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Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg,
Heidelberg, Germany
Purpose: This review assesses the diagnostic performance of MRI-based

convolutional neural networks for identifying and grading soft tissue sarcomas,

evaluating therapy responses, and assessing the risk for metastases

and recurrences.

Methods: Electronic databases, specifically PubMed/MEDLINE and Google

Scholar, were diligently scoured for studies that delved into the intersection of

convolutional neural networks, soft tissue sarcomas, and MRI. Three topics were

included: 1) differentiating and grading soft tissue sarcomas, 2) assessing therapy

response, and 3) predicting metastases and recurrences.

Results: This review included 12 articles. Seven articles investigated the

differentiation and grading of soft tissue sarcomas. Sensitivity for that issue

ranged from 0.85 to 0.95, specificity from 0,33 to 1, and the area under the

curve (AUC) from 0.74 to 0.96. Three articles investigated therapy responses, and

two discussed metastasis and recurrence prediction. Only one article out of the

five articles above presented accurate diagnostic values. That article examined

the prediction of lung metastases and demonstrated a sensitivity of 0.47, a

specificity of 0.97, and an AUC of 0.83.

Conclusion: AI applications using CNNs demonstrated robust capabilities in

differentiating and grading soft tissue sarcomas using MRI. However, studies on

therapy response and prediction of metastases and recurrences are still lacking.
KEYWORDS
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Introduction

Soft tissue sarcomas account for 1-2% of the overall incidence of

adult cancer in Europe (1, 2). The annual incidence of STS varies

between 1.8 and 5.0 cases per 100,000 individuals, with a peak

occurrence around the age of 60. By 2025, this incidence is projected

to increase, primarily attributed to insufficient progress in the

prevention, diagnosis, and treatment of these malignancies (3, 4).

Moreover, increasing costs of therapy for soft tissue sarcomas are

expected, partly due to new drug-based treatments (5, 6). Soft tissue

sarcomas are heterogeneous mesenchymal neoplasms with more

than 70 histological subtypes (7, 8). Even biopsies can lead to

inaccurate results due to this heterogeneity (9). Magnetic resonance

imaging (MRI) is the imaging modality of choice for evaluating soft

tissue sarcomas with many histological subtypes already been

classified using conventional MRI (10–13). There are several

classification systems for soft tissue sarcomas. The best-known

system is the French Federation Nationale des Centres de Lutte

Contre le Cancer (FNCLCC), based on histologic type and subtype

features, tumor necrosis, and mitotic activity. It divides soft tissue

sarcomas into grades I through III (14, 15). Soft tissue sarcoma

staging systems are essential in guiding prognosis and treatment

allocation. Precise grading and staging systems can effectively assist

with monitoring and preventing local recurrences. However,

existing systems do not provide sufficient accuracy for making

predictions and are limited by the anatomic stage of the tumor

(16). Artificial intelligence (AI) applications using convolutional

neural networks (CNNs) offer promising opportunities in many

fields of soft tissue sarcoma diagnostics. Capturing and collecting

relevant information about pathological changes beyond human

visual perception can be a promising application of CNNs in soft

tissue sarcoma diagnostics (17, 18). As a consequence, AI might

assist less specialized diagnostic centers in making correct diagnoses

in the near future (19, 20). AI can also dive far deeper into

sophisticated diagnostic methods such as gene sequencing to

successfully identify soft tissue sarcomas genetic components (21,

22). Because of its objective and descriptive characteristics, AI can

analyze, refine, and quantify medical images. This allows for

selecting the most valuable imaging features to analyze clinical

information, make differential diagnoses of tumors, and provide

accurate guidance for treatment and prognosis (15, 23–27).

