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Purpose: This meta-analysis was conducted to assess the diagnostic performance

of artificial intelligence (AI) based on imaging for detecting lymph node metastasis

(LNM) among cervical cancer patients and to compare its performance with that

of radiologists.

Methods: A comprehensive literature search was conducted across PubMed,

Embase, and Web of Science to identify relevant studies published up to

October 2024. The search followed the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy (PRISMA-

DTA) guidelines. Studies evaluating the accuracy of AI models in detecting LNM in

cervical cancer through computed tomography (CT), magnetic resonance imaging

(MRI), and positron emission tomography/computed tomography (PET/CT) were

included. Pathology served as the reference standard for validation. A bivariate

random-effectsmodel was employed to estimate pooled sensitivity and specificity,

both presented alongside 95% confidence intervals (CIs). Bias was assessed with

the revised Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2)

tool. Study heterogeneity was examined through the I2 statistic. Meta-regression

was conducted when significant heterogeneity (I2 > 50%) was observed.

Results: A total of 23 studies were included in this meta-analysis. The quality and

bias of the included studies were acceptable. However, substantial heterogeneity

was observed among the included studies. Internal validation sets comprised 23

studies and 1,490 patients. The pooled sensitivity, specificity, and the area under

the curve (AUC) for detecting LNM in cervical cancer were 0.83 (95% CI: 0.78-

0.87), 0.78 (95% CI: 0.74-0.82) and 0.87 (95% CI: 0.84-0.90), respectively. External

validation sets comprised six studies and 298 patients. The pooled sensitivity,

specificity, and AUC for detecting LNM were 0.70 (95% CI: 0.56-0.81), 0.85 (95%
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CI: 0.66-0.95) and 0.76 (95% CI: 0.72-0.79), respectively. For radiologists, eight

studies and 644 patients were included; the pooled sensitivity, specificity, and AUC

for detecting LNM were 0.54 (95% CI: 0.42-0.66), 0.79 (95% CI: 0.59-0.91) and

0.65 (95% CI: 0.60-0.69), respectively.

Conclusions: Imaging-based AI demonstrates higher diagnostic performance

than radiologists. Prospective studies with rigorous standardization as well as

further research with external validation datasets, are necessary to confirm the

results and assess their practical clinical applicability.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO,

identifier CRD42024607074.
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1 Introduction

Cervical cancer is the fourth most prevalent malignancy among

women worldwide, with approximately 604,000 new cases and

342,000 deaths reported each year (1). LNM is a critical prognostic

factor that significantly influences survival outcomes. Early-stage

patients without LNM have a five-year survival rate ranging from

80% to 100%, while this rate declines markedly to 47% to 78% for

those with LNM (2). The International Federation of Gynecology and

Obstetrics (FIGO) staging system is the primary framework for

guiding treatment and management (3). Patients diagnosed with

LNM frequently treated with radiotherapy and chemotherapy as the

preferred treatment methods (3). Therefore, early, non-invasive

assessment of lymph node status is essential for determining

optimal treatment plans and prevent unnecessary surgical

interventions, ultimately enhancing patient care and outcomes.

Conventional imaging diagnostic methods, including CT, MRI,

and PET/CT, have been commonly used for detecting LNM in cervical

cancer. However, these techniques have notable limitations. CT and

MRI often exhibit restricted sensitivity and specificity, primarily due to

their inability to detect normal-sized LNM smaller than 1 cm, making

it difficult to identify micrometastases (4, 5). PET/CT, while offering

relatively better performance for LNM detection, faces challenges

distinguishing between metastatic and hypermetabolic benign lymph

nodes (6, 7). Furthermore, its effectiveness in detecting normal-sized

LNM and early-stage LNM is constrained, with sensitivity ranging

from only 32% to 58% (8). Although pathological examination is often

considered the gold standard for LNM detection due to its accuracy, it
node metastasis; CT,
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is not ideal as an initial diagnostic approach because of its invasive

nature, procedural complexity, and associated patient risks.

