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MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that play a
pivotal role in post-transcriptional gene regulation. The dysregulation of miRNAs
has been widely implicated in the pathogenesis of diverse human cancers.
Among these, miR-205 has attracted considerable attention owing to its
aberrant expression patterns in multiple cancer types, where it requlates tumor
initiation and progression via diverse molecular mechanisms. Apoptosis, a
fundamental biological process essential for cellular homeostasis, represents a
tightly requlated form of programmed cell death that significantly influences
cancer development under both physiological and pathological conditions. In
malignant cells, miR-205 exhibits a dual regulatory role by modulating
apoptosis-related signaling pathways and their downstream target genes,
thereby displaying both oncogenic and tumor-suppressive functions. This
comprehensive review systematically explores recent advances in
understanding the functional role of miR-205 in apoptosis regulation across a
spectrum of human malignancies and highlights its potential therapeutic
implications for future cancer therapies.
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1 Introduction

The global burden of cancer continues to escalate, with both incidence and mortality
rates demonstrating a persistent upward trajectory, underscoring the profound and
growing impact of neoplastic diseases on public health systems worldwide (1), A pivotal
determinant underlying this concerning phenomenon is the ability of malignant cells to
evade programmed cell death through diverse molecular mechanisms, thereby facilitating
tumor progression and therapeutic resistance (2). Apoptosis, a genetically programmed
form of cell death, constitutes a critical biological mechanism that suppresses the
proliferation of damaged or aberrant cells. The evasion of this regulatory process by
malignant cells represents a fundamental hallmark of cancer, contributing to tumor
progression and conferring resistance to therapeutic interventions. Within this context,
there is increasing recognition that therapeutic strategies targeting the induction of
programmed cell death through precise modulation of apoptotic pathways may
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constitute a promising and potentially transformative approach in
oncology. However, despite this therapeutic potential, the current
understanding of the molecular mechanisms underlying apoptotic
regulation in neoplastic cells remains fragmentary and incomplete,
necessitating further comprehensive investigation (3). The ultimate
objectives are to enhance overall survival rates and improve the
quality of life for cancer patients. Extensive research efforts have
been devoted to elucidating the regulatory relationships between
microRNAs (miRNAs) and apoptotic pathways in neoplastic cells.
miRNAs represent a class of small, evolutionarily conserved non-
coding RNA molecules, typically comprising 18 to 24 nucleotides in
length. These regulatory molecules exert their biological functions
through sequence-specific interactions with the 3’-untranslated
regions (3’-UTRs) of target messenger RNAs (mRNAs), thereby
modulating post-transcriptional gene expression (4, 5). A
significant proportion of miRNAs are fundamentally implicated
in both genetic and epigenetic alterations that influence cancer-
associated gene networks. Dysregulation of miRNA expression
profiles can lead to developmental perturbations and has been
demonstrated to play a pivotal role in oncogenic transformation
and tumorigenic processes (6). MicroRNAs exert their regulatory
influence on oncogene function across multiple pivotal stages of
tumorigenesis, encompassing tumor initiation, progression, and
metastatic dissemination, through precise targeting and
modulation of cancer-associated genes (7). In this comprehensive
review, we systematically examine the functional roles and
molecular mechanisms through which miR-205 regulates
apoptotic processes in malignant cells across diverse cancer types
(8). Furthermore, we critically evaluate its clinical significance and
potential therapeutic value in tumor regulation, while establishing a
theoretical framework to facilitate its translation into clinical
applications for cancer prevention and treatment strategies.

2 Overview of miR-205

miR-205 was initially characterized through comparative
genomic analyses of murine and Fugu rubripes sequences.
Subsequent investigations have further identified its conserved
expression patterns in zebrafish (Danio rerio) and human genomes,
demonstrating its evolutionary significance across vertebrate species
(9-11). miR-205 is genomically located at chromosome 1 (1g32.2) in
humans. This microRNA is characterized by a highly conserved core
sequence (5-UCCUUUCAUUCCACCGGAGUCUG-3’) that is
essential for its functional activity and specific molecular
interactions with target mRNAs (12).

