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Prediction of HER2 expression
in breast cancer patients
based on multi-parametric
MRI intratumoral and
peritumoral radiomics features
combined with clinical
and imaging indicators
Xiaoxiao Li1,2, Junfang Fang2, Fuqian Wang2, Lin Zhang2,
Xingyue Jiang2 and Xijin Mao2*

1School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,
2Department of Radiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
Objective: To preoperatively evaluate the HER2 status in breast cancer using

multiparametric MRI intratumoral and peritumoral radiomics features combined

with clinical and imaging characteristics.

Methods: This retrospective study included 252 patients with pathologically

confirmed breast cancer (mean age, 50.1 ± 10.1 years) who underwent breast

MRI at our hospital. Among them, 202 patients (70 HER2-positive and 132 HER2-

negative) were randomly divided into a training set (n = 141) and testing set (n =

61) in a 7:3 ratio from July 2020 to December 2021. The external validation set

consisted of 50 breast cancer cases (20 HER2-positive and 30 HER2-negative)

from September 2024 to March 2025. Radiomics features extracted from

intratumoral and peritumoral regions of the tumor on axial dynamic contrast-

enhanced MRI (DCE-MRI), apparent diffusion coefficient (ADC), and T2-weighted

fat-suppressed (T2FS) sequences were subjected to dimensionality reduction

and model construction using Pearson correlation coefficients, recursive feature

elimination, and logistic regression. Univariate andmultivariate logistic regression

was used to identify the independent risk factors in clinical, pathological and

conventional MRI data for constructing the clinical imaging model. The

combined model was built from radiomics and clinical imaging features. The

area under the receiver operating characteristic curves (AUCs) were used to

evaluate the predictive performance of the models.

Results: There were significant statistical differences between the HER2-positive

and HER2-negative groups in terms of PR expression (p=0.041), spiculation sign

(p<0.001), and uneven margins (p=0.005). The AUC of radiomics models based

on DCE, T2FS, and ADC sequences were 0.742, 0.748, 0.791 respectively in the

training set, and 0.776, 0.708, 0.713 respectively in the testing set. The AUC of the

combined clinical-radiomics model in the training set, testing set and external

validation set was 0.923, 0.915 and 0.837, respectively, which was higher than the

intratumoral and peritumoral radiomics model based on DCE+T2FS+ADC
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sequences (0.854,0.748 and 0.770) and clinical imaging model (0.820,0.789

and 0.709).

Conclusions: The combined model based on DCE+T2FS+ADC intratumoral and

peritumoral radiomics integrating with clinical imaging features can better

predict the HER2 expression status of breast cancer.
KEYWORDS

multi-parameter MRI, intratumoral and peritumoral, radiomics, predictive model, breast
cancer, HER2
1 Introduction

Breast cancer remains a major threat to women’s health, with its

incidence steadily rising in recent years (1). Studies have shown that

breast cancer has become the most common malignancy in females

and has a trend towards younger age groups (2). Breast cancer is a

highly heterogeneous tumor, with different subtypes exhibiting

distinct clinical and imaging features and significant differences in

prognosis. The expression status of human epidermal growth factor

receptor-2 (HER2) is one of the important biological factors affecting

the survival of breast cancer patients. HER2-positive breast cancer

cells have strong proliferation and invasion abilities, and are prone to

metastasis (3–6). Molecular targeted drugs, such as trastuzumab, can

significantly improve the prognosis of HER2-positive breast cancer

patients (7, 8). Therefore, accurate HER2 status assessment is crucial

for prognostic evaluation and treatment strategies in breast cancer.

Traditional methods primarily rely on immunohistochemistry (IHC)

and fluorescence in situ hybridization (FISH) to evaluate HER2

receptor expression levels (9), both of which are invasive and

costly. However, due to insufficient biopsy samples and tumor

heterogeneity, the final detection results may fail to accurately

represent the entire tumor (10).

