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MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that play a

pivotal role in post-transcriptional gene regulation. The dysregulation of miRNAs

has been widely implicated in the pathogenesis of diverse human cancers.

Among these, miR-205 has attracted considerable attention owing to its

aberrant expression patterns in multiple cancer types, where it regulates tumor

initiation and progression via diverse molecular mechanisms. Apoptosis, a

fundamental biological process essential for cellular homeostasis, represents a

tightly regulated form of programmed cell death that significantly influences

cancer development under both physiological and pathological conditions. In

malignant cells, miR-205 exhibits a dual regulatory role by modulating

apoptosis-related signaling pathways and their downstream target genes,

thereby displaying both oncogenic and tumor-suppressive functions. This

comprehensive review systematically explores recent advances in

understanding the functional role of miR-205 in apoptosis regulation across a

spectrum of human malignancies and highlights its potential therapeutic

implications for future cancer therapies.
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1 Introduction

The global burden of cancer continues to escalate, with both incidence and mortality

rates demonstrating a persistent upward trajectory, underscoring the profound and

growing impact of neoplastic diseases on public health systems worldwide (1), A pivotal

determinant underlying this concerning phenomenon is the ability of malignant cells to

evade programmed cell death through diverse molecular mechanisms, thereby facilitating

tumor progression and therapeutic resistance (2). Apoptosis, a genetically programmed

form of cell death, constitutes a critical biological mechanism that suppresses the

proliferation of damaged or aberrant cells. The evasion of this regulatory process by

malignant cells represents a fundamental hallmark of cancer, contributing to tumor

progression and conferring resistance to therapeutic interventions. Within this context,

there is increasing recognition that therapeutic strategies targeting the induction of

programmed cell death through precise modulation of apoptotic pathways may
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constitute a promising and potentially transformative approach in

oncology. However, despite this therapeutic potential, the current

understanding of the molecular mechanisms underlying apoptotic

regulation in neoplastic cells remains fragmentary and incomplete,

necessitating further comprehensive investigation (3). The ultimate

objectives are to enhance overall survival rates and improve the

quality of life for cancer patients. Extensive research efforts have

been devoted to elucidating the regulatory relationships between

microRNAs (miRNAs) and apoptotic pathways in neoplastic cells.

miRNAs represent a class of small, evolutionarily conserved non-

coding RNA molecules, typically comprising 18 to 24 nucleotides in

length. These regulatory molecules exert their biological functions

through sequence-specific interactions with the 3’-untranslated

regions (3’-UTRs) of target messenger RNAs (mRNAs), thereby

modulating post-transcriptional gene expression (4, 5). A

significant proportion of miRNAs are fundamentally implicated

in both genetic and epigenetic alterations that influence cancer-

associated gene networks. Dysregulation of miRNA expression

profiles can lead to developmental perturbations and has been

demonstrated to play a pivotal role in oncogenic transformation

and tumorigenic processes (6). MicroRNAs exert their regulatory

influence on oncogene function across multiple pivotal stages of

tumorigenesis, encompassing tumor initiation, progression, and

metastatic dissemination, through precise targeting and

modulation of cancer-associated genes (7). In this comprehensive

review, we systematically examine the functional roles and

molecular mechanisms through which miR-205 regulates

apoptotic processes in malignant cells across diverse cancer types

(8). Furthermore, we critically evaluate its clinical significance and

potential therapeutic value in tumor regulation, while establishing a

theoretical framework to facilitate its translation into clinical

applications for cancer prevention and treatment strategies.
2 Overview of miR-205

miR-205 was initially characterized through comparative

genomic analyses of murine and Fugu rubripes sequences.

Subsequent investigations have further identified its conserved

expression patterns in zebrafish (Danio rerio) and human genomes,

demonstrating its evolutionary significance across vertebrate species

(9–11). miR-205 is genomically located at chromosome 1 (1q32.2) in

humans. This microRNA is characterized by a highly conserved core

sequence (5’-UCCUUUCAUUCCACCGGAGUCUG-3’) that is

essential for its functional activity and specific molecular

interactions with target mRNAs (12).
2.1 Physiological function of miR-205

miR-205 has been demonstrated to play a critical role in

numerous essential physiological processes (Figure 1). Specifically,

it regulates skin stem cell differentiation, is indispensable for

epithelial cell homeostasis, inhibits epithelial-mesenchymal

transition (EMT), and modulates cellular proliferation and
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differentiation processes. Wang et al. demonstrated that in miR-

205 knockout skin stem cells, the expression levels of negative

regulators of the PI3K-AKT pathway, including Frk, Inpp4b,

Inppl1, and Phlda3, were significantly upregulated. This led to the

inhibition of PI3K signaling and a marked downregulation of

phosphorylated AKT (p-AKT) levels, resulting in the premature

termination of skin stem cell differentiation (13). Furthermore,

miR-205 has been shown to facilitate cutaneous wound healing

through the promotion of keratinocyte migration, thereby

enhancing the re-epithelialization process (14). Yu et al. further

demonstrated that elevated expression of miR-205 results in the

downregulation of lipid phosphatase SHIP2, consequently

activating the PI3K-Akt signaling pathway in keratinocytes. This

pathway activation is essential for inhibiting apoptotic processes

and plays a critical role in promoting efficient wound healing (15).

Basal cells are recognized as progenitor cells responsible for

epithelial cell generation. miR-205 exhibits high expression levels

in prostate basal cells, where it mediates the deposition of laminin-

332 and its cognate receptor integrin-b4 within the basement

membrane. This molecular mechanism is crucial for maintaining

prostate basal cell homeostasis and preserving the structural

integrity and physiological function of the prostate gland (16).