2.1 Physiological function of miR-205

miR-205 has been demonstrated to play a critical role in
numerous essential physiological processes (Figure 1). Specifically,
it regulates skin stem cell differentiation, is indispensable for
epithelial cell homeostasis, inhibits epithelial-mesenchymal
transition (EMT), and modulates cellular proliferation and
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differentiation processes. Wang et al. demonstrated that in miR-
205 knockout skin stem cells, the expression levels of negative
regulators of the PI3K-AKT pathway, including Frk, Inpp4b,
Inppll, and Phlda3, were significantly upregulated. This led to the
inhibition of PI3K signaling and a marked downregulation of
phosphorylated AKT (p-AKT) levels, resulting in the premature
termination of skin stem cell differentiation (13). Furthermore,
miR-205 has been shown to facilitate cutaneous wound healing
through the promotion of keratinocyte migration, thereby
enhancing the re-epithelialization process (14). Yu et al. further
demonstrated that elevated expression of miR-205 results in the
downregulation of lipid phosphatase SHIP2, consequently
activating the PI3K-Akt signaling pathway in keratinocytes. This
pathway activation is essential for inhibiting apoptotic processes
and plays a critical role in promoting efficient wound healing (15).
Basal cells are recognized as progenitor cells responsible for
epithelial cell generation. miR-205 exhibits high expression levels
in prostate basal cells, where it mediates the deposition of laminin-
332 and its cognate receptor integrin-f4 within the basement
membrane. This molecular mechanism is crucial for maintaining
prostate basal cell homeostasis and preserving the structural
integrity and physiological function of the prostate gland (16).
The investigation conducted by Teta et al. has revealed that miR-
205 exhibits prominent expression in epidermal keratinocytes while
being conspicuously absent in follicular cells, demonstrating its
tissue-specific expression pattern in epithelial compartments (17).
E-cadherin, a critical transmembrane protein essential for
maintaining intercellular adhesion in epithelial tissues, is
negatively regulated by the transcriptional repressors ZEB1 and
ZEB2. Emerging evidence demonstrates that miR-205 directly
targets and downregulates ZEBI and ZEB2, thereby upregulating
E-cadherin expression and effectively inhibiting epithelial-
mesenchymal transition (EMT) in epithelial cells. These findings
underscore the pivotal role of miR-205 in modulating E-cadherin-
mediated cell adhesion and maintaining epithelial phenotype
integrity (18, 19). Furthermore, miR-205 has been demonstrated
to play a significant regulatory role in embryonic developmental
processes. Elevated expression levels of miR-205 have been shown
to induce the upregulation of multiple members of the calmodulin
family (including Cdh4, Cdh5, Cdh6, and Cdhl11) as well as various
genes associated with cell adhesion. This upregulation subsequently
activates the B-catenin/Tcf-Lef signaling pathway, which is critically
involved in extraembryonic endoderm formation and
spermatogenic processes (20). In addition, miR-205 has been
identified as a regulator of multiple key molecular targets that are
essential for modulating cellular proliferation, differentiation, and
migratory processes (21).

2.2 miR-205's dual role in cancer

Bioinformatics analysis utilizing the TCGA database has
revealed significant differential expression patterns of miR-205
across various cancer types compared to adjacent normal tissues
(see Figure 2). miR-205 is significantly upregulated in multiple
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FIGURE 1
Physiological role of miR-205.

malignancies, including non-small cell lung cancer, bladder
carcinoma, esophageal adenocarcinoma, ovarian carcinoma,
nasopharyngeal carcinoma, endometrioid adenocarcinoma, and
head and neck squamous cell carcinomas, where it functions as
an oncogenic driver promoting tumorigenic processes. In contrast,
miR-205 expression is markedly downregulated in other cancer
types, such as breast carcinoma, renal cell carcinoma, prostate
adenocarcinoma, and cutaneous melanoma, where it appears to
exert tumor-suppressive functions (8, 12). Even in the same cancer,
the role of miR-205 may vary depending on the subtype. For
example, in triple-negative breast cancer, miR-205 usually plays a
tumor suppressor role, whereas in hormone receptor-positive breast
cancer, its role may be more complex (22). In the molecular context,
the role of miR-205 is highly dependent on the expression patterns
of its target genes and regulated signaling pathways in different
cancers. For example, in breast cancer, miR-205 inhibits EMT by
specifically targeting ZEB1 and ZEB2, thereby exerting tumor
suppressor effects (18); Whereas, in cervical cancer cells, up-
regulation of miR-205 can significantly target and inhibit CHN1
expression levels, thereby promoting tumor cell proliferation (23).
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In addition, miR-205 may also regulate tumors by modulating the
tumor microenvironment. For example, miR-205 was significantly
induced by hypoxia in cervical and lung cancer cells, while
significant suppression of ASPP2 was observed. It was confirmed
by further studies that the hypoxia-induced ASPP2 inhibition was
mainly attributed to miR-205 elevated (24). miR-205 may also
influence tumor progression by regulating immune cell functions
(immune microenvironment) such as T cells and macrophages. For
example, Fan et al. found in non-small cell lung cancer (NSCLC)
patients undergoing radiotherapy that radiotherapy upregulated the
expression level of miR-205, which promotes autophagy in lung
cancer cells, maintains the survival of memory T-cells, and
promotes the self-renewal of Bl cells, which facilitates the death
of tumor cells and enhances the patient’s anti-tumor immunity
(25). In addition, miR-205 expression may also be tightly influenced
by epigenetic regulation. miR-205 expression is regulated by DNA
methylation and histone modifications. For example, miR-205 is
often simultaneously silenced and acquires DNA hypermethylation
in muscle-invasive bladder tumors and low-differentiated bladder
cell lines, regulating bladder cancer cell proliferation and
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miR-205 expression in The Cancer Genome Atlas (TCGA) pan-cancer (http://bioinfo.jialab-ucr.org/CancerMIRNome/).

differentiation (26). Similarly, Kim ES et al. showed that ionizing
radiation (IR) enhances the hypermethylation of miR-205-5p CpG
islands through activation of Src in lung or breast cancers, leading
to a decrease in miR-205-5p expression, which in turn stimulates
Bcl-w, mediated proliferation and metastasis of human lung or
breast cancer cells (27).

In summary, the dual role of miR-205 may depend specifically
on various factors such as cancer type, molecular background and
tumor microenvironment. In-depth exploration of whether miR-
205 acts as an angel or a devil in different cancers is of great
significance for the future research of miR-205.

3 miR-205 regulates the mechanism
of apoptosis in tumor cells

Apoptosis represents a highly regulated and genetically
programmed cellular process that mediates controlled cell death
under both physiological homeostasis and pathological conditions
(28). It is a key mechanism for maintaining normal cellular
homeostasis by removing senescent and diseased cells, thereby
supporting overall organismal health and normal cellular
functions (29, 30). When cells become cancerous, they acquire the
ability to evade apoptosis, which promotes their uncontrolled
development. This ability to evade apoptosis has now become a
recognized “hallmark of cancer” (2).