Currently, multiparametric breast MRI is recommended as the

first-line imaging modality for high-risk women with breast cancer,

enabling diagnosis of malignancies, non-invasive assessment of

therapeutic response, and detection of residual tumors post-

surgery (11). Radiomics refers to the extraction of high-

throughput, quantifiable data features from conventional medical

images, highlighting subtle image characteristics imperceptible to

the naked eye, thereby enabling comprehensive and precise analysis

of lesions. Recent studies have shown that radiomics models based

on MRI images have certain value in identifying benign and

malignant lesions, distinguishing different subtypes of breast

cancer, predicting axillary lymph node metastasis, and predicting

the response to neoadjuvant chemotherapy and the risk of tumor

recurrence, among other prognostic factors (12–15).

In recent years, radiomics based on dynamic contrast-enhanced

magnetic resonance imaging (DCE-MRI) has demonstrated significant

potential for the noninvasive prediction of HER2 status in breast
02
cancer. Early studies have preliminarily demonstrated the potential of

DCE-MRI texture analysis in HER2 2+ status prediction (16), while

integrating semi-quantitative kinetic parameters can further improve

predictive performance (17). Furthermore, Fang et al. and Xu et al.

achieved a stable predictive efficacy in a multicenter cohort by

constructing clinical-radiomics line graph, highlighting the clinical

value of multimodal feature fusion (18, 19). However, existing research

still has the following limitations: most models rely on a single DCE

sequence, failing to systematically evaluate the complementary value of

multi-parameter imaging such as T2-weighted fat-suppressed (T2FS)

sequence and apparent diffusion coefficient (ADC); the potential

impact of peritumoral microenvironment heterogeneity on HER2

status remains underexplored; the synergistic predictive efficacy

between conventional imaging features, such as tumor morphology

and enhancement kinetics, and radiomics features is still unclear.

Therefore, the purpose of this study is to investigate the differences

of intratumoral and peritumoral radiomics models based on DCE,

T2FS, and ADC sequence for HER2 status assessment, and to explore

the value of multi-parameter radiomics model combined with clinical

imaging features in predicting HER2 expression status in breast

cancer patients.
2 Materials and methods

2.1 Patients

This retrospective study was approved by the Ethics Committee

of our institution, and the requirement for informed consent

was waived.

A total of 318 patients with pathologically confirmed breast

cancer from July 2020 to December 2021 at our hospital were

retrospectively collected in this study (Figure 1). The inclusion

criteria were: (i) Underwent preoperative MRI examination

with Diffusion-Weighted Imaging (DWI), T2FS and DCE

sequences; (ii) Pathological confirmed breast cancer and completed

immunohistochemistry; (iii) No history of other malignant diseases.

The exclusion criteria were: (i) Incomplete or poor quality MR

images, and non-mass enhancement lesions difficult to delineate;
frontiersin.org
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(ii) incomplete clinical and/or pathology data; (iii) preoperative

radiotherapy, chemotherapy, or biopsy. Finally, 202 patients with

breast cancer were enrolled, including 70 HER2-positive cases and

132 HER2-negative cases. All patients were female, with an age

ranged from 23 to 79 years and a mean age of 52.1 ± 10.3 years.

The patients’ age, maximum tumor cross-sectional area, estrogen

receptor (ER) status, progesterone receptor (PR) status, Ki-67 status,

histological grade, and lymph node metastasis data were collected

using the hospital HIS and PACS systems. The 50 cases of breast

cancer (20 HER2-positive and 30 HER2-negative) from September

2024 to March 2025 were used as the external validation set, all

female, with an age ranged from 22 to 83 years and a mean age of 48.2

± 10.3 years.
2.2 Imaging acquisition

All breast MRI examinations were performed with the patient

in the prone position using a 3.0T MRI scanner from Siemens AG,

Germany, equipped with a 4-channel dedicated breast coil. The
Frontiers in Oncology
 03
scanning range extended from the axilla to the lower margin of the

breasts. T1-weighted images (TR169ms/TE2.6ms), T2-weighted

images (3500ms/69ms), fat-suppressed T2-weighted images

(3200ms/69ms), and diffusion-weighted imaging (DWI) (6500ms/

65ms) with a b value of 800s/mm2 were acquired. The axial slice

thickness was 4mm with a 0.4mm gap, and the field of view (FOV)