The emergence of AI has transformed the diagnostic landscape for

cervical cancer, particularly in predicting LNM (9). Radiomics, an AI-

based technique, extracts numerous quantifiable features from medical

imaging data to reveal microstructural characteristics of tumors or

other tissues not visible to the naked eye (10). Studies have

demonstrated that radiomic features derived from MRI, CT, and

PET/CT images are effective in predicting LNM in cervical cancer

patients (11–13). However, these studies face contradictions due to

small sample sizes, limited cross-comparisons of imaging techniques,

and challenges in model reproducibility (14). Furthermore, it remains

unclear whether AI-based diagnostics methods can outperform the

expertise of experienced radiologists in real-world clinical settings (15).

Thus, we conducted a meta-analysis to evaluate the diagnostic

performance of different imaging-based AI methods for LNM in

cervical cancer patients, and compared their performance with

conventional radiologists.
2 Methods

The meta-analysis strictly followed the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses of Diagnostic

Test Accuracy (PRISMA-DTA) guidelines (16). Additionally, the

study protocol is registered with PROSPERO (CRD42024607074).
2.1 Search strategy

We performed a comprehensive search throughout PubMed,

Embase, and Web of Science databases, completed on October 7,

2024, with an update on November 2, 2024, to ensure the inclusion

of recent studies. The search strategy included three primary terms:

“artificial intelligence”, “cervical cancer”, and “lymph node
frontiersin.org

https://www.crd.york.ac.uk/PROSPERO
https://doi.org/10.3389/fonc.2025.1532698
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2025.1532698
metastasis”, applying both keywords and MeSH terms to optimize

coverage (Supplementary Table 1). Only studies published in

English, with accessible full text, were eligible for inclusion.

Additionally, reference lists of selected articles were manually

reviewed to capture further relevant studies.
2.2 Inclusion and exclusion criteria

The inclusion criteria were established based on the PICOS

framework. Population (P): Adult cervical cancer patients undergoing

LNM evaluation. Intervention (I): Artificial intelligence models utilizing

MRI, CT, or PET/CT imaging modalities. Comparison (C): Studies

with no comparator or those comparing results with clinicians.

Outcome (O): Primary outcomes were sensitivity, specificity, and area

under the curve (AUC). Study design (S): Only retrospective and

prospective studies were included. Additional criteria required studies

to be published in English and to include at least 10 participants.

Exclusion criteria included: (1) irrelevant titles and abstracts; (2)

non-eligible publication types, such as reviews, conference abstracts,

case reports, and meta-analyses. Studies that did not meet these

criteria were excluded to ensure the reliability and quality of data for

the meta-analysis.
2.3 Quality assessment

Two reviewers conducted independent assessments of bias

using a modified quality assessment tool, resolving disagreements

through consensus to ensure rigor and objectivity in the evaluation.

To enhance the tool’s relevance, we adapted the original QUADAS-

2 by incorporating criteria from the PROBAST (Prediction model

Risk of Bias Assessment Tool), targeting potential biases unique to

AI-based LNM prediction (17, 18). This revised tool focused on

four domains: (1) patient selection, (2) index test (AI algorithm), (3)

reference standard, and (4) analysis. Applicability concerns were

also assessed within the first three domains.
2.4 Data extraction

Two reviewers independently assessed study eligibility and

conducted data extraction, with any disagreements resolved by

consensus involving a third reviewer as an adjudicator for

accuracy. Extracted data included (1) study details: first author’s

name, publication year, study design, country of origin, and

reference standard; (2) patient data: number of patients in

training, internal and external validation sets, age distribution,

and number of patients with positive LNM; (3) AI algorithm

details: imaging modality and algorithm type.
2.5 Outcome measures

The primary outcome measures included data from both

internal and external validation sets, as well as sensitivity,

specificity, and AUC for radiologists. Sensitivity was defined as
Frontiers in Oncology 03
the ratio of true positives (TP) to the sum of true positives (TP) and

false negatives (FN), while specificity was defined as the ratio of true

negatives (TN) to the sum of true negatives (TN) and false positives

(FP). The AUC, representing the area under the summary receiver

operating characteristic (SROC) curve, summarizes the model’s

ability to distinguish between positive and negative cases. As a

crucial metric for evaluating the accuracy of diagnostic tests, the

AUC provides a quantitative measure of performance. Higher

values indicate superior diagnostic efficiency and reliability (19).