The investigation conducted by Teta et al. has revealed that miR-

205 exhibits prominent expression in epidermal keratinocytes while

being conspicuously absent in follicular cells, demonstrating its

tissue-specific expression pattern in epithelial compartments (17).

E-cadherin, a critical transmembrane protein essential for

maintaining intercellular adhesion in epithelial tissues, is

negatively regulated by the transcriptional repressors ZEB1 and

ZEB2. Emerging evidence demonstrates that miR-205 directly

targets and downregulates ZEB1 and ZEB2, thereby upregulating

E-cadherin expression and effectively inhibiting epithelial-

mesenchymal transition (EMT) in epithelial cells. These findings

underscore the pivotal role of miR-205 in modulating E-cadherin-

mediated cell adhesion and maintaining epithelial phenotype

integrity (18, 19). Furthermore, miR-205 has been demonstrated

to play a significant regulatory role in embryonic developmental

processes. Elevated expression levels of miR-205 have been shown

to induce the upregulation of multiple members of the calmodulin

family (including Cdh4, Cdh5, Cdh6, and Cdh11) as well as various

genes associated with cell adhesion. This upregulation subsequently

activates the b-catenin/Tcf-Lef signaling pathway, which is critically
involved in extraembryonic endoderm formation and

spermatogenic processes (20). In addition, miR-205 has been

identified as a regulator of multiple key molecular targets that are

essential for modulating cellular proliferation, differentiation, and

migratory processes (21).
2.2 miR-205’s dual role in cancer

Bioinformatics analysis utilizing the TCGA database has

revealed significant differential expression patterns of miR-205

across various cancer types compared to adjacent normal tissues

(see Figure 2). miR-205 is significantly upregulated in multiple
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malignancies, including non-small cell lung cancer, bladder

carcinoma, esophageal adenocarcinoma, ovarian carcinoma,

nasopharyngeal carcinoma, endometrioid adenocarcinoma, and

head and neck squamous cell carcinomas, where it functions as

an oncogenic driver promoting tumorigenic processes. In contrast,

miR-205 expression is markedly downregulated in other cancer

types, such as breast carcinoma, renal cell carcinoma, prostate

adenocarcinoma, and cutaneous melanoma, where it appears to

exert tumor-suppressive functions (8, 12). Even in the same cancer,

the role of miR-205 may vary depending on the subtype. For

example, in triple-negative breast cancer, miR-205 usually plays a

tumor suppressor role, whereas in hormone receptor-positive breast

cancer, its role may be more complex (22). In the molecular context,

the role of miR-205 is highly dependent on the expression patterns

of its target genes and regulated signaling pathways in different

cancers. For example, in breast cancer, miR-205 inhibits EMT by

specifically targeting ZEB1 and ZEB2, thereby exerting tumor

suppressor effects (18); Whereas, in cervical cancer cells, up-

regulation of miR-205 can significantly target and inhibit CHN1

expression levels, thereby promoting tumor cell proliferation (23).
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In addition, miR-205 may also regulate tumors by modulating the

tumor microenvironment. For example, miR-205 was significantly

induced by hypoxia in cervical and lung cancer cells, while

significant suppression of ASPP2 was observed. It was confirmed

by further studies that the hypoxia-induced ASPP2 inhibition was

mainly attributed to miR-205 elevated (24). miR-205 may also

influence tumor progression by regulating immune cell functions

(immune microenvironment) such as T cells and macrophages. For

example, Fan et al. found in non-small cell lung cancer (NSCLC)

patients undergoing radiotherapy that radiotherapy upregulated the

expression level of miR-205, which promotes autophagy in lung

cancer cells, maintains the survival of memory T-cells, and

promotes the self-renewal of B1 cells, which facilitates the death

of tumor cells and enhances the patient’s anti-tumor immunity

(25). In addition, miR-205 expression may also be tightly influenced

by epigenetic regulation. miR-205 expression is regulated by DNA

methylation and histone modifications. For example, miR-205 is

often simultaneously silenced and acquires DNA hypermethylation

in muscle-invasive bladder tumors and low-differentiated bladder

cell lines, regulating bladder cancer cell proliferation and
FIGURE 1

Physiological role of miR-205.
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differentiation (26). Similarly, Kim ES et al. showed that ionizing

radiation (IR) enhances the hypermethylation of miR-205-5p CpG

islands through activation of Src in lung or breast cancers, leading

to a decrease in miR-205-5p expression, which in turn stimulates

Bcl-w, mediated proliferation and metastasis of human lung or

breast cancer cells (27).

In summary, the dual role of miR-205 may depend specifically

on various factors such as cancer type, molecular background and

tumor microenvironment. In-depth exploration of whether miR-

205 acts as an angel or a devil in different cancers is of great

significance for the future research of miR-205.
3 miR-205 regulates the mechanism
of apoptosis in tumor cells

Apoptosis represents a highly regulated and genetically

programmed cellular process that mediates controlled cell death

under both physiological homeostasis and pathological conditions

(28). It is a key mechanism for maintaining normal cellular

homeostasis by removing senescent and diseased cells, thereby

supporting overall organismal health and normal cellular

functions (29, 30). When cells become cancerous, they acquire the

ability to evade apoptosis, which promotes their uncontrolled

development. This ability to evade apoptosis has now become a

recognized “hallmark of cancer” (2).