was 340mm × 340mm. For the DCE-MRI, a total of 7 to 8 phases (1

phase before enhancement and 6 or 7 phases after enhancement)

were obtained using VIBE sequence (FOV 340 mm × 340 mm, TR

4.49 ms, TE 1.68 ms, thickness 1.2 mm, space 0.24 mm, matrix 352

× 260, flip angle 10°). At the end of the first scan, Gd-DTPA

(Germany, Berlin, Schering Co., Ltd. (SCHERING)) was injected at

a dose of 0.2 ml/kg via antecubital vein using pressure injector at the

rate of 2.5 ml/s, which was followed by 20 ml saline flush.

The apparent diffusion coefficient (ADC) map and the time-

signal intensity curve (TIC) were obtained on the syngoMMWP

VE40B workstation. The MRI imaging information of the

lesions were evaluated according to the American College of

Radiology’s Breast Imaging Reporting and Data System (BI-

RADS) 2023 edition.
FIGURE 1

Flowchart of the recruitment pathway for patients.
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2.3 Radiomics model establishment

2.3.1 Image segmentation and radiomics feature
extraction

The 3D Slicer 4.11 software was used to delineate the ROIs within

and around the tumors at its maximum cross-section on axial T2FS,

ADC, and DCE sequences. The intratumoral region did not exceed

the tumor boundary, and the peritumoral region was selected to be 3

millimeter beyond the tumor boundary (Figure 2). The delineation of

DCE sequence select the fourth image, T2FS and ADC map

delineation level need to match with the enhancement sequence.
Frontiers in Oncology 04
The ROIs were manually drawn by two radiologists (Reader 1, with 6

years of experience in breast image interpretation, and Reader 2, with

18 years of experience), who were blinded to the clinical and

histopathological data of the patients. Forty cases’ delineation were

randomly selected to test the consistency between Reader 1 and 2.

Radiomics feature extraction and analysis were performed using

the SlicerRadiomics plugin in 3D Slicer 4.11 software. The

radiomics features our study extracted include statistical features,

texture features and high-order features. Before texture feature

extraction, wavelet and Laplacian of Gaussian (LoG) were used

for pre-processing. A total of 1023 radiomics features, namely, 14
FIGURE 2

Diagram shows the intratumoral and 3 mm peritumoral image regions within the maximum cross-section on DCE (A, B), T2FS (C, D), and ADC (E, F)
sequences of the tumor delineated with 3D Slicer 4.11 software.
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shape features, 162 first-order histogram features, and 847 texture

features were extracted.
2.3.2 Feature selection and model construction
The extracted single and multi-modal radiomics features were

normalized using the Z-score normalization method. The data was

divided into a training set and a testing set in a 7:3 ratio. For the

training set, the variance threshold method and the least absolute

shrinkage and selection operator (LASSO) algorithm (Figure 3)

were used to reduce dimensionality, eliminate redundant

eigenvalues, select radiomics features, and calculate the Rad score.

The radiomics-based analysis was performed to calculate the

radiomics signature (RAD) values for the three sequences. The

formula for RAD value calculation is as follows (✱ represents

peritumoral features):

DCE   RAD   Score = −0:7629 + −0:7713� Kurtosis:3ð Þ +
– 0:3904�Mean:5ð Þ

+ −0:0062�Median:5ð Þ  + −0:6680� ClusterShade ∗ð Þ
+ −0:0771� SizeZoneNonUniformityNormalized:5 ∗ð Þ
+0:5381� Idn:1 ∗+0:6774� Kurtosis:9 ∗+0:5109�MCC:5

T2FS RAD Score = −0:8076  +  5:0559�
SmallAreaLowGrayLevelEmphasis:1

+  −5:6557� Contrast:5ð Þ
+  −0:4640� Kurtosis:3 ∗ð Þ
+  −0:0695�Mean:3 ∗ð Þ + 0:2525�Median:5 ∗