Apoptosis is predominantly mediated through two well-
characterized molecular pathways: the intrinsic pathway and the
extrinsic pathway. The intrinsic pathway, alternatively referred to as
the mitochondrial-mediated pathway, is initiated by intracellular
stimuli including but not limited to growth factor deprivation,
genotoxic stress, and endoplasmic reticulum stress (31). The
critical event in the intrinsic apoptotic pathway is mitochondrial
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outer membrane permeabilization (MOMP). Extensive research has
established that BCL-2 family proteins, comprising both pro-
apoptotic and anti-apoptotic members, play a crucial regulatory
role in tumor progression through their modulation of the
mitochondrial apoptotic pathway. This regulatory mechanism is
mediated primarily through the controlled release of cytochrome ¢
and subsequent activation of caspase cascades (32). In contrast, the
extrinsic apoptotic pathway is initiated through specific ligand-
receptor interactions, where death ligands bind to their cognate
transmembrane death receptors, triggering downstream apoptotic
signaling cascades (33). Dysregulation of death receptor-mediated
signaling in the extrinsic apoptotic pathway contributes to
tumorigenesis by promoting malignant cell survival and
proliferation (34). Both apoptotic pathways converge on the
activation of caspase cascades, which execute the biochemical and
morphological changes characteristic of programmed cell death
(35). Based on these findings, it is hypothesized that the regulation
of apoptotic processes may hold significant potential for the
development of novel therapeutic strategies in cancer treatment.
Analysis of the molecular mechanisms by which miR-205 regulates
tumors reveals that it can inhibit cancer progression by controlling
the apoptotic processes in tumor cells.

3.1 Regulation of endogenous apoptotic
pathways by miR-205

Accumulating evidence from numerous studies has
demonstrated that miR-205 can directly modulate BCL-2
expression, thereby regulating apoptotic processes in multiple
cancer types. Specifically, in prostate cancer cells, laryngeal
squamous cell carcinoma (LSCC), and adrenocortical carcinoma
(ACC) SW-13 cells, miR-205 upregulation has been shown to
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significantly reduce both BCL-2 mRNA and protein expression
levels. This downregulation subsequently enhances apoptotic
activity and inhibits cancer cell proliferation and metastatic
potential (36-38). Furthermore, deoxyelephantopin (DET), a
bioactive sesquiterpene lactone isolated from Elephantopus scaber
(Asteraceae), has been extensively characterized for its potent anti-
inflammatory and anti-neoplastic properties. This phytochemical
compound has emerged as a promising therapeutic candidate for
the treatment of various pathological conditions, particularly due to
its demonstrated capacity to inhibit proliferation across multiple
cancer cell lines. Notably, a seminal study conducted by Ji et al.
revealed that DET induces miR-205 upregulation, which
subsequently targets and downregulates BCL-2 expression in
colorectal carcinoma cells. This molecular mechanism promotes
apoptotic cell death, suggesting DET’s potential as a novel
therapeutic agent for clinical oncology applications (39). Qiu et al.
demonstrated in their investigation of breast cancer MCF-7 cells
that miR-205 overexpression significantly enhances cleaved
Caspase-3 expression while concurrently reducing the BCL-2/Bax
ratio, thereby inducing apoptotic cell death in malignant cells (40).

Notably, Myeloid cell leukemia-1 (MCL-1), a pro-survival
member of the BCL-2 protein family, serves as a critical anti-
apoptotic regulator in cellular homeostasis (41). In nasopharyngeal
carcinoma cells, transfection with miR-205-5p mimics significantly
upregulated the protein expression of both BCL-2 and MCL-1, while
concurrently downregulating the expression of pro-apoptotic proteins
Bax and Bak. Apoptotic activity is significantly suppressed in
nasopharyngeal carcinoma cells (42). ZAROGOULIDIS P et al.
demonstrated that miR-205 overexpression in lung adenocarcinoma
cell lines A549 and H1975 significantly inhibits Caspase-3 activation
and Bax expression, while concurrently upregulating MCL-1 and
Survivin protein levels, ultimately resulting in the suppression of
apoptotic pathways in malignant pulmonary cells (43).

In summary, miR-205 directly targets and modulates the
expression of the anti-apoptotic protein BCL-2 in multiple cancer
types, thereby regulating intrinsic apoptotic pathways (in Table 1).