Apoptosis is predominantly mediated through two well-

characterized molecular pathways: the intrinsic pathway and the

extrinsic pathway. The intrinsic pathway, alternatively referred to as

the mitochondrial-mediated pathway, is initiated by intracellular

stimuli including but not limited to growth factor deprivation,

genotoxic stress, and endoplasmic reticulum stress (31). The

critical event in the intrinsic apoptotic pathway is mitochondrial
Frontiers in Oncology 04
outer membrane permeabilization (MOMP). Extensive research has

established that BCL-2 family proteins, comprising both pro-

apoptotic and anti-apoptotic members, play a crucial regulatory

role in tumor progression through their modulation of the

mitochondrial apoptotic pathway. This regulatory mechanism is

mediated primarily through the controlled release of cytochrome c

and subsequent activation of caspase cascades (32). In contrast, the

extrinsic apoptotic pathway is initiated through specific ligand-

receptor interactions, where death ligands bind to their cognate

transmembrane death receptors, triggering downstream apoptotic

signaling cascades (33). Dysregulation of death receptor-mediated

signaling in the extrinsic apoptotic pathway contributes to

tumorigenesis by promoting malignant cell survival and

proliferation (34). Both apoptotic pathways converge on the

activation of caspase cascades, which execute the biochemical and

morphological changes characteristic of programmed cell death

(35). Based on these findings, it is hypothesized that the regulation

of apoptotic processes may hold significant potential for the

development of novel therapeutic strategies in cancer treatment.

Analysis of the molecular mechanisms by which miR-205 regulates

tumors reveals that it can inhibit cancer progression by controlling

the apoptotic processes in tumor cells.
3.1 Regulation of endogenous apoptotic
pathways by miR-205

Accumulating evidence from numerous studies has

demonstrated that miR-205 can directly modulate BCL-2

expression, thereby regulating apoptotic processes in multiple

cancer types. Specifically, in prostate cancer cells, laryngeal

squamous cell carcinoma (LSCC), and adrenocortical carcinoma

(ACC) SW-13 cells, miR-205 upregulation has been shown to
FIGURE 2

miR-205 expression in The Cancer Genome Atlas (TCGA) pan-cancer (http://bioinfo.jialab-ucr.org/CancerMIRNome/).
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significantly reduce both BCL-2 mRNA and protein expression

levels. This downregulation subsequently enhances apoptotic

activity and inhibits cancer cell proliferation and metastatic

potential (36–38). Furthermore, deoxyelephantopin (DET), a

bioactive sesquiterpene lactone isolated from Elephantopus scaber

(Asteraceae), has been extensively characterized for its potent anti-

inflammatory and anti-neoplastic properties. This phytochemical

compound has emerged as a promising therapeutic candidate for

the treatment of various pathological conditions, particularly due to

its demonstrated capacity to inhibit proliferation across multiple

cancer cell lines. Notably, a seminal study conducted by Ji et al.

revealed that DET induces miR-205 upregulation, which

subsequently targets and downregulates BCL-2 expression in

colorectal carcinoma cells. This molecular mechanism promotes

apoptotic cell death, suggesting DET’s potential as a novel

therapeutic agent for clinical oncology applications (39). Qiu et al.

demonstrated in their investigation of breast cancer MCF-7 cells

that miR-205 overexpression significantly enhances cleaved

Caspase-3 expression while concurrently reducing the BCL-2/Bax

ratio, thereby inducing apoptotic cell death in malignant cells (40).

Notably, Myeloid cell leukemia-1 (MCL-1), a pro-survival

member of the BCL-2 protein family, serves as a critical anti-

apoptotic regulator in cellular homeostasis (41). In nasopharyngeal

carcinoma cells, transfection with miR-205-5p mimics significantly

upregulated the protein expression of both BCL-2 and MCL-1, while

concurrently downregulating the expression of pro-apoptotic proteins

Bax and Bak. Apoptotic activity is significantly suppressed in

nasopharyngeal carcinoma cells (42). ZAROGOULIDIS P et al.

demonstrated that miR-205 overexpression in lung adenocarcinoma

cell lines A549 and H1975 significantly inhibits Caspase-3 activation

and Bax expression, while concurrently upregulating MCL-1 and

Survivin protein levels, ultimately resulting in the suppression of

apoptotic pathways in malignant pulmonary cells (43).

In summary, miR-205 directly targets and modulates the

expression of the anti-apoptotic protein BCL-2 in multiple cancer

types, thereby regulating intrinsic apoptotic pathways (in Table 1).
3.2 Regulation of exogenous apoptotic
pathways by miR-205

In tumor cells, miR-205 primarily modulates extrinsic apoptosis

through the TNFR1/TNF receptor signaling pathway. TNF-a, a
transmembrane protein, activates the NF-kB pathway upon binding

to its receptor TNF-R1, thereby inducing the expression of TIPE

family proteins, including TNFAIP8 and TIPE2 (44). Tumor

necrosis factor alpha-induced protein 8 (TNFAIP8) functions as

an anti-apoptotic regulator in malignant cell (45). Yang et al.

demonstrated that miR-205 overexpression in thyroid carcinoma

cells specifically downregulates TNFAIP8 expression while

upregulating the pro-apoptotic protein p53, ultimately promoting

apoptotic cell death in thyroid cancer cells (46). Similarly, Li et al.

demonstrated that miR-205 upregulation in lymphoma cells

specifically targets and downregulates TNFAIP8 expression,

consequently inducing apoptotic cell death in conjunctival
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mucosa-associated lymphoid tissue (MALT) lymphoma (47). The

TNF-R1 receptor itself possesses a death domain that, under certain

conditions, can activate caspase cascades and induce apoptosis (48).