+  0:4529� Skewness:9 ∗+ −0:6584� Skewness:10 ∗ð Þ
Frontiers in Oncology 05
ADC RAD Score = −0:9303 +   −1:4610� Coarseness:9ð Þ +
−0:28� LargeDependenceEmphasis:6 ð Þ

+  −0:3157� Idn:1ð Þ + −1:5059� ClusterShade:4 ð Þ
+ 0:8592� Imc2:8 ∗+0:0477� Skewness:8 ∗

+0:1415� Skewness:5 ∗

The statistical information of clinical, pathological, imaging and

radiomics features were included in the logistic regression

algorithm, and 10-fold cross-validation was used to construct the

prediction model. The area under the receiver operating

characteristic (ROC) curves (AUCs) were used to evaluate the

predictive performance of the models.

2.3.3 Pathological assessment
HER2 detection was performed using immunohistochemistry

(IHC), and the HER2 expression level was recorded as the

percentage of malignant cells stained positive by two experienced

pathologists. HER2 IHC Scoring Criteria: IHC 0: No staining or

≤10% of invasive cancer cells with incomplete/faint membrane

staining. IHC 1+: >10% of invasive cancer cells with incomplete/

faint membrane staining. IHC 2+: >10% of invasive cancer cells

with weak to moderate complete membrane staining, or ≤10% of

invasive cancer cells with strong complete membrane staining. IHC

3+: >10% of invasive cancer cells with strong, complete, and

uniform circumferential membrane staining (20, 21). The IHC

result of 3+ was considered HER2-positive, while the IHC result

of 0 or 1+ was considered HER2-negative. For tumors with the IHC

result of 2+, fluorescence in situ hybridization (FISH) analysis was

required. Those with amplification were HER2-positive, while those

without amplification were HER2-negative (20, 21).
FIGURE 3

Convergence plot of feature coefficients selected by LASSO algorithm based on T1-weighted DCE-MRI for optimal radiomics features.
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2.3.4 Statistical analysis
The clinical data were analyzed by SPSS 25.0 software.

Independent sample t-tests were used for inter-group comparisons

when the data met the normal distribution, otherwise the Mann-

Whitney U test was used. Univariate and multivariate logistic

regression were used to select clinical, pathological, and imaging

features. R 3.4.4 software was performed for modeling and drawing

ROC curves and nomograms to evaluate the value of each feature.

The DeLong test was used to compare the predictive models, with

p<0.05 indicating a significant difference. The intraclass correlation

coefficient (ICC) analysis was used to evaluate the reproducibility and

stability of radiomics feature extraction, and ICC≥0.75 indicated

good consistency.
3 Results

3.1 Patient characteristics

The clinicopathological features and imaging characteristics of

the HER2-positive group (n = 70) and HER2-negative group (n =

132) were listed in Table 1. Univariate logistic regression analysis

showed that there were statistically significant differences between

the two groups in ER expression (p<0.001), PR expression

(p<0.001), spiculation sign (p<0.001), uneven margins (p=0.019),

and TIC type (p=0.007). Multivariate logistic regression was

performed on the characteristics with statistical differences

(Table 2), the expression of PR (p=0.041), spiculation sign

(p<0.001) and uneven margins (p=0.005) were significantly

different between HER2-positive group and HER2-negative group,

which were included in the construction of the clinical

imaging model.
3.2 ICC analysis

For the forty cases’ delineation with the same lesion, reader 1

and reader 2 outlined the ROI of the multi-parametric images and

the ICC values of the obtained imaging features were all greater

than 0.75, indicating good consistency.
3.3 Radiomics feature extraction

The 202 patients with breast cancer were randomly divided into

a training set of 141 cases and a testing set of 61 cases in a 7:3 ratio.

