exhibiting high levels of expression in CD8 T cells. The

serum MAPK1 level can serve as a biomarker in chronic hepatitis B

(CHB) to reflect the specific CD8 T cell population (56). The
FIGURE 8

Immune-related analysis between two risk subgroups. (A) Box plot of immunization scores, with yellow indicating high-risk groups and blue
indicating low-risk groups. (B) Box plots of the matrix scores, with yellow indicating the high-risk group and blue indicating the low-risk group.
(C) Box plots of the ESTIMATE scores, with yellow indicating the high-risk group and blue indicating the low-risk group. (D) Box plot of tumor purity,
with yellow indicating the high-risk group and blue indicating the low-risk group. (E) Boxplot of xcell derived cell content between high and low
groups. Yellow color indicates low risk group and blue color indicates high risk group. (F) Xcell extrapolation of heat maps for different cell contents.
Each small square represents the content of a different cell in each sample, and its color indicates how much content it contains; the more content
the redder the color, and the less content the bluer the color. (G) Xcell derives the correlation between cell content and risk values. The horizontal
coordinates of the graph indicate correlation values ranging from -1 to 1, the vertical coordinates indicate cells, the color of the bubbles indicates
the significance level, and the size of the bubbles indicates the absolute size of the correlation. (H) MCP-counter derives the correlation between
cell content and risk value. The horizontal coordinates of the graph indicate correlation values ranging from -1 to 1, the vertical coordinates indicate
cells, the color of the bubbles indicates the significance level, and the size of the bubbles indicates the size of the absolute value of the correlation.
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MAPK1 gene has been identified as a crucial regulator of autophagy

in the context of acute myocardial infarction, playing a role in

modulating CD8 T cells and neutrophils (33). Revisiting the

aforementioned studies, we postulate that manipulation of

MAPK1 as a means to modulate CD8 T cells could potentially

impact the development of GBM.

This study developed a risk model based on the six genes

mentioned earlier, revealing a significant difference in survival rates

between high-risk and low-risk groups, with the high-risk group

showing notably lower survival rates. As a result, an enrichment

analysis was performed to explore the biological functions and

pathways involved. It was observed that immune response

activation and acute inflammatory response were predominantly

enriched in terms of biological functions, while cell cycle regulation
Frontiers in Oncology 13
and ECM-receptor interaction were primarily enriched in pathways.

Considering the current state of tumor immune evasion,

immunotherapy targeting GBM has been developed to restore anti-

tumor immune function within immune cells (57, 58). The research

discovered that interactions between tumor cells and ECM receptors

promote therapy resistance as well as tumor growth. Targeting these

receptors can effectively mitigate radioresistance in GBM (59). The

WHO classification of central nervous system tumors has

incorporated numerous molecular markers that are closely

associated with the diagnosis and prognosis of patients (60, 61).

Among these, MGMT. promoter stands out as a significant gene

linked to patient prognosis. In this study, we discovered that both the

MGMT promoter and risk score can serve as reliable predictors for

assessing the prognosis of patients with GBM. This finding provides
FIGURE 9

Expression analysis of biomarkers in different cell types. (A) Annotation status of the GSE162631 single-cell dataset. Different colors indicate different
cells annotated to. (B) Heatmap of MAPK1 expression in the GSE162631 single-cell dataset. Darker color Y indicates higher expression. (C) Heatmap
of SREBF2 expression in the GSE162631 single-cell dataset. Darker color Y indicates higher expression.
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valuable assistance in diagnosing and prognosticating GBM patients,

although further validation through extensive sample verification is

still required. Furthermore, a primary limitation of this study is the

imbalanced sample size. Future investigations should enhance

representativeness by expanding sample sources and incorporating

diverse populations. Integrating advanced techniques such as deep

learning to uncover hidden associations within the data will offer

more robust evidence to advance the understanding of glioblastoma

metabolic mechanisms and refine prognostic models.
Frontiers in Oncology 14
5 Conclusions

This study identified six DE-PMRGs to develop prognostic

models that accurately predict outcomes for GBM patients.

Furthermore, the risk scores generated from the propionate

metabolism-related model correlated with significant biological

functions and held clinical importance. This study provides a

theoretical basis and reference value for GBM research and

treatment in the direction of propionate metabolism. However,
FIGURE 10

Expression validation of biomarkers. *p < 0.05; **p < 0.01; ***p < 0.001, ns, not significant (A) Box line plots of prognostic genes among different
groups. Horizontal coordinates represent different prognostic genes, vertical coordinates represent gene expression, and blue dots represent each
individual in normal samples and yellow dots represent each individual in cancer samples. (B) Expression of prognostic genes in control and
tumor samples.
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this study acknowledges the need for more foundational

experiments to support these findings, necessitating additional in

vivo and in vitro research. We will maintain our focus on the six

DE-PMRG genes and their ongoing research developments to

create personalized treatment strategies for GBM patients.
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