3.2 Regulation of exogenous apoptotic
pathways by miR-205

In tumor cells, miR-205 primarily modulates extrinsic apoptosis
through the TNFR1/TNF receptor signaling pathway. TNF-o., a
transmembrane protein, activates the NF-xB pathway upon binding
to its receptor TNF-R1, thereby inducing the expression of TIPE
family proteins, including TNFAIP8 and TIPE2 (44). Tumor
necrosis factor alpha-induced protein 8 (TNFAIP8) functions as
an anti-apoptotic regulator in malignant cell (45). Yang et al.
demonstrated that miR-205 overexpression in thyroid carcinoma
cells specifically downregulates TNFAIP8 expression while
upregulating the pro-apoptotic protein p53, ultimately promoting
apoptotic cell death in thyroid cancer cells (46). Similarly, Li et al.
demonstrated that miR-205 upregulation in lymphoma cells
specifically targets and downregulates TNFAIP8 expression,
consequently inducing apoptotic cell death in conjunctival
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mucosa-associated lymphoid tissue (MALT) lymphoma (47). The
TNF-RI receptor itself possesses a death domain that, under certain
conditions, can activate caspase cascades and induce apoptosis (48).
Tumor necrosis factor receptor-associated factor-2 (TRAF2), which
normally acts in concert with other members of the TRAF protein
family, is involved in inhibiting the activation of the NF-xB
signaling pathway and stimulating the TNFR response to various
mitogen-activated protein (MAP) kinase cascades (49). TRAF2 is
established as a critical regulatory component in the activation of
the NF-xB signaling pathway (50). In breast carcinoma cells, miR-
205 upregulation specifically targets TRAF2, leading to significant
downregulation of both TRAF2 mRNA and protein expression
levels. This suppression of TRAF2 subsequently inhibits NF-kB
signaling pathway activation, ultimately resulting in the attenuation
of apoptotic processes (51).

3.3 Regulation of other apoptotic factors

3.3.1 PTEN/PI3K-Akt pathway

miR-205 has been demonstrated to regulate the expression of
multiple oncogenes and tumor suppressor genes, including but not
limited to ZEBI, PTEN, ErbB3, and VEGEF-A, through target gene
modulation (21), which regulates the PI3K-AKT signaling pathway,
thereby mediating the occurrence of cellular apoptosis. In cancer,
the PI3K-Akt signaling pathway is often found to be over-activated.
This over-activation results in increased cell proliferation, a
reduction in apoptosis, and a greater propensity for tumor
formation and metastasis (52).

ErbB3, a member of the epidermal growth factor receptor
(EGFR) family, functions as a potent oncogenic driver when
overexpressed or genetically altered, activating downstream
tumorigenic signaling cascades (53). Li and colleagues
demonstrated that miR-205 upregulation in prostate carcinoma
cell lines specifically targets and suppresses ErbB3 expression,
consequently attenuating PI3K-Akt signaling pathway activity.
This molecular inhibition results in significant downregulation of
BCL-2 expression, concomitant upregulation of Bax and cleaved
caspase-3/caspase-9 levels, and ultimately enhances apoptotic cell
death in malignant prostate cells (54). VEGF-A, a critical regulator
of angiogenesis, plays a pivotal role in promoting tumor-associated
vascularization and interacts with PI3K to activate Akt signaling,
consequently suppressing apoptotic processes in malignant cells
(55, 56). In renal carcinoma cells, miR-205 overexpression results in
the significant downregulation of both VEGF-A and PTEN
expression. This molecular suppression inhibits PI3K-Akt
signaling pathway activation and subsequently induces apoptotic
cell death (57, 58). P-glycoprotein (P-gp) represents a membrane-
associated drug efflux transporter that is critically involved in
mediating multidrug resistance (MDR) phenotypes in cancer cells
(59). Li et al. demonstrated that miR-205 overexpression in
doxorubicin-resistant hepatocellular carcinoma cells significantly
upregulated the expression of its target gene PTEN. This molecular
alteration inhibited PI3K-AKT signaling pathway activity, leading
to subsequent downregulation of P-gp expression. Consequently,
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TABLE 1 miR-205 regulates tumor cell apoptosis.

Types Molecular target = Tumor type References
Endogenous apoptotic
suppressor ~ BCL-2] Prostate cancer (36)
BCL-2| LSCC (37)
BCL-2| ACC (38)
BCL-2] Colorectal cancer | (39)
BCL-2| Breast cancer (40)
oncogene ESIZT,MCL-IT,BML, Ic\ﬁlsccyeliharyngeal @)
MCL-11, Survivint, Lung cancer 3)

Caspase-3], Bax]|

Exogenous apoptotic

suppressor ~ TNFAIP8|,P531 Thyroid cancer (46)
TNFAIP8] Lymphoma (47)
TRAF2], NF-xB| Breast cancer (51)

these molecular changes restored chemosensitivity to doxorubicin
and induced apoptotic cell death in the previously resistant
malignant cells (60).

In lung, ovarian, gastric, and nasopharyngeal carcinomas, miR-
205 functions as an oncogenic regulator. Comprehensive statistical
analyses demonstrate that in lung cancer (LC) tissues, miR-205
expression is significantly upregulated, while PTEN expression is
concurrently downregulated. miR-205-mediated suppression of
PTEN results in the marked upregulation of PI3K and
phosphorylated AKT (p-AKT) expression levels, ultimately
leading to the attenuation of apoptotic processes in malignant
pulmonary cells (61). miR-205 overexpression in ovarian or
gastric carcinoma cells specifically targets and downregulates
PTEN expression, leading to the subsequent upregulation of
phosphorylated AKT (p-AKT) levels and ultimately resulting in
the suppression of apoptotic cell death (62, 63). Mao et al.
demonstrated that transfection with miR-205 mimics in
nasopharyngeal carcinoma CNE2 cells significantly upregulated
AKT expression while concurrently downregulating PTEN levels,
ultimately resulting in the attenuation of apoptotic processes in
malignant nasopharyngeal cells (64). Xin et al. identified that the
long non-coding RNA LA16¢-313D11.11 directly interacts with and
suppresses miR-205 activity in endometrial carcinoma,
consequently upregulating its target gene PTEN. This molecular
interaction indirectly inhibits PI3K-AKT signaling pathway
activation and promotes apoptotic cell death in malignant
endometrial cells (65).

