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Introduction: Aberrant fatty acid (FA) metabolism is increasingly recognized as a

significant factor in ovarian cancer (OC) progression, although the

comprehensive metabolic alterations across different body tissues

remain unclear.

Methods: In this study, sixteen OC patients and twenty-nine non-cancer (NC)

patients were recruited for metabolic profiling using a global and targeted

metabolomic strategy based on a gas chromatography-hydrogen flame

ionization detector (GC-FID). The patient survival was followed up to 3 years,

and PFS was calculated.

Results: Our findings revealed distinct metabolite profiles that differentiate OC

from NC groups across all sample types. We found seven, nine, and thirteen

significant metabolites in subcutaneous fat, plasma, and ovarian tissue

respectively. In particular, docosahexaenoic acid (DHA) and arachidonic acid

(AA) levels were notably elevated in all sample types of OC patients. Furthermore,

receiver operating characteristic (ROC) analysis highlight that three plasma FA

showed the best specificity and sensitivity in differentiating the OC group from

the NC group (Area Under The Curve, AUC > 0.89), including caprylic acid,

myristoleic acid, and tetracosaenoic acid. Most of the significant FA in

subcutaneous fat and ovarian tissue showed a high risk of OC. However,

caprylic acid and tetracosanoic acid were identified as protective factors in the

plasma sample. We also found that high levels of linoelaidic acid in subcutaneous

fat and palmitelaidic acid in ovarian tissue were associated with poor prognosis.

Pathway analysis indicated upregulation of fatty acid synthesis, inflammatory

signaling, and ferroptosis pathways in OC patients.

Discussion: This study reveals a coordinated reprogramming of FA metabolism

across multiple biospecimens in OC patients. Our results suggest that specific

fatty acids may contribute to OC progression through dysregulation of fatty acid
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synthesis, inflammatory signaling, and ferroptosis. These findings offer

mechanistic insights into OC progression and highlighting potential biomarkers

and targeted therapeutic interventions.
KEYWORDS

ovarian cancer, fatty acid reprogramming, ovarian tissue, subcutaneous fat tissue,
plasma, tumor progression
1 Introduction

Ovarian cancer (OC) remains a persistent public health concern

globally, with significant impacts on morbidity and mortality (1).

OC ranks as the seventh most commonly diagnosed cancer among

women worldwide and the eighth leading cause of cancer-related

deaths in 2023 (2, 3). In china, OC has emerged as the second

leading cause of death among gynecological cancer (4). In 2019,

there were approximately 196,000 cases of OC in China, with 45,000

new cases and 29,000 deaths attributed to this cancer (5). The age-

standardized rates (ASRs) of OC prevalence, incidence and

mortality have increased by 105.98%, 79.19%, and 58.93%,

respectively, from 1990 to 2021 (6). 70% of OC patients were

diagnosed at an advanced stage, with a 5-year survival rate of

merely 47.4% (3). Future estimations suggest a continued escalation

in the burden of OC in China over the next decade, exceeding global

trends (6). This high prevalence highlights the pressing need to

comprehend the underlying mechanisms of cancer progression.

Furthermore, aberrant lipid metabolism has emerged as a

significant risk factor for OC development (7). Unveiling the

intricate relationship between lipid metabolism and OC, offering

novel insights into its metabolic dysregulation.

Fatty acid reprogramming of cancer cells is crucial for cancer

initiation, proliferation and progression (8–10). Lipids, in

particular, serve multiple roles: they act as energy reserves for the

energetically demanding malignant cells and help alleviate cellular

stress during the metastatic process (11, 12). Recent research has

shed light on the complex relationship between adipose tissue and

the development of OC (1). Adipose tissue is not merely a fat

storage depot but also an active endocrine organ secreting various

adipokine and inflammatory (13, 14). These cytokines can induce a

state of chronic low-grade inflammation and influence cancer

metabolism (15), thus establishing a favorable environment for

tumorigenesis. Specifically, increased concentrations of circulating

free fatty acids have been linked to facilitate cancer cell proliferation

(16). Recent studies have identified distinct lipidomic profiles in the

blood of ovarian cancer patients compared to healthy individuals,

including elevated concentrations of certain fatty acids,

phospholipids, and triglycerides (17). These metabolic rewirings

are essential for cancer cell membrane formation and signaling

pathways and may serve as potential biomarkers for early OC

detection and monitoring (18). Consequently, the metabolic
02
cross-talk between adipose and OC tissues through the

bloodstream profoundly affects OC progression.