After radiomics feature extraction and dimensionality reduction,

the optimal features for the DCE sequence included 4 intratumoral

and 4 peritumoral features, for the T2FS sequence included 2

intratumoral and 5 peritumoral features, and for the ADC

sequence included 4 intratumoral and 3 peritumoral features.
Frontiers in Oncology 06
3.4 Construction of radiomics model

The intratumoral and peritumoral features from DCE, T2FS

and ADC sequence were included into multi-factor logistics

regression analysis to construct the radiomics models. The

predictive performance of the models built from radiomics

features from DCE alone, T2FS alone, and ADC alone were

summarized in Table 3. The AUC values of the testing set from

the DCE, T2FS, and ADC sequences were 0.776 (95% CI 0.662-

0.879), 0.708 (95% CI 0.589-0.821), and 0.713 (95% CI 0.6-0.823),

respectively (Figure 4).
3.5 Construction of combined model

The predictive models were constructed using logistic

regression algorithms based on the statistically significant of

intratumoral and peritumoral radiomics features from DCE+T2FS

+ADC sequence (R1), clinicopathological imaging features

including PR expression status, spiculation sign, and uneven

margins (R2), and a combination of both (R3). The diagnostic

efficacies of the three models were summarized in Table 4. The AUC

values of the combined model (R3) in the training set, the testing set

and external validation set was 0.923, 0.915 and 0.837, respectively,

which was superior to the R1 model and R2 model (Figure 5).

DeLong test showed that there was a significant difference between

model R3 and other individual models (Table 5). The nomogram of

the six variables in the combined prediction model was plotted

(Figure 6), and the clinical practicality of R3 been validated through

decision curve analysis (Figure 7).
4 Discussion

HER2 is a proto-oncogene that plays a critical role in regulating

cell growth, differentiation, and metastasis (2). Predicting the

expression status of HER2 in breast cancer patients non-

invasively and accurately before surgery is of considerable clinical

significance. This study constructed models based on DCE, T2FS,

and ADC intratumoral and peritumoral radiomics features and

clinical imaging characteristics to predict the expression status of

HER2 in breast cancer patients. It innovatively proposed that the

expression status of PR, the spiculation sign and uneven margins in

conventional imaging have predictive value for HER2 expression in

breast cancer patients. The results demonstrated that the combined

model, which integrates multi-sequence intratumoral and

peritumoral radiomics features with PR receptor expression,

spiculation sign, and uneven margins, showed good predictive

performance for HER2 expression status in both the training set,

testing set and external validation set. The construction of the

nomogram provides a simple and intuitive method for predicting

HER2 expression in clinical practice.
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This study used DCE, T2FS, and ADC sequences for image

segmentation. For the DCE-MRI images, we selected the fourth

phase, which is 180 seconds after the intravenous injection of the

contrast agent. This time point belongs to the beginning of the

delayed period, and the enhancement degree of different TIC types of

breast cancer is relatively obvious, which not only reflects the tumor’s

blood perfusion characteristics, but also maintains a high contrast
Frontiers in Oncology 07
between the tumor and surrounding normal tissue (22, 23). This

ensures that the extracted feature data is more representative and

distinguishable. Additionally, previous studies have primarily focused

on features within the intratumoral region (24), while peritumoral

features also contain key information about breast cancer (25, 26).

Therefore, this study extracted radiomics features from both

intratumoral region and peritumoral region, and constructed a
TABLE 1 Univariate logistic regression analysis of clinicopathological data and image characteristics of breast cancer patients in HER2-positive group
and HER2-negative group.

Parameters HER2 expression status B Value Wald P Value OR (95%CI)

Positive
(n=70)

Negative
(n=132)

Age (years) 49.810 ± 9.990 50.400 ± 10.210 -0.006 0.155 0.694 0.994
(0.966-1.023)

Maximum cross-sectional area 4.400 (2.975
, 7.325)

3.500
(2.000, 6.800)

0.011 0.589 0.443 1.011
(0.983-1.04)

ADC value 917.700 ± 178.590 884.630 ± 189.170 0.001 1.443 0.230 1.001
(0.999-1.003)

Ki-67 40.0 (27.5
, 50.0)

30.0 (15.0, 50.0) 0.013 3.763 0.052 1.013
(1.000-1.027)

ER 0 34 32 -0.452 16.172 p<0.001 0.636
(0.510-0.0.793)

1+ 4 3

2+ 10 16

3+ 22 81

PR 0 44 43 -0.616 19.318 p<0.001 0.54
(0.410-0.711)