We extracted AI performance data from validation sets, prioritizing

the model with the highest AUC. Additionally, radiologists’

diagnostic data were collected for comparative evaluation.
2.6 Statistical analysis

We utilized a bivariate random-effects model to estimate pooled

sensitivity and specificity for both imaging-based AI and clinician

assessments, each reported with 95% CIs. To evaluate diagnostic

accuracy, we used SROC model to generate SROC curves and

calculate the AUC. The SROC model integrates diagnostic data

from multiple studies, illustrating the trade-off between sensitivity

and specificity in diagnostic tests. Each point on the curve

represents the result of a specific diagnostic test, with its

sensitivity and specificity values visually depicted (19). The Fagan

plot was used to explain the link between pre-probability, post-

probability, and likelihood ratio, which can estimate the application

of imaging-based AI in clinical practice (20). Heterogeneity across

studies was evaluated using the I2 statistic, where values of 0%-25%,

25%-50%, 50%-75%, and >75% signified very low, low, moderate,

and high heterogeneity, respectively. For internal validation datasets

exceeding 10 studies, meta-regression was conducted when high

heterogeneity (I2 > 50%) was observed, exploring variables such as

imaging type (MRI vs. non-MRI), patient number (>50 vs. ≤50),

country (China vs. other countries), and algorithm type (deep

learning vs. machine learning). Subgroup analyses were

performed for distinct imaging modalities (CT, MRI, and PET/CT).

Publication bias was evaluated using Deeks’ funnel plot

asymmetry test, which evaluates bias by examining the symmetry

of the funnel plot and performing quantitative analysis (21).

Statistical analyses were conducted using Stata 15.1, while study

quality was evaluated using RevMan 5.4. Statistical significance was

defined as P < 0.05.
3 Results

3.1 Study selection

A comprehensive literature search was conducted across three

databases. Initially, 828 articles were identified as potentially eligible

through the database search. Following the removal of 318 duplicate

records, 510 unique articles remained. Of these, 463 studies were

excluded due to failure to meet the inclusion criteria. Full-text

reviews were conducted on the remaining 47 articles. Subsequently,

24 studies were excluded due to the inability to extract essential data
frontiersin.org
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(TP, TN, FP, FN) (n = 21), non-cervical cancer (n = 1), or non-

English full text (n = 2). Ultimately, 23 studies were included in the

final meta-analysis (9, 11–13, 22–40). The article selection process is

illustrated in Figure 1, following the PRISMA flow diagram format.
3.2 Study description and
quality assessment

A total of 23 eligible studies published between 2018 and 2024 were

included. The internal validation cohorts across these studies

comprised 1,490 patients, with study sample sizes ranging from 28 to

141 participants. Six studies incorporated external validation, involving

298 patients (ranging from 29 to 69) (12, 22, 26, 29, 31, 32); however,

one study lacked sufficient data for extraction (22). Eight studies

provided comparisons with radiologists, including 644 patients

(ranging from 29 to 141) (9, 13, 24–26, 32, 34, 37). All studies were

retrospective. The imaging modalities used were predominantly MRI

(17 studies) (9, 11, 22–25, 28, 30–37, 39, 40), followed by PET/CT (4

studies) (13, 27, 29, 38), and contrast-enhanced CT (2 studies) (12, 26).
Frontiers in Oncology 04
Pathology was employed as the reference standard. A summary of

patient characteristics is presented in Table 1.