Nevertheless, the majority of metabolomic profiling studies in

OC have focused on plasma samples, with limited exploration of

OC tissue and no investigation into adipose tissues (19). Lower

levels of polyunsaturated fatty acids (PUFAs) like docosahexaenoic

acid (DHA) and elevated levels of saturated fatty acids (SFAs) in

plasma have been associated with poor prognoses in ovarian cancer

patients (20). Specific fatty acids such as DHA and myristoleic acid

have been found in higher concentrations in the plasma of OC

patients, potentially facilitating cancer growth (21). In ovarian

tissues, increased levels of fatty acids such as eicosapentaenoic

acid (EPA) and linoleic acid also suggest their roles in cancer cell

signaling pathways including inflammation, cellular proliferation,

and metastasis, which contributing to tumorigenesis and disease

progression (22). Regardless of the progress of research on lipid

metabolism in OC, there remains a significant gap in understanding

the specific fatty acid profiles across different tissue types within the

same individual.

Therefore, Our study aims to bridge this gap by

comprehensively analyzing fatty acid profiling in ovarian tissue,

subcutaneous fat tissue, and blood between OC and NC patients. By

comparing these distinct yet interconnected lipidomic landscapes,

we could identify common significant fatty acid level fluctuation in

the OC group, offering novel insights into their roles in OC

progression, elucidating the metabolic reprogramming of fatty

acids and potentially unveiling new biomarkers for early detection

and therapeutic targets to improve patient outcomes.
2 Materials and methods

2.1 Participants and clinical information
collection

Participants meeting specific inclusion and exclusion criteria

were enrolled as follows: The control group (n=29) including

uterine fibroids or endometrioma without any ovarian lesion,

while the OC group (n=16) comprised patients diagnosed

preoperatively based on serum markers carbohydrate antigen 125

(CA125 > 35 U/mL) and human epididymis 4 protein (HE4 > 70

pmol/L) in pre-menopausal patients, or HE4 >140 pmol/L in post-
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menopausal patients, along with sonographic evaluation of an

adnexal mass. Final diagnoses were confirmed via postoperative

pathological examination. Moreover, individuals with severe

chronic diseases such as hypertension, diabetes, infectious

diseases, or metabolic disorders, as well as those diagnosed with

malignancies other than ovarian cancer, were excluded to mitigate

recruitment bias. No therapeutic interventions, including

chemotherapy, radiotherapy, or surgery, were administered to any

of the OC patients. Clinical characteristics, including demographic

factors (age and BMI), obstetrical and gynecological history

(gravidity and parity), and pathological information (FIGO

staging, pathology type, CA125, HE4), were collected at

enrollment. The study was ethically approved by the Research

Ethics Committee of the Second Affiliated Hospital of Chongqing

Medical University, China (202164), and works in accordance with

the Declaration of Helsinki. All participants were recruited from the

Second Affiliated Hospital of Chongqing Medical University and

signed the informed consent before enrolment from July 2020 to

June 2021. The patient survival was followed up to 3 years, and

Progression-free survival (PFS) was measured. PFS was calculated

using the Kaplan-Meier product-limit method from the date of the

first day of treatment until the progression of the disease for any

cause or for disease.
2.2 Specimen collection

Ovarian cancer tissue and subcutaneous fat tissue samples were

obtained during surgical procedures. Plasma and mid-stream

morning urine samples were collected on the same day prior to

surgery. Whole blood was drawn into ethylenediaminetetraacetic

acid (EDTA)-coated tubes by trained nurse, followed by

centrifugation at 2300 g (10 min, 4°C) with subsequent aliquoting

of supernatants into 1.5 ml cryovials. Immediately following

collection, all samples were promptly frozen in liquid nitrogen

within thirty minutes and subsequently stored long-term at -80°C

prior to mass spectrometry analysis. Each sample was assigned a

unique laboratory identification number, ensuring sequential

processing and preventing laboratory personnel from identifying

sample origins.
2.3 Sample preparation and fatty acid
analysis using gas chromatography-
hydrogen flame ionization detector (GC-
FID)

2.3.1 Reagents and calibration standard solutions
Fifty-two fatty acid standards were purchased from Nu-CHek

PREP, INC. Methanol (HPLC, 99.9%), n-hexane (HPLC, 99.0%),

acetyl chloride (99.0%), and potassium carbonate were obtained

from Adamas Reagent (Aladdin, China). The internal standard

working solution was a 20 mg/L d27-myristic acid mixture solution

(Agilent Technologies, USA).
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2.3.2 Sample preparation
Tissue samples were weighing 10.00 ± 0.20 mg were dissected

into new tubes. Internal standards (5 mL, d27-myristic acid mixture

solution) and 400 mL cold methanolic acetyl chloride (10% in

methanol) were added. The TissueLyser adapter was pre-cooled at

4°C for 6 hours before tissue homogenization. Subsequently, the

tissues were homogenized for two cylcles of 30 second using the

TissueLyser II (QIAGEN, USA). Subsequently, all homogenized

samples were transferred into a sealed 10 ml glass test tubes. 1600 ul

of methanolic acetyl chloride and 300 μL of n-hexane were added,

followed by incubation at 95 °C for 1 h. After cooling, 2 ml of 6%

potassium carbonate solution was added to enhance separation.