3.3.2 Other genes

miR-205 has been demonstrated to directly modulate tumor cell
apoptosis through the regulation of specific target genes, as
comprehensively summarized in Table 2. A particularly significant
target is protein kinase C epsilon (PRKCE), a member of the protein
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kinase C (PKC) family, which has been strongly correlated with
unfavorable clinical outcomes in gallbladder carcinoma (GBC) (66).
Recent studies have established that PRKCE functions as an anti-
apoptotic regulator, inhibiting programmed cell death in malignant
cells and consequently promoting tumor progression (67). Zhang et al.
have elucidated that the overexpression of miR-205 specifically targets
and downregulates PRKCE and BCL-2 expression, while
simultaneously upregulating pro-apoptotic markers Bax and cleaved
caspase-3. This molecular mechanism significantly enhances the
induction of apoptosis in gallbladder carcinoma cells (68).
Furthermore, in the context of acute lymphoblastic leukemia (ALL),
miR-205 targets the PTK7 gene. Overexpression of miR-205 results in
decreased levels of PTK7 at both the protein and mRNA levels,
significantly increasing the apoptosis rate of ALL cells (69). YAP1 is
usually considered as a carcinogen in tumors, which can promote the
development of many cancers, including gastric cancer (70). Xian et al.
have demonstrated that miR-205 overexpression specifically targets
and downregulates YAP1 expression in gastric cancer cell lines SGC-
7901 and HGC-27. This regulatory mechanism leads to a significant
alteration in the expression of apoptosis-related proteins,
characterized by decreased BCL-2 levels and concomitant
upregulation of both caspase-3 and BAX, ultimately promoting
programmed cell death in gastric carcinoma cells (71). Studies have
shown that circRNAs can be used as a microRNA sponge to chelate
microRNA, thus affecting the expression of target mRNA and
dynamically regulating the process of mRNA translation (72). Xu
et al. demonstrated that hsa_circ_0001429 downregulates miR-205
expression in breast carcinoma through molecular sequestration,
consequently upregulating its target gene KDM4A and ultimately
suppressing apoptotic processes in malignant breast cells (73).
Similarly, circ. NOTCH3 interacts with miR-205 and targets KLF12,
leading to the downregulation of KLF12 expression in basal-like breast
cancer cells. This molecular interaction promotes tumor progression
and suppresses apoptotic processes (74).

CHN1, a GTPase-activating protein, has been identified as a
potential target of miR-205 through bioinformatics analysis. Liu
et al. demonstrated that CHN1 mRNA expression is significantly
elevated in cervical carcinoma tissues compared to adjacent non-
neoplastic tissues. Downregulation of miR-205 directly targets and
upregulates CHN1 expression, consequently suppressing apoptotic
processes in cervical cancer cells (23). Niu et al. further
demonstrated that miR-205 is regulated by the long non-coding
RNA HNRNPU-ASI in cervical cancer. They observed that elevated
HNRNPU-ASI levels inhibit miR-205 expression, leading to the
upregulation of its target gene AXIN2 and subsequent activation of
the Wnt/B-catenin signaling pathway. This signaling cascade is
known to promote apoptotic cell death and suppress cervical
cancer progression (75). Similarly, in colorectal carcinoma, miR-
205 exhibits oncogenic properties. Jin et al. demonstrated that the
long non-coding RNA ZEB1-AS]1 directly targets and downregulates
miR-205 in colon cancer cells. This molecular interaction results in
the upregulation of YAP1 expression and a subsequent increase in
apoptotic cell death in malignant colorectal cells (76).

In summary, miR-205 plays a critical role in regulating cellular
apoptosis through the modulation of multiple genes and signaling
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TABLE 2 miR-205 targets other genes to regulate tumor cell apoptosis.

references

Molecular target

suppressor PRKCE/, Baxt, cleaved Gallbladder ©3)
PP caspase-31,BCL-2| cancer

PTK7] ALL (69)

YAP1|, BCL-2|, cleaved
caspase-31, BaxT

Gastric
(70)
cancer

KDM4A | Breast cancer | (71)
KLF121 Breast cancer | (72)
Cervical
oncogene CHN11 ervica (23)
cancer
Cervical
AXLN2], Wnt/B-catenin erviea (75)
cancer
YAP1] Colon cancer | (76)

pathways (see Figure 3), exhibiting both oncogenic and tumor-
suppressive functions depending on the cellular context (see
Figure 4). Recent studies have identified novel apoptosis-related
signaling pathways, including those mediated by endoplasmic
reticulum stress. However, research specifically investigating miR-
205’s role in apoptotic regulation remains in its early stages and
requires further experimental validation. These findings highlight
the necessity for more comprehensive studies to elucidate the
precise molecular mechanisms and functional impacts of miR-
205.These molecular insights highlight miR-205’s therapeutic
potential, as discussed below.

4 The value in cancer treatment

Current therapeutic strategies for cancer, including radiotherapy
and chemotherapy, primarily exert their anti-tumor effects by
inducing DNA damage to trigger tumor cell death. However,

TABLE 3 therapeutic role of miR-205.

10.3389/fonc.2025.1532659

malignant cells with impaired apoptotic pathways frequently
develop resistance to these conventional treatments (77).
Therefore, exploring novel therapeutic strategies to induce tumor
cell apoptosis represents a critical approach for modulating specific
molecular pathways and advancing cancer treatment (in Table 3).