Bias was evaluated using the QUADAS-2-Revised tool, with

individual risk assessments illustrated in Figure 2. Five studies were

rated as having a “high risk” for patient selection due to

inappropriate exclusions (29, 33, 36, 38, 39). Four studies were

identified as “high risk” for the index test due to inadequate details

regarding the artificial intelligence model (11, 12, 22, 26). Overall,

despite some areas of concern, the quality of the included studies

was deemed acceptable.
3.3 Diagnostic performance of internal
validation set for AI and radiologists in
predicting lymph node metastasis of
cervical cancer

For internal validation sets, the pooled sensitivity and specificity

for detecting LNM in cervical cancer were 0.83 (95% CI: 0.78-0.87)

and 0.78 (95% CI: 0.74-0.82), respectively (Figure 3), with an AUC

of 0.87 (95% CI: 0.84-0.90) (Figure 4A). With a pre-test probability
FIGURE 1

PRISMA flow diagram illustrating the study selection process.
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TABLE 1 Study and patient characteristics of the included studies.

Age (Mean ± SD) No. of LNM+ patients

Training: Mean
le): LNM: 56 (Q1:50; Q3:60); non-
LNM: 56 (Q1:48; Q3: 60)
validation: Mean ± SD: 52.7 ± 8.6;
non LNM: 58.6 ± 11.3

Training: 22
Internal validation: 15

Mean ± SD: LNM: 45.8 ± 10.3; non-
LNM: 47.1 ± 8.6

alidation: Mean ± SD: LNM: 45.9 ±
8.5; non LNM: 47.5 ± 8.9
alidation: Mean ± SD: LNM: 47.8 ±
3; non LNM: 47.3 ± 9

Training: 38
Internal validation: 16
External validation: 14

NA Training: 48
Internal validation: 23
External validation: 5

g: Mean ± SD: LNM: 47.58 ± 7.93;
non-LNM: 48.96 ± 9.33
alidation: Mean ± SD: LNM: 47.0 ±
.65; non LNM: 48.97 ± 8.81
alidation: Mean ± SD: LNM: 47.20 ±
87; non LNM: 48.04 ± 7.348

Training: 87
Internal validation: 32
External validation: 15

Mean ± SD: LNM: 48.8 ± 10.0; non-
LNM: 49.9 ± 9.5

alidation: Mean ± SD: LNM: 47.6 ±
9.1; non LNM: 48.0 ± 10.2

Training: 71
Internal validation: 32

Mean ± SD: LNM: 48.4 ± 7.9; non-
LNM: 49.9 ± 8.1

alidation: Mean ± SD: LNM: 49.1 ±
8.6; non LNM: 50.2 ± 7.7

Training: 33
Internal validation: 17

g: Mean ± SD: LNM: 52.39 ± 8.47;
non-LNM: 50.63 ± 8.50

alidation: Mean ± SD: LNM: 52.44 ±
.60; non LNM: 51.85 ± 8.06

Training: 69
Internal validation: 35

g: Mean ± SD: LNM: 46.83 ± 8.22;
non-LNM: 45.10 ± 9.15

alidation: Mean ± SD: LNM: 48.95 ±
.25; non LNM: 47.13 ± 6.83

Training: 65
Internal validation: 29

(Continued)

Jian
g
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
5
.15

3
2
6
9
8

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
5

Author Year Country Study
design

Imaging
modality

Reference
standard

patients per set

Training Internal
validation

External
validation

Wang et al. (11) 2024 China Retro MRI Pathology 86 38 NA
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Ai et al. (22) 2023 China Retro MRI Pathology 162 68 56 Training:

Internal
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Liu et al. (12) 2021 China Retro Contrast-
enhance CT

Pathology 148 74 51

Li et al. (26) 2023 China Retro Contrast-
enhance CT

Pathology 296 122 62 Trainin

Internal
7

External v
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Wu et al. (9) 2020 China Retro MRI Pathology 338 141 NA Training:

Internal

Deng et al. (23) 2020 China Retro MRI Pathology 89 45 NA Training
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Zhang et al. (39) 2022 China Retro MRI Pathology 89 45 NA Trainin
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1