After vortexing and centrifugation at 3000 rpm for 10 min, 100 μL

of the upper organic phase was collected for the GC-FID analysis.

2.3.3 GC-FID analysis
The GC-FID analysis was conducted using an Agilent 7890B gas

chromatograph (Agilent Technologies, USA). A 1 mL aliquot of the

upper organ phase (fatty acid methyl ester) was injected into the GC

inlet in a 1:2 split mode. Nitrogen served as the carrier gas,

maintaining a constant flow rate of 1 mL/min to facilitate the

separation of fatty acids. The separation was performed using the

DB-fast FAME capillary column (30 m×0.25 mm×0.25 mm, Agilent

Technologies, USA), with the following an oven temperature

program: (1) 80°C hold for 0.5 minutes; (2) ramped to 165°C at

40°C/min; (3) increased to 230°C at 4°C/min; and (4) hold at 230°C

for 4 minutes. The FID temperature remained constant at 260°C,

with air and hydrogen flow rates set at 400 mL/min and 40 mL/min,

respectively. Additionally, nitrogen was utilized as the make-up gas

at a constant flow rate of 25 mL/min.
2.4 Quality control (QC)

QC samples were prepared by combining 1.00 ± 0.10 mg of each

respective sample into a new tube, following the methodology

outlined in section 3.2. The acquisition of a QC spectrum was

conducted at intervals for every 15 samples.
2.5 Fatty acid identification, extraction,
normalization and quantification

Fatty acids were identified based on their predetermined

retention times, employing 52 fatty acid chemical standards

within the same batch. The relative concentrations of fatty acids

were assessed by measuring chromatographic peak areas

corresponding to the identified fatty acids. Background

contamination and carryover effects were mitigated by subtracting

the values obtained from blank samples. To ensure quantitative

accuracy, the relative concentrations of identified fatty acids were

initially normalized using the internal standard (d27-myristic acid).

Biomass correction was achieved by the weight of the samples.

Individual fatty acid concentrations were quantified using
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calibration curves derived from corresponding chemical standards,

ranging from 0 to 273.12 μg/ml.
2.6 RT-qPCR

Ovarian tissues were homogenized by mechanical

fragmentation followed by sonication. Total RNA was isolated

using Trizol reagent (Invitrogen/Thermo Fisher Scientific)

according to the manufacturer’s instructions. The extracted RNA

was transcribed into cDNA and underwent RT-qPCR (TaKaRa).

Each sample was assayed in technical triplicates to ensure

reproducibility. Specific primer sequences for each gene were

shown in the following: Fatty Acid Synthase (FASN, forward:

TAC CTG AGC ATA GTG TGG AAGAC; reverse: GGT ACA

CCT TCC CAC TCA CTAC), elongation of very long chain fatty

acids protein 1 (ELOVL1, forward: GTC TAC AAC TTC TCA CTG

GTG GC; reverse: AAG TGC CTC AGG GCT GTT GGAA),

elongation of very long chain fatty acids protein 2 (ELOVL2,

forward: TCC ACT TGG GAA GGA GGC TACA; reverse: CCA

GGAACT CTA CTG ATT TGG AG), elongation of very long chain

fatty acids protein 5 (ELOVL5, forward: ACG TCT ACC ACC ATG

CCT CGAT; reverse: TGG AAG GGA CTG ACG ACA AACC),

elongation of very long chain fatty acids protein 6 (ELOVL6,

forward: CCA TCC AAT GGA TGC AGG AAA AC; reverse:

CCA GAG CAC TAA TGG CTT CCTC), elongation of very long

chain fatty acids protein 7 (ELOVL7, forward: CCT ACT ATG GAC

TTT CTG CAT TGG; reverse: GAA CTG GCT TAT GTG GAT

GGCG), Fatty acid desaturase 1 (FADS1, forward: CTG TCG GTC

TTC AGC ACC TCAA; reverse: CTG GGT CTT TGC GGA AGC

AGTT), Fatty acid desaturase 2 (FADS2, forward: CTG GTT CAG

TGG ACA CCT TAA CT; reverse: AGT AGC GGC TTC TCC TGG

TAT TC), and GAPDH (forward: GCT CTC TGC TCC TCC TGT

TC; reverse: CGA CCA AAT CCG TTG ACT CC). GAPDH was

used to normalize the expression level. The expression values were

log2 transformed, and the relative gene expression levels were

calculated using the comparative DDCT method.
2.7 Statistical analysis

Statistical analyses were conducted using R programming

language. Student’s t-test and non-parametric Mann-Whitney U

test were employed to compare clinical characteristics between the

NC and OC groups. Chi-square test was utilized for pairwise

comparisons of categorical variables such as gravidity and parity.

Partial least squares discriminant analysis (PLS-DA) was performed

using R to visualize the discrimination between groups. To account

for confounding factors, particularly differences in patient BMI,

binary logistic regression was employed to confirm differences in

fatty acid concentration between the NC and OC groups. False

discovery rates (FDR) were calculated for metabolites using the q-

value R package (23), P-value< 0.05 and corresponding FDR< 0.2

was considered statistically significant. UpSet diagram and heatmap

were completed by UpSetR and ggplot2 R packages respectively (24,
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25). Advanced volcano plots were created using the OmicStudio

tools at https://www.omicstudio.cn/tool. To assess the diagnostic

ability, receiver operating characteristic (ROC) curve analysis was

conducted and the, Area Under The Curve (AUC) was calculated.

Logistic regression analysis was used to assess the impact of the

significant fatty acids on the response rate, and the results were

reported as an odds ratio (OR) with 95% CI. Metabolic pathways

were predicted using the KEGG database, and chord plots

connecting metabolites and their participating pathways were

reconstructed using the GOplot R package. All statistical analyses

were performed using the R program v4.0.3 (26).
3 Results

3.1 Clinical characteristics of study
participants

In this study, we conducted a meticulous analysis of the clinical

characteristics of 45 participants, comprising 29 individuals in the

control group and 16 diagnosed with ovarian cancer (Table 1). The

FIGO criteria, the proportions across stages I, II, III, and IV were

31.25%, 12.50%, 50.00%, and 6.25%, respectively. The ovarian

cancer-specific biomarkers, namely CA125 and HE4, exhibited

substantially higher levels in the ovarian cancer group compared

to the control group (p<0.0001). No statistically significant

disparities were observed in age, gravidity, and parity between the

control and ovarian cancer groups, except for BMI (p=0.042), which

will be adjusted through logistic regression.
3.2 The specific metabolomic profiles of
subcutaneous fat tissue, plasma and
ovarian tissue between OC and NC groups

A PLS-DA was established using all identified metabolites from

samples of subcutaneous fat tissue, plasma and ovarian tissue

samples. The PLS-DA of subcutaneous fat tissue and plasma

samples showed a greater overlap in the confidence interval areas

(Figures 1A, B), while ovarian tissue samples showed a distinct

difference between cancer and control groups, with evident

separation (Figure 1C). The PLS-DA model validation metrics for

tumor tissue, subcutaneous fat, and blood samples are shown in

Supplementary Figure 1. While the tumor tissue model demonstrated

optimal predictive performance (Q² > 0.5, permutation test p < 0.05),

the subcutaneous fat and plasma models exhibited inferior validation

results, with low Q² values (plasma: Q² < 0.4; subcutaneous fat: Q² <

0, indicating no predictive utility).

Ovarian tissue had a higher number of significant metabolites

(n=13), whereas subcutaneous fat tissue (n=7) and plasma (n=9)

detected fewer significant metabolites respectively. A heatmap

revealed significant alternations in twenty-two metabolites

between OC and NC groups in the subcutaneous fat tissue,

plasma and ovarian tissue samples (Figure 1D) (p<0.05, q<0.2).

The majority of different metabolites were PUFAs. Most fatty acids
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exhibited relatively higher concentrations in the OC group

compared to the NC group.
3.3 Comparative analysis of fatty acid
profiles among subcutaneous fat tissue,
plasma and ovarian tissue.

To eliminate the potential confounding effects of BMI, logistic

regressions were performed to compare metabolite changes between

NC and OC patients. The Venn diagram indicates distinct patterns of

metabolite convergence and divergence across various tissue types.

Specifically, seven, eight, and two unique metabolites were identified

in plasma, ovarian tumor tissue, and subcutaneous fat respectively.