In this review, we investigated the potential of CNNs in soft

tissue sarcoma diagnostics. For that issue, the diagnostic

performance of MRI-based CNNs for differentiating and grading

soft tissue sarcomas, evaluating therapy responses and risk for

metastases and recurrences were evaluated.
Materials and methods

Search strategy

We performed a comprehensive literature review to identify

studies assessing the diagnostic performance of convolutional

neural networks in magnetic resonance imaging of soft tissue
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sarcomas. Therefore, PubMed/MEDLINE and Google Scholar

were systematically searched using selected keywords. These

selected keywords and terms included “soft tissue sarcoma”,

“machine learning”, “deep learning”, “artificial intelligence”,

“convolutional neural network” and “MRI”. We applied multiple

combinations of these keywords with appropriate Boolean

operators (OR/AND) to each online database.
Inclusion and exclusion criteria

All observational studies on three areas of soft tissue sarcoma

diagnostics were included: 1) differentiating and grading soft tissue

tumors, 2) predicting metastases and recurrences, and 3) assessing

therapy response. The following studies were excluded: (1) other

types of studies than observational (including case reports/series,

editorials, comments, correspondence, guideline, experimental, and

interventional studies, as well as meta-analyses, systematic and

narrative reviews); (2) grey literature or literature produced

outside of the traditional academic publishing channels; (3)

articles lacking available full texts in English; (4) articles using

other imaging modalities than MRI; (5) animal studies; (6) studies

without values on diagnostic accuracy; (7) studies not falling under

the three included topics (differentiating/grading, therapy response,

prediction of metastasis/recurrence).
Literature search

Eighty-one publications were initially identified. After

eliminating 29 duplicate studies, 52 articles were considered for

title/abstract screening. After this screening, 38 studies advanced to

the full-text examination phase. Following the full-text review, 26

articles were excluded due to not falling into the inclusion criteria,

leaving 12 articles that addressed the research questions, met the

inclusion criteria, and were therefore included in the final

study (Table 1).
Results

Differentiating and grading soft
tissue sarcomas

Dai et al. used a ResNet 50 model to differentiate between soft

tissue sarcomas and atypical lipomas, achieving an AUC of 0.96, a

sensitivity of 0.85, and an accuracy of 0.87 (28). Gitto et al. applied a

Random Forest (RF) model to distinguish lipomas from atypical

lipomatous tumors, resulting in an AUC of 0.74, high sensitivity

(0.92), but low specificity (0.33). Gitto et al. found no significant

difference between the AI’s performance and a radiologist’s, with

the AI exhibiting a sensitivity of 0.92 compared to the radiologist’s

0.88 and a specificity of 0.33 versus the radiologist’s 0.54 (p=0.474)

(29). Malinauskaite et al. utilized a Support Vector Machine (SVM)

to differentiate between lipomas and liposarcomas, with an AUC of

0.926, sensitivity of 0.88, specificity of 1.0, and an accuracy of 0.927.
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Malinuskaite et al. found that the best-performing AI model out

of their four CNNs surpassed the results of three radiologists

with varying experience (10, 5, and 2 years specializing in

musculoskeletal radiology). Specifically, the AI’s AUC was 0.926
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compared to the radiologists’ 0.804, with a sensitivity of 0.88 versus

0.769, specificity of 1.0 against 0.84, and accuracy of 92.7%

compared to 81.6% (30). Navarro et al. and Peeken et al. focused

on grading soft tissue sarcomas using DenseNet 161 and LASSO-
TABLE 1 Overview of the included studies with study design and results.

Subject
area

Author Year n Aim number
of

CNNs
used

Best
performed

CNN

AUC Sensitivity Specificity Accuracy

Differentiating
and grading

Dai et al. (28) 2021 172 Differentiation of
soft tissue

sarcomas and
atypical lipomas

4 mp ResNet 50 0.96 0.85 – 0.87

Gitto
et al. (29)

2023 150 Differentiation
lipomas and
atypical

lipomatous
tumors

3 RF 0.74 0.92 0.33 –

Malinauskaite
et al. (30)

2020 38 Differentiation of
lipomas

and liposarcomas

4 SVM 0.926 0.88 1.0 0.927

Navarro
et al. (31)