Song et al. (33) 2021 China Retro MRI Pathology 90 42 NA Trainin
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TABLE 1 Continued

e (Mean ± SD) No. of LNM+ patients

g (95% CI): 56 (23–77)
idation (95% CI): 50 (29–68)

Training: 42
Internal validation: 11

an ± SD: LNM: 51.80 ± 11.68;
-LNM: 54.91 ± 8.79
ion: Mean ± SD: LNM: 55.54 ±
on LNM: 54.04 ± 10.23

Training: 55
Internal validation: 24

: Mean ± SD: 47.5 ± 12.0
ation: Mean ± SD: 46.6 ± 9.8

Training: 22
Internal validation: 10

an ± SD: LNM: 49.16 ± 9.37;
-LNM: 50.50 ± 9.11
ion: Mean ± SD: LNM: 49.53 ±
on LNM: 50.43 ± 8.94
tion: Mean ± SD: LNM: 53.67 ±
on LNM: 55.00 ± 6.68

Training: 37
Internal validation: 19
External validation: 12

edian (range): 51 (29–79)
ation: Median (range): 52 (26–

77)
lidation: Median (range): 51

(29–70)

Training: 18
Internal validation: 16
External validation: 5

Mean ± SD: 49.29 ± 9.83
tion: Mean ± SD: 51.30 ± 9.60

Training: 50
Internal validation: 32

edian (range): 52 (33–74)
lidation: Median (range): 48

(38–65)

Training: 25
Internal validation: 14

: ≥50: 48; <50: 27; non-LNM:
≥50: 94; <50: 56
ation: LNM: ≥50: 17; <50: 16;
NM: ≥50: 36; <50: 29
dation: LNM: ≥50: 12; <50: 8;
NM: ≥50: 38; <50: 11

Training: 75
Internal validation: 33
External validation: 20

; <50: 27; non-LNM: ≥50: 31;
<50: 21

Training: 58
Internal validation: 42

an ± SD: LNM: 49.11 ± 10.09;
-LNM: 51.50 ± 8.89
ion: Mean ± SD: LNM: 51.57 ±
on LNM: 49.10 ± 8.35

Training: 44
Internal validation: 14
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Zhang et al. (40) 2023 China Retro MRI Pathology 172 75 NA Training: Me
no

Internal valida
10.77;

Xiao et al. (37) 2022 China Retro MRI Pathology 72 32 NA Trainin
Internal vali

Shi et al. (32) 2021 China Retro MRI Pathology 93 47 29 Training: M
no

Internal valida
9.97;

External valida
7.39;

Lucia et al. (29) 2023 France Retro PET/CT Pathology 102 76 31 Training:
Internal valid

External va
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TABLE 1 Continued

patients per set Age (Mean ± SD) No. of LNM+ patients

Training Internal
validation

External
validation

171 111 NA Training: LNM: >50: 18; ≤50: 25; non-LNM:
>80: 94; ≤50: 48

Internal validation: LNM: >50: 21; ≤50: 7;
non-LNM: >50: 62; ≤50: 21

Training: 43
Internal validation: 28

126 63 NA Training: Mean (range): LNM: 49 (33–67);
non-LNM: 50 (27–71)

Internal validation: Median (range): LNM: 48
(29–67); non-LNM: 50 (32–75)

Training: 35
Internal validation: 14

115 53 NA Training: Mean ± SD: LNM: 49.86 ± 7.68;
non-LNM: 52.10 ± 9.87

Internal validation: Mean ± SD: LNM: 52.36 ±
7.89; non LNM: 53.14 ± 12.44

Training: 28
Internal validation: 11

104 45 NA Training: Mean: LNM: 47.12; non-LNM: 46.66
Internal validation: Mean: LNM: 43.30; non-