Furthermore, three metabolites were shared between subcutaneous

fat and tumor tissue, while only two metabolites were common

among subcutaneous fat, plasma, and ovarian tissues (Figure 2A).

These commonly shared metabolites may serve as robust biomarkers

for ovarian cancer detection and monitoring. Detailed comparisons

of fatty acid concentrations (Figures 2B–F) revealed significant

variations across different sample types in NC and OC groups. AA

and DHA were significantly different between NC and OC across all

three sample types and found at higher plasma concentrations than

the other sample types, while both PUFAs displayed similar

concentrations between subcutaneous and tumor tissues

(Figures 2B, C). Three PUFAs, including 11,14-eicosadienoic acid,
Frontiers in Oncology 05
nervonic acid and gamma-homolinolenic acid (GHLA), were only

significantly different between OC and NC groups in subcutaneous

fat and tumor tissue, with the highest concentration found in the

plasma samples (Figures 2D–F). The common significant changes in

fatty acid concentration observed across different specimen types

further highlight the importance of fatty acid metabolism in

OC pathogenesis.
3.4 Biomarker discovery and risk factors

ROC curves were employed to evaluate metabolites as potential

biomarkers for OC. In plasma sample (Figures 3A–C), three

metabolites with an area under the ROC curve exceeding 0.73

were identified, whereas no promising AUC result was observed in

subcutaneous fat or ovarian tissue. Figure 3A showed caprylic acid

exhibited the highest sensitivity and specificity, with an AUC of

0.84. Figures 3B, C displayed that myristoleic acid and

tetracosaenoic acid also demonstrated good sensitivity and

specificity, with AUC values over 0.70. Combining all three

shortlisted fatty acids in the ROC analysis illustrated higher

sensitivity and specificity, achieving an AUC of 0.89 (Figure 3D).

Furthermore, the odds ratio (OR) was employed to evaluate the

association between OC risk and identified metabolites. Eight and

nine metabolites with OR greater than one were found in

subcutaneous fat and ovarian tissues respectively, while two
TABLE 1 Clinical characteristics of study participants.

Characteristics Control (n=29) Ovarian cancer (n=16) P-value

Age, a(b), years 50.00 (36.00, 54.00) 49.50 (46.25, 57.00) 0.456

BMI, a(b), kg/m2 23.56 (21.27, 26.04) 20.42 (19.98, 24.56) 0.042

Gravidity, a(b) 2 (1.5, 3.0) 3 (2.0, 4.0) 0.714

Parity, a(b) 1 (1, 1) 1 (1, 1) 0.758

FIGO staging

I, n (%) n/a 5 (31.25%)

II, n (%) n/a 2 (12.50%)

III, n (%) n/a 8 (50.00%)

IV, n (%) n/a 1 (6.25%)

Pathology type

high-grade serous ovarian cancer, n (%) n/a 11 (68.75%)

Mucinous, n (%) n/a 1 (6.25%)

Endometrioid, n (%) n/a 1 (6.25%)

Yolk Sac Tumor, n (%) n/a 1 (6.25%)

Papillary serous carcinoma, n (%) n/a 1 (6.25%)

Low-grade serous carcinoma, n (%) n/a 1 (6.25%)

CA125, a(b), U/ml 21.35 (12.60, 44.88) 641.00 (144.50, 1000.00) 0.0001

HE4, a(b), pmol/l 37.00 (34.60, 45.40) 169.00 (52.40, 659.50) 0.0001
a, median; b, confidence interval (25th percentile, 75th percentile; n, numbers; n/a, not applicable; CA125, cancer antigen 125; HE4, human epididymis protein.
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metabolites had an OR less than one. Specifically, eicosapentaenoic

acid , docosadienoic acid , nervonic acid , AA, GHLA,

docosatetraenoic acid (DTA), docosapentaenoic acid (DPA), and

DHA were associated with higher OC risk in the subcutaneous fat

group (Figure 3E). In the ovarian tissue, palmitic acid,

heneicosanoic acid, stearic acid, arachidonic acid, palmitoleic
Frontiers in Oncology 06
acid, petroselinic acid, eicosapentaenoic acid, cis-vaccenic acid

and linoleic acid showed higher OC risk (Figure 3G). Meanwhile,

tetracosaenoic acid and caprylic acid were related to lower OC risk

in the blood sample (Figure 3F). Thus, these highlighted metabolites

could potentially serve as biomarkers and indicate the presence of

risk factors associated with the development of OC.
FIGURE 1

Fatty acid profiles. Partial least squares discriminant analysis (PLS-DA) of metabolites in (A) subcutaneous fat tissue, (B) plasma, and (C) ovarian tissue.
(D) The heatmap displays the ratio of metabolite levels detected in each group. Red and blue colors denote higher and lower metabolite
concentrations in cancer groups compared to normal groups respectively (*p< 0.05 and **p<0.01).
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3.5 Association of unsaturated fatty acid
reprograming with BMI, FIGO stage,
recurrence, and prognosis in OC patients