Tumor necrosis factor receptor-associated factor-2 (TRAF2), which

normally acts in concert with other members of the TRAF protein

family, is involved in inhibiting the activation of the NF-kB
signaling pathway and stimulating the TNFR response to various

mitogen-activated protein (MAP) kinase cascades (49). TRAF2 is

established as a critical regulatory component in the activation of

the NF-kB signaling pathway (50). In breast carcinoma cells, miR-

205 upregulation specifically targets TRAF2, leading to significant

downregulation of both TRAF2 mRNA and protein expression

levels. This suppression of TRAF2 subsequently inhibits NF-kB
signaling pathway activation, ultimately resulting in the attenuation

of apoptotic processes (51).
3.3 Regulation of other apoptotic factors

3.3.1 PTEN/PI3K-Akt pathway
miR-205 has been demonstrated to regulate the expression of

multiple oncogenes and tumor suppressor genes, including but not

limited to ZEB1, PTEN, ErbB3, and VEGF-A, through target gene

modulation (21), which regulates the PI3K-AKT signaling pathway,

thereby mediating the occurrence of cellular apoptosis. In cancer,

the PI3K-Akt signaling pathway is often found to be over-activated.

This over-activation results in increased cell proliferation, a

reduction in apoptosis, and a greater propensity for tumor

formation and metastasis (52).

ErbB3, a member of the epidermal growth factor receptor

(EGFR) family, functions as a potent oncogenic driver when

overexpressed or genetically altered, activating downstream

tumorigenic signaling cascades (53). Li and colleagues

demonstrated that miR-205 upregulation in prostate carcinoma

cell lines specifically targets and suppresses ErbB3 expression,

consequently attenuating PI3K-Akt signaling pathway activity.

This molecular inhibition results in significant downregulation of

BCL-2 expression, concomitant upregulation of Bax and cleaved

caspase-3/caspase-9 levels, and ultimately enhances apoptotic cell

death in malignant prostate cells (54). VEGF-A, a critical regulator

of angiogenesis, plays a pivotal role in promoting tumor-associated

vascularization and interacts with PI3K to activate Akt signaling,

consequently suppressing apoptotic processes in malignant cells

(55, 56). In renal carcinoma cells, miR-205 overexpression results in

the significant downregulation of both VEGF-A and PTEN

expression. This molecular suppression inhibits PI3K-Akt

signaling pathway activation and subsequently induces apoptotic

cell death (57, 58). P-glycoprotein (P-gp) represents a membrane-

associated drug efflux transporter that is critically involved in

mediating multidrug resistance (MDR) phenotypes in cancer cells

(59). Li et al. demonstrated that miR-205 overexpression in

doxorubicin-resistant hepatocellular carcinoma cells significantly

upregulated the expression of its target gene PTEN. This molecular

alteration inhibited PI3K-AKT signaling pathway activity, leading

to subsequent downregulation of P-gp expression. Consequently,
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https://doi.org/10.3389/fonc.2025.1532659
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chai et al. 10.3389/fonc.2025.1532659
these molecular changes restored chemosensitivity to doxorubicin

and induced apoptotic cell death in the previously resistant

malignant cells (60).

In lung, ovarian, gastric, and nasopharyngeal carcinomas, miR-

205 functions as an oncogenic regulator. Comprehensive statistical

analyses demonstrate that in lung cancer (LC) tissues, miR-205

expression is significantly upregulated, while PTEN expression is

concurrently downregulated. miR-205-mediated suppression of

PTEN results in the marked upregulation of PI3K and

phosphorylated AKT (p-AKT) expression levels, ultimately

leading to the attenuation of apoptotic processes in malignant

pulmonary cells (61). miR-205 overexpression in ovarian or

gastric carcinoma cells specifically targets and downregulates

PTEN expression, leading to the subsequent upregulation of

phosphorylated AKT (p-AKT) levels and ultimately resulting in

the suppression of apoptotic cell death (62, 63). Mao et al.

demonstrated that transfection with miR-205 mimics in

nasopharyngeal carcinoma CNE2 cells significantly upregulated

AKT expression while concurrently downregulating PTEN levels,

ultimately resulting in the attenuation of apoptotic processes in

malignant nasopharyngeal cells (64). Xin et al. identified that the

long non-coding RNA LA16c-313D11.11 directly interacts with and

suppresses miR-205 activity in endometrial carcinoma,

consequently upregulating its target gene PTEN. This molecular

interaction indirectly inhibits PI3K-AKT signaling pathway

activation and promotes apoptotic cell death in malignant

endometrial cells (65).
3.3.2 Other genes
miR-205 has been demonstrated to directly modulate tumor cell

apoptosis through the regulation of specific target genes, as

comprehensively summarized in Table 2. A particularly significant

target is protein kinase C epsilon (PRKCE), a member of the protein
Frontiers in Oncology 06
kinase C (PKC) family, which has been strongly correlated with

unfavorable clinical outcomes in gallbladder carcinoma (GBC) (66).

Recent studies have established that PRKCE functions as an anti-

apoptotic regulator, inhibiting programmed cell death in malignant

cells and consequently promoting tumor progression (67). Zhang et al.

have elucidated that the overexpression of miR-205 specifically targets

and downregulates PRKCE and BCL-2 expression, while

simultaneously upregulating pro-apoptotic markers Bax and cleaved

caspase-3. This molecular mechanism significantly enhances the

induction of apoptosis in gallbladder carcinoma cells (68).