1+ 11 18

2+ 8 31

3+ 7 40

Histological grade I 4 9 -0.034 0.199 0.655 0.967
(0.833-1.122)

II 44 92

III 22 30

Spiculation sign No 49 37 -1.790 30.356 p<0.001 0.167
(0.088-0.316)

Yes 21 95

Necrosis No 28 68 0.466 2.418 0.120 1.594
(0.886-2.868)

Yes 42 64

Uneven margins No 37 47 -0.707 5.530 0.019 0.493
(0.274-0.889)

Yes 33 85

TIC I 0 2 0.855 7.236 0.007 2.351
(1.261-4.383)

II 18 57

III 52 73

Lymph
Node Metastasis

No 43 47 -0.314 1.083 0.298 0.731
(0.405-1.319)

Yes 27 85
ADC, Apparent diffusion coefficient.
Ki-67, Ki-67 Antigen.
ER, Estrogen Receptor.
PR, Progesterone Receptor.
TIC, Time-signal intensity curve.
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model based on the optimal feature subsets of the corresponding

regions. Logistic regression was used to construct models based on

the DCE, T2FS, and ADC sequences, respectively, to evaluate the

HER2 expression status of breast cancer in the testing set. The results
Frontiers in Oncology 08
showed that the radiomics features extracted from the DCE sequence

had better evaluation efficacy than those extracted from the T2FS or

ADC sequence. This could be due to the fact that HER2 gene

amplification is related to accelerated tumor neovascularization and

invasiveness (5). And compared with the T2FS and ADC sequences,

the DCE sequence can better reflect tumor blood flow, vascular

density, and vascular permeability (27). In addition, previous study

reported that the AUC value of radiomics model build from the DCE

sequence to predict the HER2 expression status was only 0.65 (28),

while the AUC value in this study was 0.776. This may be because this

study simultaneously selected four intratumoral and four peritumoral

features from the DCE sequence, which could more comprehensively

reflect the characteristics of the tumor and the tumor’s

surrounding microenvironment.

Studies have shown that there might be some correlation

between HER2 status and certain features of conventional

imaging methods, such as spiculated margins, heterogeneous

enhancement, and microcalcifications, but the performance of
FIGURE 4

ROC curves of the models build from radiomic features of DCE, T2FS, and ADC in the training set (A) and testing set (B) for predicting the HER2
status of breast cancer.
TABLE 2 Multivariate logistic regression analysis of clinicopathological
and imaging features between HER2-positive group and HER2-
negative group.

Parameters B value Wald P value OR (95%CI)

ER -0.170 0.908 0.341 0.844 (0.595-1.197)

PR -0.440 4.178 0.041 0.644 (0.422-0.982)

Spiculation sign -1.574 16.562 0.000 0.207 (0.097-0.442)

Uneven margins -1.017 7.816 0.005 0.362 (0.177-0.738)

TIC 0.492 1.447 0.229 1.635 (0.734-3.645)
ER, Estrogen Receptor.
PR, Progesterone Receptor.
TIC, Time-signal intensity curve.
TABLE 3 Predictive performance of the models build from radiomics features from DCE alone, T2FS alone, and ADC alone.

Models ROC ROC confidence interval Sensitivity Specificity

DCE Training set 0.742 0.670-0.812 0.429 0.935

Testing set 0.776 0.662-0.879 0.531 0.793

T2FS Training set 0.748 0.676-0.815 0.653 0.783

Testing set 0.708 0.589-0.821 0.286 0.891

ADC Training set 0.791 0.722-0.856 0.776 0.772

Testing set 0.713 0.600- 0.823 0.408 0.891
DCE, dynamic contrast-enhanced T1-weighted fat-saturated sequence.
T2FS, fat-suppressed T2-weighted.
ADC, apparent diffusion coefficient.
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these features in predicting the HER2 status is limited and the