4.1 Additive effects with drugs

Pharmacological treatment remains a cornerstone of cancer
therapy, as numerous traditional medicinal compounds have
demonstrated the capacity to inhibit tumor migration and invasion
while inducing apoptosis, thereby suppressing cancer progression. To
date, various bioactive compounds derived from traditional medicines
have shown significant efficacy in clinical applications. DET, a
sesquiterpene lactone isolated from the Compositae plant
Elephantopus scaber L., promotes apoptosis in hepatocellular
carcinoma (HCC) cells through mechanisms involving oxidative
stress generation, NF-kB inhibition, and mitochondrial dysfunction
(78, 79). Ji et al. demonstrated that DET upregulates miR-205
expression in colon cancer cells, thereby promoting apoptotic cell
death. Mechanistically, DET enhances miR-205 expression in
malignant colon cells and significantly increases chemosensitivity
through the miR-205/BCL-2 signaling axis, resulting in potent
antitumor effects (39). Trastuzumab is a chemotherapeutic agent
currently widely used for the treatment of HER2-positive breast
cancer (80). In clinical trials, Whittle JR et al. confirmed the
downregulated expression of miR-205 in a patient-derived xenograft
model obtained from trastuzumab-resistant tumors (81). In order to
utilize miR-205 as a therapeutic tool in the treatment of breast cancer,
Piovan C et al. observed that higher miR-205 expression was
significantly associated with a better prognosis by analyzing 52
patients with HER2+ BC who were clinically treated with adjuvant
trastuzumab. In addition, their study demonstrated that restoring miR-
205 to reverse trastuzumab resistance could further improve the
therapeutic efficacy of trastuzumab by reducing cell proliferation and
blocking cell cycle progression (82).

Therapeutic Molecular

strategy target References

medication
Colorectal . o . . .

DET BCL-2 cancer stress generation, NF-xb inhibition, mitochondrial dysfunction (39)
Breast

Trastuzumab BCL-2) cancer reducing cell proliferation, blocking cell cycle (82)

Nano therapy

MNP prostatic reducing cell proliferation, blocking cell cycle reversed drug resistance, inhibited cell

Nanopreparations — cancer proliferation, migration, invasion and induced apoptosis (8)
prostatic

gold nanoparticles PKCe cancer Inhibit cell proliferation 91)
E-pancreatic

Micelles ZEB1, cadherin cancer Inhibit cell proliferation, invasion and migration (94)
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Molecular mechanism of miR-205 regulation of apoptosis in tumor cells.

4.2 Role in drug resistance of cancer cells

Many studies have shown that aberrant expression of miRNAs may
be associated with resistance to anticancer drugs. Resistance
mechanisms are often associated with changes in related proteins
such as PTEN, PDCD4, P-gp and MDRI. In turn, changes in
proteins may be directly related to mutations, aberrant expression or
translocation of miRNA coding genes, which may affect the expression
of related miRNAs, leading to alterations in the function of the target
mRNAs, thereby affecting the expression of the target proteins, and thus
silencing the target genes fundamentally (83). The 3 * UTR of mRNAs
contains binding sites for important translational regulatory elements,
including miRNAs, cytoplasmic polyadenylation elements (CPEs),
proteins and protein complexes. Deletions in the 3’ UTR of the target
mRNA also lead to deletion of the miRNA binding site, which results in
loss of miRNA function. to et al. demonstrated that in drug-resistant
SIMIS8O cells, there was an approximately 1500-bp deletion in the 3 ¢
UTR of the downstream target gene of ABCG2 mRNA of hsa- miR-
519¢, and thus the miRNA was unable to bind to the ABCG2 mRNA
binding, resulting in ABCG2 overexpression in drug-resistant tumor
cells (84). In addition, drug transport is an important part of drug
disposition. p-glycoprotein, multidrug resistance-associated protein
(MRP) and breast cancer resistance protein (BCRP) are closely
related to multidrug resistance. Breast cancer resistance protein
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(BCRP/ABCG2) is a molecular determinant of the pharmacokinetic
properties of many human drugs. pan et al. found that miR-328
negatively regulated BCRP expression, and inhibition of miR-328 led
to an increase in BCRP protein levels in MCF/MX100 cells, which
enhanced drug efflux, decreased cellular drug concentration, and
ultimately led to the drug resistance phenotype (85). Currently, most
studies on miRNAs related to cellular drug resistance have focused on
apoptosis and drug transporters. Once one of the molecules involved in
apoptosis is altered, a drug resistance phenotype may emerge. miRNA
down- or up-regulation affects the expression of drug transporters, drug
targets, or apoptosis- and cell cycle-related components, and thus affects
cellular drug resistance (86). For example, Bhatnagar N et al. found that
up-regulation of miR-205 and miR-31 down-regulated the downstream
target gene Bcl-w and promoted apoptosis levels, restoring the
sensitivity of prostate cancer cells to chemotherapy (87).

Therefore, miRNAs are expected to serve as biomarkers of
chemotherapy resistance.