Furthermore, in the context of acute lymphoblastic leukemia (ALL),

miR-205 targets the PTK7 gene. Overexpression of miR-205 results in

decreased levels of PTK7 at both the protein and mRNA levels,

significantly increasing the apoptosis rate of ALL cells (69). YAP1 is

usually considered as a carcinogen in tumors, which can promote the

development of many cancers, including gastric cancer (70). Xian et al.

have demonstrated that miR-205 overexpression specifically targets

and downregulates YAP1 expression in gastric cancer cell lines SGC-

7901 and HGC-27. This regulatory mechanism leads to a significant

alteration in the expression of apoptosis-related proteins,

characterized by decreased BCL-2 levels and concomitant

upregulation of both caspase-3 and BAX, ultimately promoting

programmed cell death in gastric carcinoma cells (71). Studies have

shown that circRNAs can be used as a microRNA sponge to chelate

microRNA, thus affecting the expression of target mRNA and

dynamically regulating the process of mRNA translation (72). Xu

et al. demonstrated that hsa_circ_0001429 downregulates miR-205

expression in breast carcinoma through molecular sequestration,

consequently upregulating its target gene KDM4A and ultimately

suppressing apoptotic processes in malignant breast cells (73).

Similarly, circ_NOTCH3 interacts with miR-205 and targets KLF12,

leading to the downregulation of KLF12 expression in basal-like breast

cancer cells. This molecular interaction promotes tumor progression

and suppresses apoptotic processes (74).

CHN1, a GTPase-activating protein, has been identified as a

potential target of miR-205 through bioinformatics analysis. Liu

et al. demonstrated that CHN1 mRNA expression is significantly

elevated in cervical carcinoma tissues compared to adjacent non-

neoplastic tissues. Downregulation of miR-205 directly targets and

upregulates CHN1 expression, consequently suppressing apoptotic

processes in cervical cancer cells (23). Niu et al. further

demonstrated that miR-205 is regulated by the long non-coding

RNA HNRNPU-AS1 in cervical cancer. They observed that elevated

HNRNPU-AS1 levels inhibit miR-205 expression, leading to the

upregulation of its target gene AXIN2 and subsequent activation of

the Wnt/b-catenin signaling pathway. This signaling cascade is

known to promote apoptotic cell death and suppress cervical

cancer progression (75). Similarly, in colorectal carcinoma, miR-

205 exhibits oncogenic properties. Jin et al. demonstrated that the

long non-coding RNA ZEB1-AS1 directly targets and downregulates

miR-205 in colon cancer cells. This molecular interaction results in

the upregulation of YAP1 expression and a subsequent increase in

apoptotic cell death in malignant colorectal cells (76).

In summary, miR-205 plays a critical role in regulating cellular

apoptosis through the modulation of multiple genes and signaling
TABLE 1 miR-205 regulates tumor cell apoptosis.

Types Molecular target Tumor type References

Endogenous apoptotic

suppressor BCL-2↓ Prostate cancer (36)

BCL-2↓ LSCC (37)

BCL-2↓ ACC (38)

BCL-2↓ Colorectal cancer (39)

BCL-2↓ Breast cancer (40)

oncogene
BCL2↑,MCL-1↑,Bax↓,
BaK↓

Nasopharyngeal
cancer

(42)

MCL-1↑, Survivin↑,
Caspase-3↓, Bax↓

Lung cancer (43)

Exogenous apoptotic

suppressor TNFAIP8↓,P53↑ Thyroid cancer (46)

TNFAIP8↓ Lymphoma (47)

TRAF2↓, NF-kB↓ Breast cancer (51)
frontiersin.org

https://doi.org/10.3389/fonc.2025.1532659
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chai et al. 10.3389/fonc.2025.1532659
pathways (see Figure 3), exhibiting both oncogenic and tumor-

suppressive functions depending on the cellular context (see

Figure 4). Recent studies have identified novel apoptosis-related

signaling pathways, including those mediated by endoplasmic

reticulum stress. However, research specifically investigating miR-

205’s role in apoptotic regulation remains in its early stages and

requires further experimental validation. These findings highlight

the necessity for more comprehensive studies to elucidate the

precise molecular mechanisms and functional impacts of miR-

205.These molecular insights highlight miR-205’s therapeutic

potential, as discussed below.
4 The value in cancer treatment

Current therapeutic strategies for cancer, including radiotherapy

and chemotherapy, primarily exert their anti-tumor effects by

inducing DNA damage to trigger tumor cell death. However,
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malignant cells with impaired apoptotic pathways frequently

develop resistance to these conventional treatments (77).

Therefore, exploring novel therapeutic strategies to induce tumor

cell apoptosis represents a critical approach for modulating specific

molecular pathways and advancing cancer treatment (in Table 3).
4.1 Additive effects with drugs