results are still controversial (29). Through univariate and

multivariate logistic regression analyses on clinical, pathological,

and imaging features, our study found that PR expression,

spiculation sign, and uneven margins were independent

predictors of HER2 expression status. Arpino et al. pointed out

that PR loss may be a surrogate marker for excessive growth factor

receptor activation. In our research, PR-negative status was

significantly associated with HER2-positive expression, which

may be related to the poor prognosis of HER2-positive breast

cancer (30). Sturesdotter et al. proposed that the spiculation sign
Frontiers in Oncology 09
of breast tumors represents a desmoplastic response in the adjacent

stroma or periductal fibrosis, which is associated with lower

histologic grade and lower Ki-67 values, indicating a favorable

biological behavior of the tumor (29). This study is consistent

with previous research that speculation sign was more commonly

observed in the HER2-negative group with better prognosis

compared to HER2-positive breast cancer. Previous studies have

indicated that HER2-positive breast cancer often presents with

indistinct margins on ultrasound (31). However, the results of

this study showed the uneven margins were more common in the

HER2-negative group. The authors speculate that HER2-positive

breast cancer tends to grow faster and larger than HER2-negative

breast cancer, and is more likely to compress surrounding tissues,

which makes the tumor margins clearer. The inconsistency with

previous literature may be attributed to differences in sample sizes

between studies and the heterogeneity of tumors. Additionally,

variations in imaging techniques could also contribute to these

discrepancies. In terms of margin assessment, ultrasound primarily

evaluates the sharpness and regularity of tumor margins through

two-dimensional grayscale images, which can be influenced by the

operator’s skill and equipment quality, leading to subjective
FIGURE 5

ROC curves of the R1, R2, and R3 models in the training set (A), testing set (B) and external validation set (C)) for predicting the HER2 status of
breast cancer.
TABLE 4 Diagnosis efficacy of the R1, the R2, and the R3 model.

Models ROC ROC confidence interval Sensitivity Specificity

R1 Training set 0.854 0.801-0.905 0.816 0.826

Testing set 0.748 0.669-0.883 0.490 0.880

External validation set 0.770 0.632-0.909 0.730 0.780

R2 Training set 0.820 0.757-0.880 0.857 0.707

Testing set 0.789 0.607-0.824 0.918 0.435

External validation set 0.709 0.557-0.861 0.930 0.760

R3 Training set 0.923 0.886-0.959 0.891 0.902

Testing set 0.915 0.865- 0.985 0.989 0.902

External validation set 0.837 0.717-0.956 0.770 0.840
TABLE 5 DeLong test analysis for the R1, R2, and R3 models.

Models
P value

R1 R2 R3

R1 1 >0.05 <0.001

R2 >0.05 1 <0.001

R3 <0.001 <0.001 1
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differences among physicians. In contrast, the high resolution of

MRI can more clearly show the three-dimensional structure of

lesion margins.

The combined model of this study based on multi-parametric

MRI radiomics and clinical imaging features showed better
Frontiers in Oncology 10
performance in evaluating HER2 expression status than the

individual model, with higher evaluation efficiency and good

prediction ability in both the training set, testing set and external

validation set. A statistically significant difference between models

R1 and R3, as well as R2 and R3, was shown by the DeLong test.

These results imply that the clinicopathology, imaging and

radiomics information complement each other and can more

comprehensively represent tumor features, exhibiting strong

predictive performance in assessing HER2 status of breast cancer.

However, our study has some limitations. First, it is a retrospective

study, which may have some selection bias. Second, as a single-

center study, the sample size is relatively small, and multi-center

participation and large-scale prospective studies are needed to

further validate the efficacy of nomogram. Third, in this study,

radiomics analysis was only performed on two-dimensional images

of the maximum cross-sectional area of the tumor, which may miss

some important information as compared to a model based on

features of the whole tumor volume.

In conclusion, this study suggests that the combined model

based on multi-parametric MR intratumoral and peritumoral

radiomics combined with clinical imaging features can better

predict the HER2 expression status of breast cancer. It is expected

to become a reliable method for evaluating HER2 status in breast

cancer patients.
FIGURE 6

Nomogram of the six variables in the combined prediction model.
FIGURE 7

DCA curves of testing set for each model.
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