Our study investigated the correlation between fatty acid levels,

BMI, FIGO stage and recurrence (recurrence/non-recurrence)

across tumor tissue, subcutaneous fat, and plasma samples

(Figure 4). In tumor tissues samples, petroselaidic acid exhibited a

positive and statistically significant correlation with the Recurrence

(Figure 4A), with higher levels of this fatty acid are associated with a

poorer prognosis (Figure 4B). Additionally, lauric acid and

tetracosanoic acid were positively correlated with BMI in tumor

tissue, while palmitic acid, 7-Nonadecenoic acid, and docosadienoic

acid were positively correlated with FIGO stage in tumor tissue

(Figure 4A). In the subcutaneous fat tissue, caprylic acid and

linoelaidic acid were positively correlated with the Recurrence,

while BMI showed a positive correlation with docosapentaenoic

and docosatetraenoic acids, there was no significant correlation

between FIGO stage and subcutaneous fat tissue (Figure 4C).

Furthermore, Lower levels of 10-trans-pentadecenoic acid

(Figure 4D) and palmitelaidic acid (Figure 4E) were also
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associated with poorer prognosis. Higher levels of linoelaidic acid

were associated with a worse prognosis (Figure 4F). In plasma

(Figure 4G), DPA and tricosanoic acid levels were positively

correlated with the Recurrence, Oleic acid shows positively

correlated with the BMI, while no significant correlations were

found between FIGO stage and any fatty acids, nor were significant

survival correlations observed. These findings suggest that fatty acid

levels may influence prognosis differently across tissue types.
3.6 Metabolic pathways enrichment
analysis of ovarian cancer

To elucidate the underylingmetabolic reprogramming in response

to OC, the top 25 enriched pathways are displayed in Figure 5A, with

significant metabolites annotated in each KEGG pathway presented in

Figure 5B. Most of the metabolites in ovarian tissue, subcutaneous fat

tissue and plasma were involved in the highest enrichment pathways

such as omega-3/omega-6 fatty acid synthesis, alpha-linolenic acid

metabolism, which highlight the importance fatty acid dysregulation

in tumor growth and progression.
FIGURE 2

(A) Venn diagram of differential (p < 0.05) metabolites. The individual or connected dots represent the unique or shared intersections of metabolites
across subcutaneous fat, plasma, and ovarian tissue samples. Scatter plots depicting the concentrations of specific fatty acids, including
(B) arachidonic acid, (C) docosahexaenoic acid, (D) 11,14-eicosadienoic acid, (E) nervonic acid, and (F) gamma-homolinolenic acid, across
subcutaneous fat, plasma, and tumor tissues in normal control (NC) and ovarian cancer (OC) groups. Statistical significance is indicated by asterisks:
ns, not significant, *** (p < 0.001), and **** (p < 0.0001).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1530487
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhong et al. 10.3389/fonc.2025.1530487
3.7 Expressions of enzymatic genes related
to fatty acid synthesis, elongation and
desaturation

To validate our enrichment pathway related to fatty acid

dysregulation in tumors, we performed RT-qPCR to quantify the

expression of key genes involved in fatty acid synthesis (FASN),

elongation (ELOVL1, ELOVL2, ELOVL5, ELOVL6 and ELOVL7),

and desaturation (FADS1 and FADS2). Figure 5C shows that all

these genes had expressed a higher level of ovarian tissue mRNA in
Frontiers in Oncology 08
the cancer group compared to the control group. These results

further supported that shortlisted fatty acid metabolic pathways

were likely more active in ovarian cancer patients.
4 Discussion

Fatty acid reprogramming is reported to reflect the metabolic

demands related to ovarian cancer progression. This study explored

the fatty acid profilings of plasma, tumor and subcutaneous fat
FIGURE 3

Biomarker screening and OC risk. (A–C) Three metabolites with an area under the curve (AUC) greater than 0.7 in the ovarian cancer tissue.
(D) Combining all three shortlisted fatty acids in the ROC analysis. The metabolites with odds ratios excess than one or less than one in
subcutaneous fat (E), plasma (F), and ovarian cancer (G) tissues. (*p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).
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FIGURE 4