Pharmacological treatment remains a cornerstone of cancer

therapy, as numerous traditional medicinal compounds have

demonstrated the capacity to inhibit tumor migration and invasion

while inducing apoptosis, thereby suppressing cancer progression. To

date, various bioactive compounds derived from traditional medicines

have shown significant efficacy in clinical applications. DET, a

sesquiterpene lactone isolated from the Compositae plant

Elephantopus scaber L., promotes apoptosis in hepatocellular

carcinoma (HCC) cells through mechanisms involving oxidative

stress generation, NF-kB inhibition, and mitochondrial dysfunction

(78, 79). Ji et al. demonstrated that DET upregulates miR-205

expression in colon cancer cells, thereby promoting apoptotic cell

death. Mechanistically, DET enhances miR-205 expression in

malignant colon cells and significantly increases chemosensitivity

through the miR-205/BCL-2 signaling axis, resulting in potent

antitumor effects (39). Trastuzumab is a chemotherapeutic agent

currently widely used for the treatment of HER2-positive breast

cancer (80). In clinical trials, Whittle JR et al. confirmed the

downregulated expression of miR-205 in a patient-derived xenograft

model obtained from trastuzumab-resistant tumors (81). In order to

utilize miR-205 as a therapeutic tool in the treatment of breast cancer,

Piovan C et al. observed that higher miR-205 expression was

significantly associated with a better prognosis by analyzing 52

patients with HER2+ BC who were clinically treated with adjuvant

trastuzumab. In addition, their study demonstrated that restoring miR-

205 to reverse trastuzumab resistance could further improve the

therapeutic efficacy of trastuzumab by reducing cell proliferation and

blocking cell cycle progression (82).
TABLE 2 miR-205 targets other genes to regulate tumor cell apoptosis.

Types Molecular target
Tumor
type

references

suppressor
PRKCE↓, Bax↑, cleaved
caspase-3↑,BCL-2↓

Gallbladder
cancer

(68)

PTK7↓ ALL (69)

YAP1↓, BCL-2↓, cleaved
caspase-3↑, Bax↑

Gastric
cancer

(70)

KDM4A↓ Breast cancer (71)

KLF12↑ Breast cancer (72)

oncogene CHN1↑
Cervical
cancer

(23)

AXLN2↓, Wnt/b-catenin↓
Cervical
cancer

(75)

YAP1↓ Colon cancer (76)
TABLE 3 therapeutic role of miR-205.

Therapeutic
strategy

Molecular
target

Tumor
type References

medication

DET BCL-2
Colorectal
cancer

stress generation, NF-kb inhibition, mitochondrial dysfunction (39)

Trastuzumab BCL-2↓
Breast
cancer reducing cell proliferation, blocking cell cycle (82)

Nano therapy

MNP
Nanopreparations ——

prostatic
cancer

reducing cell proliferation, blocking cell cycle reversed drug resistance, inhibited cell
proliferation, migration, invasion and induced apoptosis (8)

gold nanoparticles PKCe
prostatic
cancer Inhibit cell proliferation (91)

Micelles ZEB1, cadherin
E-pancreatic
cancer Inhibit cell proliferation, invasion and migration (94)
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4.2 Role in drug resistance of cancer cells

Many studies have shown that aberrant expression of miRNAsmay

be associated with resistance to anticancer drugs. Resistance

mechanisms are often associated with changes in related proteins

such as PTEN, PDCD4, P-gp and MDR1. In turn, changes in

proteins may be directly related to mutations, aberrant expression or

translocation of miRNA coding genes, which may affect the expression

of related miRNAs, leading to alterations in the function of the target

mRNAs, thereby affecting the expression of the target proteins, and thus

silencing the target genes fundamentally (83). The 3 ‘ UTR of mRNAs

contains binding sites for important translational regulatory elements,

including miRNAs, cytoplasmic polyadenylation elements (CPEs),

proteins and protein complexes. Deletions in the 3’ UTR of the target

mRNA also lead to deletion of the miRNA binding site, which results in

loss of miRNA function. to et al. demonstrated that in drug-resistant

S1MI80 cells, there was an approximately 1500-bp deletion in the 3 ‘

UTR of the downstream target gene of ABCG2 mRNA of hsa- miR-

519c, and thus the miRNA was unable to bind to the ABCG2 mRNA

binding, resulting in ABCG2 overexpression in drug-resistant tumor

cells (84). In addition, drug transport is an important part of drug

disposition. p-glycoprotein, multidrug resistance-associated protein

(MRP) and breast cancer resistance protein (BCRP) are closely

related to multidrug resistance. Breast cancer resistance protein
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(BCRP/ABCG2) is a molecular determinant of the pharmacokinetic

properties of many human drugs. pan et al. found that miR-328

negatively regulated BCRP expression, and inhibition of miR-328 led

to an increase in BCRP protein levels in MCF/MX100 cells, which

enhanced drug efflux, decreased cellular drug concentration, and

ultimately led to the drug resistance phenotype (85). Currently, most

studies on miRNAs related to cellular drug resistance have focused on

apoptosis and drug transporters. Once one of the molecules involved in

apoptosis is altered, a drug resistance phenotype may emerge. miRNA

down- or up-regulation affects the expression of drug transporters, drug

targets, or apoptosis- and cell cycle-related components, and thus affects

cellular drug resistance (86). For example, Bhatnagar N et al. found that

up-regulation of miR-205 and miR-31 down-regulated the downstream

target gene Bcl-w and promoted apoptosis levels, restoring the

sensitivity of prostate cancer cells to chemotherapy (87).

Therefore, miRNAs are expected to serve as biomarkers of

chemotherapy resistance.
4.3 miR-205-based nanotherapies

There are two main types of miRNA delivery vectors, viral and

non-viral delivery systems. Viral vectors are commonly used for

efficient transfer of various genes, oligonucleotides, siRNAs and
FIGURE 3

Molecular mechanism of miR-205 regulation of apoptosis in tumor cells.
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miRNAs into various target cells or tissues/organs. Several viral

vectors such as adenoviral, retroviral and lentiviral vectors have

been used for preclinical and clinical evaluation. All of these vectors

are very effective in achieving higher delivery efficiencies, however,

their poor loading capacity, high toxicity levels and immunogenicity

induction limit their clinical translation (88, 89). Therefore, the

development of non-viral vectors has received much attention due

to the successful and stable delivery of miRNAs.