4.3 miR-205-based nanotherapies
There are two main types of miRNA delivery vectors, viral and

non-viral delivery systems. Viral vectors are commonly used for
efficient transfer of various genes, oligonucleotides, siRNAs and
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Molecular mechanism of apoptosis regulation by miR-205 in different tumor cells.

miRNAs into various target cells or tissues/organs. Several viral
vectors such as adenoviral, retroviral and lentiviral vectors have
been used for preclinical and clinical evaluation. All of these vectors
are very effective in achieving higher delivery efficiencies, however,
their poor loading capacity, high toxicity levels and immunogenicity
induction limit their clinical translation (88, 89). Therefore, the
development of non-viral vectors has received much attention due
to the successful and stable delivery of miRNAs.
Nanotechnology-based delivery is a potential method for safely
delivering miRNAs and overcoming these associated barriers.
Nanotherapies were initially designed primarily to deliver anticancer
drugs. However, it has since been discovered that nanoparticles can also
successfully deliver nucleic acid molecules such as DNA, RNA, and
proteins/antibodies (90). Chauhan N et al. established a preparation
technique/methodology for the successful generation of MNP
nanopreparations. It was also demonstrated that the prepared MNP
nano-formulations containing miR-205 were safe for use in cellular
systems. In two prostate cancer cell lines, C4-2 and PC-3, this
preparation achieved excellent cellular internalization by endocytosis,
escaping endosomal and lysosomal degradation. In addition, they
combined this novel MNP miR-205 formulation with docetaxel. It was
found that upregulation of miR-205 successfully reversed drug resistance
and sensitized prostate cancer cells to docetaxel treatment. It also
significantly inhibited prostate cancer cell proliferation, migration,
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invasion and induced apoptosis (8). Another miR-205 nano-
formulation based on gold nanoparticles delivers miR-205 to prostate
cancer cells. This reduces protein kinase C Epsilon (PKCe) levels and
inhibits prostate cancer cell proliferation (91). A cationic copolymer
formulation (micelles) prepared by Mittal et al. This micellar formulation
has higher stability to miR-205 with particle sizes ranging from 62 nm to
122 nm. It was used to deliver miR-205 and gemcitabine in pancreatic
cancer to sensitize drug-resistant cells to drug treatment and inhibit
cancer cell proliferation. Meanwhile, the expression level of E-cadherin
was up-regulated and that of ZEBI was down-regulated, inhibiting
pancreatic cancer cell invasion and migration. In addition, as miR-205
reversed the drug resistance of these cells, in vivo results showed that the
tumor growth and weight were significantly reduced after treatment with
the gemcitabine-miR-205 complex formulation (92).

In summary, nano-formulation-based delivery of miR-205 is
expected to improve the targeted efficacy of cancer therapy.

5 The role of other regulated cell
death mechanisms

In addition to apoptosis, cell death can occur through various
other mechanisms, including autophagy, necroptosis, necrosis,
and ferroptosis.
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Autophagy, a regulated form of programmed cell death,
constitutes a cellular adaptive mechanism that relies on lysosomal
degradation to respond to adverse environmental stimuli (93).
Under normal physiological conditions, autophagy can degrade
aging organelles and unwanted protein, and recover its products for
energy sources and raw materials for anabolism (94). However,
dysregulated or excessive autophagy can induce a distinct form of
programmed cell death, known as autophagic cell death (95, 96).
Recent studies have shown that miR-205 can directly modulate the
expression of specific tumor suppressor genes and autophagy-
related factors, thereby regulating autophagic processes in cancer
cells (97, 98).

Zhuo et al. discovered that miR-205 is significantly upregulated
in endometrial carcinoma (PR) cells, where it suppresses PTEN
expression, leading to the activation of the AKT/mTOR signaling
pathway. This molecular cascade subsequently enhances the
conversion of autophagy marker LC3-I to LC3-II and upregulates
Beclinl protein levels, ultimately promoting autophagic cell death
in malignant cells (99). Furthermore, TP53INP1 directly interacts
with key autophagy-related molecules, including LC3 and Atg8
family proteins, thereby facilitating autophagic processes (100).
Wang et al. demonstrated that miR-205 upregulation directly
targets and suppresses TP53INP1 expression, thereby inhibiting
radiation-induced autophagic processes in prostate carcinoma
cells (98).

It is crucial to recognize that the interplay between autophagy
and apoptosis is highly complex. Indeed, these two cellular
processes share common regulatory stimuli and signaling
pathways, while exhibiting a degree of mutual inhibition under
specific conditions (101).

Beclinl, a critical component in autophagosome formation,
serves as a direct substrate for caspase-8. The interaction between
Beclinl and caspase-8 has been observed across multiple cell types
and plays a regulatory role in both apoptotic and autophagic
processes. For instance, studies have demonstrated that caspase-8-
mediated downregulation of Beclinl expression suppresses
autophagic activity during herpes simplex virus infection (102).
Furthermore, AKT plays a pivotal role in the cross-regulation of
apoptotic and autophagic pathways. Diao et al. demonstrated that
AKT phosphorylation not only enhances autophagic activity but
also downregulates the expression of key apoptosis-related factors,
including Bax and caspases (103).

These findings highlight the complex interplay between miR-
205, apoptotic pathways, and autophagic processes, establishing a
robust foundation aimed at elucidating their molecular interactions.