Correlation matrices between fatty acids, BMI, FIGO stage and Recurrence for (A) tumor, (C) subcutaneous fat, and (G) plasma samples. Pearson’s r
color gradient from blue to red represents the correlation values from -1 to 1. Mantel’s r.sign indicates whether the correlation is positive or
negative. Mantel’s p displays the statistical significance of the correlations, with p-values less than 0.05 considered significant. Mantel’s r.abs
represents the absolute value of the correlation, with different line thicknesses indicating the strength of the correlation (thin for <0.1, medium for
0.1-0.3, thick for >0.3). Kaplan-Meier Survival Curves of fatty acids for Tumor (B) and Subcutaneous fat (D–F).
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tissues from a cohort of sixteen OC patients and twenty-nine NC

patients to investigate the underlying modulations in fatty acid

composition. Our findings indicated that distinct metabolite

profiles distinguish OC from NC groups across all three sample

types. Specifically, DHA and AA exhibited elevated levels in OC

patients across subcutaneous fat, plasma and ovarian tissue

samples. Notably, subcutaneous fat displayed an elevated

concentration of AA and tetracosanoic acid, which are crucial in

regulating cell death and inflammatory mediator responses. Plasma

samples, in particular, exhibited the highest concentrations of

caprylic acid among different tissues, with an AUC of 0.85,

suggesting its potential as a biomarker for ovarian cancer.

Furthermore, four fatty acids (petroselaidic acid, 10-trans-

pentadecenoic acid, palmitelaidic acid, and linoelaidic acid) were

found to be associated with progression-free survival. By unraveling
Frontiers in Oncology 10
the intricate metabolic mechanisms underlying these fatty acid

modulations in OC patients, this study offers valuable insights

that could contribute to our understanding of ovarian

cancer progression.
4.1 Fatty acid reprogramming in OC

This study is the first to delineate distinct fatty acid metabolism

across subcutaneous fat, plasma, and ovarian tissue in OC patients.

Our findings suggest that OC potentially induces systemic metabolic

reprogramming, altering adipocyte function to support tumor growth.

Notably, significant alterations in fatty acid composition were

observed in subcutaneous fat from OC patients. All significant

PUFAs (Figure 1D), including AA, GHLA, DTA, DPA, and DHA,
FIGURE 5

Metabolic pathway analysis. (A) Fatty acid enrichment overview through graphs, showing pathway enrichment levels with a red-to-yellow gradient
denoting significance, from highly significant (red) to less significant (yellow). (B) Chord plot depicting metabolite connections with pathways: red
(biosynthesis of unsaturated fatty acids), orange (fatty acid biosynthesis), light green (linoleic acid metabolism), dark green (arachidonic acid
metabolism and fatty acid elongation), cyan blue (fatty acid degradation), blue (inflammatory mediator regulation of TRP channels), royal blue
(regulation of lipolysis in adipocytes), purple (ferroptosis), and pink (ovarian steroidogenesis). (C) Bar and dot plots showing the relative mRNA
expression levels of key lipid metabolism enzymes, including fatty acid synthase (FASN); elongation of very long chain fatty acids proteins (ELOVL1,
ELOVL2, ELOVL5, ELOVL6, and ELOVL7); and fatty acid desaturases (FADS1 and FADS2) in control and cancer groups (n = 9 biological replicates per
group). *p < 0.05, ** p < 0.01,*** p < 0.001, **** p < 0.0001.
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were elevated in the OC group. This was accompanied by the

upregulation of key enzymes involved in synthesis (FASN),

elongation (ELOVL1,2,5,6,and 7), and desaturation (FADS1 and

FADS2) in ovarian tissue compared to NC groups (Figure 5C),

implicating these pathways in cancer progression (27). These

findings align with previous studies, as AA, GHLA, and DPA have

been shown to elevate cancer risk in subcutaneous fat (28, 29).

Furthermore, Frankhouser et al. indicated that DHA and EPA

might promote cancer progression through inflammatory cascades

(30) despite DHA also being thought to have antitumorigenic

beneficial effects for OC treatment and prevention (31). Some

researchers suggest that DHA and EPA may have dual effects on

health, depending on their levels and the condition of the patient (32).