2023 158 Grading of soft
tissue sarcomas

15 DenseNet 161 0.75 0.91 0.4 0.83

Peeken
et al. (32)

2019 225 Grading of soft
tissue sarcomas

7 Radiomics
combined

LASSO-based

0.84 0.90 0.5 0.83

Xu et al. (33) 2020 105 Differentiation of
soft tissue
sarcomas

according to
malignancy

grade

11 LASSO + RF 0.922 0.882 0.944 0.9143

Yang
et al. (34)

2022 127 Prediction of
MDM2-Gene
amplification to
differentiate
liposarcomas
and lipomas

6 ResNET 50 0.95 0.95 0.89 0.9211

Therapy
response

Blackledge
et al. (35)

2019 18 Response
assessment

8 RF – – – 0.981

Gao et al. (36) 2021 30 Assessment of
therapy response
to radiotherapy

6 VGG 19 – – – 0.833

Peeken
et al. (37)

2021 156 Response
assessment in
neoadjuvant
therapy

4 RF-based
delta combined

0.79 – – –

Predicting
metastasis

and recurrence

Liang
et al. (38)

2022 351 Prediction of
lung metastases

3 DLRN based on
ResNet 34 in
combination
with mRMR
+LASSO

+SVM+SMOTE

0.833 0.474 0.972 0.897

Liu, S.
et al. (39)

2021 113 Prediction
of recurrences

2 DLRN 2-based
ResNet 34

0.96 – – –
RF, Random forest; VGG 19, Visual Geometry Group 19 Layer; mp, multiparametric; mRMR, minimum redundancy maximum relevance; LASSO, least absolute shrinkage and selection
operator; SVM, support vector machine; SMOTE, synthetic minority over-sampling technique; DLRN, deep learning radiomics nomogram; ERT, extremely randomized trees; RFE, recursive
feature elimination technique; STT, SMOTETomek; SVM, support vector machine; CHMFL, constrained hierarchical multi-modality feature learning; 3DMCL, 3D deep multi-modality
collaborative learning. Model C + R, clinical and radiomics.
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based models, achieving AUCs of 0.75 and 0.84, respectively, with

similar sensitivities (0.91 and 0.90) and specificities (0.4 and 0.5)

(31, 32). Xu et al. and Yang et al. differentiated soft tissue sarcomas

according to malignancy grade and predicted MDM2-Gene

amplification, respectively, achieving AUCs of 0.922 and 0.95,

with high sensitivity and specificity values (33, 34).
Therapy response

Blackledge et al. achieved an accuracy of 0.981 in response

assessment using an RF model (35). Gao et al. reported an accuracy

of 0.833 in assessing therapy response to radiotherapy using a VGG

19 model (36). Peeken et al. used an RF-based delta model

combined with other metrics to assess neoadjuvant therapy

response, with an AUC of 0.79 (37).
Predicting metastasis and recurrence

Two studies focused on predicting metastases and recurrences.

Liang et al. used a complex DLRN model based on ResNet 34

combined with multiple other algorithms (mRMR+LASSO+SVM

+SMOTE) to predict lung metastases, achieving an AUC of 0.833,

with sensitivity and specificity values of 0.474 and 0.972,

respectively (38). Liu, S. et al. (2021) predicted recurrences using

a DLRN 2-based ResNet 34 model, achieving a high AUC of

0.96 (39).
Discussion

This review investigates the potential of MRI-based CNNs for

identifying and grading soft tissue sarcomas, evaluating their therapy

responses, and assessing the risk for metastases and recurrences.