Nanotechnology-based delivery is a potential method for safely

delivering miRNAs and overcoming these associated barriers.

Nanotherapies were initially designed primarily to deliver anticancer

drugs. However, it has since been discovered that nanoparticles can also

successfully deliver nucleic acid molecules such as DNA, RNA, and

proteins/antibodies (90). Chauhan N et al. established a preparation

technique/methodology for the successful generation of MNP

nanopreparations. It was also demonstrated that the prepared MNP

nano-formulations containing miR-205 were safe for use in cellular

systems. In two prostate cancer cell lines, C4–2 and PC-3, this

preparation achieved excellent cellular internalization by endocytosis,

escaping endosomal and lysosomal degradation. In addition, they

combined this novel MNP miR-205 formulation with docetaxel. It was

found that upregulation of miR-205 successfully reversed drug resistance

and sensitized prostate cancer cells to docetaxel treatment. It also

significantly inhibited prostate cancer cell proliferation, migration,
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invasion and induced apoptosis (8). Another miR-205 nano-

formulation based on gold nanoparticles delivers miR-205 to prostate

cancer cells. This reduces protein kinase C Epsilon (PKCe) levels and
inhibits prostate cancer cell proliferation (91). A cationic copolymer

formulation (micelles) prepared byMittal et al. This micellar formulation

has higher stability to miR-205 with particle sizes ranging from 62 nm to

122 nm. It was used to deliver miR-205 and gemcitabine in pancreatic

cancer to sensitize drug-resistant cells to drug treatment and inhibit

cancer cell proliferation. Meanwhile, the expression level of E-cadherin

was up-regulated and that of ZEB1 was down-regulated, inhibiting

pancreatic cancer cell invasion and migration. In addition, as miR-205

reversed the drug resistance of these cells, in vivo results showed that the

tumor growth and weight were significantly reduced after treatment with

the gemcitabine-miR-205 complex formulation (92).

In summary, nano-formulation-based delivery of miR-205 is

expected to improve the targeted efficacy of cancer therapy.
5 The role of other regulated cell
death mechanisms

In addition to apoptosis, cell death can occur through various

other mechanisms, including autophagy, necroptosis, necrosis,

and ferroptosis.
FIGURE 4

Molecular mechanism of apoptosis regulation by miR-205 in different tumor cells.
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Autophagy, a regulated form of programmed cell death,

constitutes a cellular adaptive mechanism that relies on lysosomal

degradation to respond to adverse environmental stimuli (93).

Under normal physiological conditions, autophagy can degrade

aging organelles and unwanted protein, and recover its products for

energy sources and raw materials for anabolism (94). However,

dysregulated or excessive autophagy can induce a distinct form of

programmed cell death, known as autophagic cell death (95, 96).

Recent studies have shown that miR-205 can directly modulate the

expression of specific tumor suppressor genes and autophagy-

related factors, thereby regulating autophagic processes in cancer

cells (97, 98).

Zhuo et al. discovered that miR-205 is significantly upregulated

in endometrial carcinoma (PR) cells, where it suppresses PTEN

expression, leading to the activation of the AKT/mTOR signaling

pathway. This molecular cascade subsequently enhances the

conversion of autophagy marker LC3-I to LC3-II and upregulates

Beclin1 protein levels, ultimately promoting autophagic cell death

in malignant cells (99). Furthermore, TP53INP1 directly interacts

with key autophagy-related molecules, including LC3 and Atg8

family proteins, thereby facilitating autophagic processes (100).

Wang et al. demonstrated that miR-205 upregulation directly

targets and suppresses TP53INP1 expression, thereby inhibiting

radiation-induced autophagic processes in prostate carcinoma

cells (98).

It is crucial to recognize that the interplay between autophagy

and apoptosis is highly complex. Indeed, these two cellular

processes share common regulatory stimuli and signaling

pathways, while exhibiting a degree of mutual inhibition under

specific conditions (101).

Beclin1, a critical component in autophagosome formation,

serves as a direct substrate for caspase-8. The interaction between

Beclin1 and caspase-8 has been observed across multiple cell types

and plays a regulatory role in both apoptotic and autophagic

processes. For instance, studies have demonstrated that caspase-8-

mediated downregulation of Beclin1 expression suppresses

autophagic activity during herpes simplex virus infection (102).

Furthermore, AKT plays a pivotal role in the cross-regulation of

apoptotic and autophagic pathways. Diao et al. demonstrated that

AKT phosphorylation not only enhances autophagic activity but

also downregulates the expression of key apoptosis-related factors,

including Bax and caspases (103).

These findings highlight the complex interplay between miR-

205, apoptotic pathways, and autophagic processes, establishing a

robust foundation aimed at elucidating their molecular interactions.

Furthermore, in recent years, the concept of “PANoptosis” has

emerged as a significant research focus. PANoptosis represents a

dynamic form of programmed cell death that integrates molecular

features of pyroptosis, apoptosis, and necroptosis (104). PANoptosis

plays a critical role in the pathogenesis and progression of diverse

diseases , including infectious diseases , malignancies ,

neurodegenerative disorders, and inflammatory conditions (105).

Studies have demonstrated that pyroptosis not only suppresses
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tumor cell proliferation but also establishes a tumor-promoting

microenvironment, ultimately facilitating cancer progression (106).