We also found that a high level of linoelaidic acid was associated with

poorer progression-free survival in subcutaneous fat (Figure 4). This is

consistent with findings by Helene et al, who reported a positive and

independent association between adipose tissue and recurrence-free

survival (20). Moreover, Previous research suggests that linoelaidic
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acid can further exacerbate cancer progression by increasing oxidative

stress and inflammation in subcutaneous fat, and it is also relative to

the modulation of ferroptosis, a mechanism that cancer cells exploit to

evade cell death (33, 34). Moreover, PUFAs, as a distinct functional

lipid class, are dynamically regulated during cell-state transitions and

influence OC susceptibility to ferroptosis (35). In addition, our study

provides compelling evidence linking alterations in the biosynthesis of

n-6 fatty acids to the development of OC, with particular emphasis on

AA and PA. Through meticulous analysis of metabolomic profiles in

ovarian tissue, we observed significantly elevated levels of LA, AA and

PA in OC patients compared to NC patients. Interestingly, the role of

LA in tumor progression remains controversial. Several studies have

reported anti-cancer effects of LA, including the induction of cell cycle

arrest and modulation of key signaling pathways (36). However, other

evidence suggests a pro-tumorigenic role in specific contexts (37, 38).

For instance, a recent study published in Science demonstrated that

LA promotes the growth of triple-negative breast cancer by activating

the FABP5-mTORC1 signaling axis (39). These findings support the
FIGURE 6

Summary of fatty acid reprogramming across subcutaneous fat, blood, and OC tissue.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1530487
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhong et al. 10.3389/fonc.2025.1530487
concept that dysregulated fatty acid metabolism contributes to OC

progression. Other studies have also reported various fatty acids or

metabolic pathways in OC development. For instance, some research

suggests that n3 fatty acids may have protective effects against OC

(40). Thus, such divergent findings underscore the complexity of lipid

metabolism in ovarian cancer biology.

Therefore, the upregulation of fatty acid metabolism may

contribute to thermogenesis in OC patients, invariably associated

with lipid catabolism and mobilization, a hallmark of cancer-

associated cachexia (41, 42). Increased lipolysis enhances lipid

mobilization of WAT, significantly reducing adipose depots (43).

Fatty acids released from lipolysis enter the circulation and undergo

alterations in availability and composition, becoming a crucial

source of energy and building blocks for the tumor. These fatty

acids and those synthesized de novo by the cancer cells constitute a

fatty acid pool that serves as a centralized resource. This pool

supplies essential components for membrane synthesis, signaling,

and b-oxidation for energy production, thereby sustaining tumor

growth and progression. This metabolic reprogramming highlights

how changes in fatty acid profile within subcutaneous adipose tissue

are intricately linked to the metabolic needs of the tumor,

illustrating a network (Figure 6) through subcutaneous fat,

plasma, and ovarian tissue that supports cancer cell growth,

survival, and progression.
4.2 Biomarker implication

Recent research has highlighted the importance of plasma fatty

acids as potential biomarkers for cancer diagnosis due to their

discriminatory properties (44). Specifically, saturated fatty acids

(SFAs) have been associated with reduced cancer risk (35, 44). In

our study, two SFAs (caprylic acid and tetracosanoic acid) were

identified as contributing to this protective effect. We specifically

identified plasma short-chain fatty acids (SCFAs), such as caprylic

acid and tetracosanoic acid, as promising biomarkers for OC due to

their notable discriminatory power, as demonstrated in Figure 3A.

This is consistent with previous findings that highlight caprylic

acid’s inhibitory effects on various cancer cells (45). Similarly,

tetracosanoic acid, despite its rare association with OC, has been

reported to protect against cancer progression, necessitating further

investigation (46). These findings underscore the potential of

plasma fatty acid profiling as a predictive tool for cancer

biomarker discovery.
5 Limitations

While our study provides valuable insights into the role of fatty

acid metabolism in OC, several limitations warrant consideration.

The sample size is relatively small, which may affect the

generalizability of the findings. Future studies with larger cohorts

are needed to validate the identified biomarkers and elucidate the
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mechanisms underlying lipid metabolism dysregulation in OC.

Furthermore, whole-genome sequencing of OC should be

conducted to identify specific mutation statuses and delineate

distinct fatty acid reprogramming patterns across genetic subtypes.
6 Conclusion

In conclusion, our study reveals significant differences in fatty

acid profiles among OC and NC patients across plasma, tumor and

subcutaneous fat tissues. Our findings proposed that plasma capric

acid, tetracosanoic acid, and myristoleic acid may serve as potential

biomarkers for OC diagnosis. This comprehensive analysis

highlights how reprogramming in fatty acid metabolism occurs

across plasma, tumor and subcutaneous fat tissues, suggesting

interconnected metabolic alterations that contribute to OC

progression. Further research is needed to validate these findings

and elucidate the mechanistic underpinnings of lipid metabolism

dysregulation in OC, thereby facilitating the development of novel

therapeutic strategies to improve patient outcomes.
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