As soft tissue sarcomas comprise a rare and heterogeneous

group of malignancies, conventional diagnostic features assessing

soft tissue sarcomas themselves, therapy responses, and potential

risk factors for metastases and recurrences are rare. Although soft

tissue sarcomas present some characteristic findings on MRI (8, 15,

23, 40–42), these characteristics are still insufficient for an overall

differentiation/grading and risk stratification of soft tissue sarcomas

in imaging. Integrating AI in soft tissue sarcoma diagnostics offers a

promising avenue for disease management, diagnostics, and

prognosis. However, as with any pioneering methodology, the

implementation of AI comes with challenges. One significant

issue is the small sample size observed in most studies. Peeken

et al. circumvented this by orchestrating multicentric studies to

bolster patient numbers (32, 37, 43). Despite such attempts, the

maximum number of patients recorded in any analyzed study did

not surpass 351. Meanwhile, Gao et al. adopted a different

approach, producing over 15,000 synthetic images through

oversampling (36). The data imbalance poses a second critical

challenge. Liu X. et al. formulated a unique SRS strategy that
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involved two-step data splitting to enhance the balance between

the training and testing datasets (44). However, this methodology

led to overlaps, thereby compromising the integrity of the “true” test

numbers. CNNs remain at the heart of the issue. Often perceived as

black boxes, the proper CNN selection is paramount for effective

results (45–48). For instance, while ResNet layers have been found

to be an application, excessive layering can usher in issues like

vanishing gradients, where the learning network becomes heavily

dependent on initial weights, causing a regression in learning (49).

Another persistent challenge is using retrospective data, which,

though readily available, brings forth issues like the inability to alter

past MRI settings, susceptibility to errors, and bias (50). The

absence of open metadata, coupled with variable metrics and cut-

offs, obstructs the comparison of study results. Guaranteeing

transparency and reproducibility necessitates detailed reports on

metrics, statistical hypotheses, and specific cut-offs (51).

Despite these challenges, milestones have been achieved. Yang

et al., for instance, demonstrated that MDM2 gene amplification

could be gleaned from image data alone (34). While certain

inaccuracies like misestimating tumor grading persist, as evidenced

by Xu et al.’s 26.9% upgrade rate, harnessing ample data and prudent

feature selection can deliver reliable outcomes (33).

Another critical limitation is the scalability and high cost of

these solutions, with implementation costs estimated to reach up to

$1 million, depending on factors such as data acquisition,

infrastructure, and regulatory compliance (52, 53). High

computational demands and infrastructure requirements hinder

adoption, particularly in low-resource settings (19–21, 52, 53).

Additionally, the environmental impact of AI training processes,

which contribute to increased CO2 emissions, cannot be overlooked

(54, 55).

This review revealed that most studies in soft tissue sarcoma

diagnostics have focused on grading and differentiating these tumors.

However, research on therapy response and risk stratification for

metastases and recurrences remains limited. While the overall

diagnostic performance of CNN-based applications for grading and

differentiating soft tissue sarcomas is relatively high, the included

studies demonstrated significant variation in specificity compared to

sensitivity, with some studies reporting specificities as low as 0.33.

Therefore, future CNN-based applications should aim to improve

specificity while maintaining high sensitivity. Yet, with continuous

refinement, AI’s potential in soft tissue sarcomas and medicine, in

general, is undeniable.

The future might very well behold a time when we can ascertain

the grading of soft tissue sarcomas without necessitating punctures,

which could lead to quicker and more effective therapy and in total

lower the cost of the treatment.

The present study has several limitations. The included studies

showed heterogeneous study designs, objectives, and sample sizes,

making comparisons challenging. Additionally, some of the

included studies had small sample sizes, which could have

affected the diagnostic performance of the AI applications

included. Also, most studies did not investigate confounding

factors, which might have influenced outcomes.
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Conclusion

Applications of convolutional neural networks (CNNs)

demonstrate significant potential for differentiating and grading

soft tissue sarcomas using MRI. However, there remains a gap in

research on evaluating therapy responses and predicting metastases

and recurrences, underscoring the need for further investigation in

these critical areas. This study highlights the potential of AI to

enable precise, non-invasive diagnostic methods for soft tissue

sarcomas, reducing the reliance on invasive procedures. In the

future, AI could become a valuable tool for effective treatment

planning, ultimately improving patient outcomes and optimizing

healthcare resources.
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