Furthermore, in recent years, the concept of “PANoptosis” has
emerged as a significant research focus. PANoptosis represents a
dynamic form of programmed cell death that integrates molecular
features of pyroptosis, apoptosis, and necroptosis (104). PANoptosis
plays a critical role in the pathogenesis and progression of diverse
diseases, including infectious diseases, malignancies,
neurodegenerative disorders, and inflammatory conditions (105).
Studies have demonstrated that pyroptosis not only suppresses
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tumor cell proliferation but also establishes a tumor-promoting
microenvironment, ultimately facilitating cancer progression (106).
Both apoptosis and necroptosis are recognized as essential anti-
cancer mechanisms (107). As a higher-order version of these three
death pathways, PANoptosis likely plays a crucial role in therapeutic
strategies for disease management. Zhang et al. found that
upregulating miR-18a expression in MC3T3-E1 cells significantly
suppressed the protein levels of hypoxia-inducible factor-1o. (HIF1-
o) and NLRP3, thereby promoting PANoptosis of osteoblasts in
response to TNF-o induction (108). Furthermore, Wang et al.
analyzed kidney clear cell carcinoma (ccRCC) samples from The
Cancer Genome Atlas (TCGA) database and three Gene Expression
Omnibus (GEO) datasets. They identified seven upregulated
miRNAs (hsa-miR-155-5p, hsa-miR-15a-5p, hsa-miR-16-5p, hsa-
miR-181a-5p, hsa-miR-21-5p, hsa-miR-210-3p, and hsa-miR-223-
3p) and two downregulated miRNAs (hsa-miR-141-3p and hsa-miR-
200a-5p), which were significantly associated with PANoptosis-
related prognostic features. These findings demonstrate that
miRNAs are associated with PANoptosis in tumor cells and may
represent a novel therapeutic strategy for clear cell renal cell
carcinoma (ccRCC) (109). Currently, investigations into the
relationship between miRNAs and PANoptosis remain in the
preliminary stages. Although the potential link between miR-205
and PANoptosis in tumor cells has not yet been elucidated, it
represents a promising area for future research, potentially leading
to the development of novel therapeutic strategies for
cancer treatment.

6 Conclusions

miRNAs have significantly advanced our understanding of
diverse biological processes in organisms. miRNAs play pivotal
roles in nearly all biological pathways and are intricately linked to
tumor development and progression. Consequently, miRNAs have
emerged as promising biomarkers and are being actively developed as
novel tools for cancer diagnosis, prognosis, and therapeutic
intervention. Recent studies have demonstrated that miR-205
regulates the cell cycle, promotes cellular differentiation, induces
apoptosis, and modulates tumorigenesis and cancer progression.
miR-205 has been identified as a critical biomarker in oncology,
underscoring its clinical significance. Additionally, miR-205 serves as
a direct target for certain pharmacological agents, offering potential
therapeutic benefits. It can also be used as a direct target for certain
drugs to treat diseases. Some studies have proved that miR-205 can be
used in combination with some chemotherapeutic drugs to play a role
in the treatment of cancer. It can also correct the resistance of many
drug-resistant cells to drugs, which is of great significance for the
clinical treatment of various cancers. Existing evidence indicates that
miR-205 exhibits diverse roles across different cancer types, either
promoting or inhibiting apoptosis depending on the specific cancer
type and cellular context. The complex regulatory functions of miR-
205 and its multifaceted biological effects necessitate further
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investigation. These findings highlight the potential of targeting miR-
205 expression as a promising strategy for cancer therapy.

Apoptosis is a fundamental regulatory mechanism essential for
maintaining organismal homeostasis and preventing aberrant cell
proliferation. Dysregulation of apoptotic pathways contributes to the
pathogenesis of various diseases, including cancer. Extensive research
has revealed that miR-205 modulates apoptosis-related signaling
pathways and targets key genes to either promote or inhibit apoptosis,
thereby influencing cancer progression. The ability of miR-205 to induce
apoptosis in malignant cells has significant implications for advancing
medical and healthcare practices, making it a rational and increasingly
utilized therapeutic target. miR-205 has the potential to enhance the
efficacy of chemotherapeutic agents; however, comprehensive clinical
trials are required to validate its therapeutic potential.

The regulation of apoptosis through miRNA-mediated
mechanisms represents a critical approach in cancer treatment.
Although significant research has been conducted on the role of
miRNAs in apoptosis regulation across various cancers, several
unresolved issues remain. For instance: (1) How can drugs that
induce apoptosis via miRNA modulation be optimally selected for
clinical application? (2) Do these therapeutic agents alter
intracellular miRNA levels upon administration, and could they
potentially induce adverse effects or secondary diseases? Despite
these challenges, miRNA-mediated apoptosis induction holds
considerable promise as a future strategy for cancer therapy.

miR-205 plays crucial roles in cancer progression and apoptosis
regulation, yet its clinical translation faces significant challenges. First,
miR-205 displays distinct functional duality across cancer types: while
acting as a tumor suppressor in prostate cancer, it exhibits oncogenic
properties in specific lung cancer subtypes. This context-dependent
functionality underscores the importance of tumor microenvironment
in determining miR-205’s actions, highlighting the need for
comprehensive characterization of its tissue-specific regulatory
networks to develop precise therapeutic strategies.

The major obstacle in miR-205-based therapy involves delivery
system optimization. Two critical issues must be addressed: (1)
achieving tumor-specific delivery of miR-205 modulators (mimics
or inhibitors), and (2) improving their in vivo stability. Future
research directions should include: (1) Systematic identification of
novel miR-205 targets in emerging cell death pathways (e.g.,
pyroptosis, cuproptosis) using organoid-Al integration platforms.
(2) Comprehensive mapping of miR-205 regulatory networks
through single-cell sequencing and CRISPR screening. (3)
Development of advanced delivery platforms (e.g., exotic-based or
nanomaterial systems) to enhance tumor targeting.

Currently, miR-205 research stands at the critical juncture between
basic science and clinical implementation. Interdisciplinary integration
of molecular biology, bioinformatics, materials science, and clinical
research will be essential to overcome current limitations, ultimately
transforming miR-205 into a viable precision oncology tool while
advancing our fundamental understanding of cell death regulation.
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