Both apoptosis and necroptosis are recognized as essential anti-

cancer mechanisms (107). As a higher-order version of these three

death pathways, PANoptosis likely plays a crucial role in therapeutic

strategies for disease management. Zhang et al. found that

upregulating miR-18a expression in MC3T3-E1 cells significantly

suppressed the protein levels of hypoxia-inducible factor-1a (HIF1-

a) and NLRP3, thereby promoting PANoptosis of osteoblasts in

response to TNF-a induction (108). Furthermore, Wang et al.

analyzed kidney clear cell carcinoma (ccRCC) samples from The

Cancer Genome Atlas (TCGA) database and three Gene Expression

Omnibus (GEO) datasets. They identified seven upregulated

miRNAs (hsa-miR-155-5p, hsa-miR-15a-5p, hsa-miR-16-5p, hsa-

miR-181a-5p, hsa-miR-21-5p, hsa-miR-210-3p, and hsa-miR-223-

3p) and two downregulated miRNAs (hsa-miR-141-3p and hsa-miR-

200a-5p), which were significantly associated with PANoptosis-

related prognostic features. These findings demonstrate that

miRNAs are associated with PANoptosis in tumor cells and may

represent a novel therapeutic strategy for clear cell renal cell

carcinoma (ccRCC) (109). Currently, investigations into the

relationship between miRNAs and PANoptosis remain in the

preliminary stages. Although the potential link between miR-205

and PANoptosis in tumor cells has not yet been elucidated, it

represents a promising area for future research, potentially leading

to the development of novel therapeutic strategies for

cancer treatment.
6 Conclusions

miRNAs have significantly advanced our understanding of

diverse biological processes in organisms. miRNAs play pivotal

roles in nearly all biological pathways and are intricately linked to

tumor development and progression. Consequently, miRNAs have

emerged as promising biomarkers and are being actively developed as

novel tools for cancer diagnosis, prognosis, and therapeutic

intervention. Recent studies have demonstrated that miR-205

regulates the cell cycle, promotes cellular differentiation, induces

apoptosis, and modulates tumorigenesis and cancer progression.

miR-205 has been identified as a critical biomarker in oncology,

underscoring its clinical significance. Additionally, miR-205 serves as

a direct target for certain pharmacological agents, offering potential

therapeutic benefits. It can also be used as a direct target for certain

drugs to treat diseases. Some studies have proved that miR-205 can be

used in combination with some chemotherapeutic drugs to play a role

in the treatment of cancer. It can also correct the resistance of many

drug-resistant cells to drugs, which is of great significance for the

clinical treatment of various cancers. Existing evidence indicates that

miR-205 exhibits diverse roles across different cancer types, either

promoting or inhibiting apoptosis depending on the specific cancer

type and cellular context. The complex regulatory functions of miR-

205 and its multifaceted biological effects necessitate further
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investigation. These findings highlight the potential of targeting miR-

205 expression as a promising strategy for cancer therapy.

Apoptosis is a fundamental regulatory mechanism essential for

maintaining organismal homeostasis and preventing aberrant cell

proliferation. Dysregulation of apoptotic pathways contributes to the

pathogenesis of various diseases, including cancer. Extensive research

has revealed that miR-205 modulates apoptosis-related signaling

pathways and targets key genes to either promote or inhibit apoptosis,

thereby influencing cancer progression. The ability ofmiR-205 to induce

apoptosis in malignant cells has significant implications for advancing

medical and healthcare practices, making it a rational and increasingly

utilized therapeutic target. miR-205 has the potential to enhance the

efficacy of chemotherapeutic agents; however, comprehensive clinical

trials are required to validate its therapeutic potential.

The regulation of apoptosis through miRNA-mediated

mechanisms represents a critical approach in cancer treatment.

Although significant research has been conducted on the role of

miRNAs in apoptosis regulation across various cancers, several

unresolved issues remain. For instance: (1) How can drugs that

induce apoptosis via miRNA modulation be optimally selected for

clinical application? (2) Do these therapeutic agents alter

intracellular miRNA levels upon administration, and could they

potentially induce adverse effects or secondary diseases? Despite

these challenges, miRNA-mediated apoptosis induction holds

considerable promise as a future strategy for cancer therapy.

miR-205 plays crucial roles in cancer progression and apoptosis

regulation, yet its clinical translation faces significant challenges. First,

miR-205 displays distinct functional duality across cancer types: while

acting as a tumor suppressor in prostate cancer, it exhibits oncogenic

properties in specific lung cancer subtypes. This context-dependent

functionality underscores the importance of tumor microenvironment

in determining miR-205’s actions, highlighting the need for

comprehensive characterization of its tissue-specific regulatory

networks to develop precise therapeutic strategies.

The major obstacle in miR-205-based therapy involves delivery

system optimization. Two critical issues must be addressed: (1)

achieving tumor-specific delivery of miR-205 modulators (mimics

or inhibitors), and (2) improving their in vivo stability. Future

research directions should include: (1) Systematic identification of

novel miR-205 targets in emerging cell death pathways (e.g.,

pyroptosis, cuproptosis) using organoid-AI integration platforms.

(2) Comprehensive mapping of miR-205 regulatory networks

through single-cell sequencing and CRISPR screening. (3)

Development of advanced delivery platforms (e.g., exotic-based or

nanomaterial systems) to enhance tumor targeting.

Currently, miR-205 research stands at the critical juncture between

basic science and clinical implementation. Interdisciplinary integration

of molecular biology, bioinformatics, materials science, and clinical

research will be essential to overcome current limitations, ultimately

transforming miR-205 into a viable precision oncology tool while

advancing our fundamental understanding of cell death regulation.
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