LNM: 46.60

Training: 25
Internal validation: 10

126 43 NA Training: Mean ± SD: LNM: 52.57 ± 9.54;
non-LNM: 50.45 ± 10.59

Internal validation: Mean ± SD: LNM: 50.64 ±
7.19; non LNM: 53.16 ± 9.73

Training: 25
Internal validation: 10

ssion tomography; LNM, lymph node metastasis; NA, not available.
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Author Year Country Study
design

Imaging
modality

Reference
standard

Liu et al. (28) 2024 China Retro MRI Pathology

Wu et al. (34) 2019 China Retro MRI Pathology

Hou et al. (24) 2020 China Retro MRI Pathology

Xia et al. (35) 2022 China Retro MRI Pathology

Qian et al. (30) 2022 China Retro MRI Pathology

Retro retrospective; MRI, magnetic resonance imaging; CT, computed tomography; PET, positron emi
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of 20%, the Fagan nomogram indicates a positive likelihood ratio of

49% and a negative likelihood ratio of 5% (Figure 5A). For

radiologists, the sensitivity and specificity for detecting LNM in

cervical cancer were 0.54 (95% CI: 0.42-0.66) and 0.79 (95% CI:

0.59-0.91), respectively (Figure 6), with an AUC of 0.65 (95% CI:

0.60-0.69) (Figure 4B). Using the same pre-test probability, the

Fagan nomogram indicates a positive likelihood ratio of 39% and a

negative likelihood ratio of 13% (Figure 5B). The overall diagnostic

performance of internal validation, external validation, and

radiologists is summarized in Table 2.
Frontiers in Oncology 08
For internal validation sets, moderate heterogeneity was

observed for both sensitivity (I2 = 43%) and specificity (I2 =

53%). Meta-regression analysis indicated that heterogeneity was

primarily due to differences in the number of patients (>50 vs. ≤50,

P = 0.01 for sensitivity, P < 0.001 for specificity). Additionally,

algorithm type (deep learning vs. machine learning, P = 0.03 for

sensitivity, P < 0.001 for specificity) and imaging modality (MRI vs.

non-MRI, P = 0.03 for sensitivity, P = 0.01 for specificity) were also

identified as potential sources of heterogeneity for both sensitivity

and specificity. These findings are further detailed in Table 3.
FIGURE 2

Risk of bias and applicability concerns of the included studies using the Quality Assessment of Diagnostic Performance Studies QUADAS-2
revised tool.
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3.4 Diagnostic performance of external
validation sets for AI in predicting lymph
node metastasis in cervical cancer

For external validation sets, the pooled sensitivity and specificity

for detecting LNM in cervical cancer were 0.70 (95% CI: 0.56-0.81)

and 0.85 (95% CI: 0.66-0.95) (Supplementary Figure 1), with an

AUC of 0.76 (95% CI: 0.72-0.79) (Supplementary Figure 2). With a

pre-test probability of 20%, the Fagan nomogram demonstrates a
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positive likelihood ratio of 55% and a negative likelihood ratio of 8%

(Supplementary Figure 3).

3.5 Diagnostic performance of different
imaging techniques for AI in predicting
lymph node metastasis in cervical cancer

For MRI-based AI, 17 studies in internal validation were

pooled, the sensitivity in detecting LNM of cervical cancer was
FIGURE 3

Forest plot of imaging-based artificial intelligence on the internal validation set for diagnosing lymph node metastasis in cervical cancer.
FIGURE 4

Summary receiver operating characteristic (SROC) curves of imaging-based artificial intelligence on the internal validation set (A) and radiologists
(B) for diagnosing lymph node metastasis in cervical cancer.
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FIGURE 5

Fagan’s nomogram of imaging-based artificial intelligence on the internal validation set (A) and radiologists (B) for diagnosing lymph node metastasis
in cervical cancer.
FIGURE 6

Forest plot of radiologists for diagnosing lymph node metastasis in cervical cancer.
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0.82 (95% CI: 0.78-0.86), and the specificity was 0.76 (95% CI: 0.72-

0.79), with an AUC of 0.85 (95% CI: 0.81-0.88) (Table 4). Two

studies in external validation were pooled; the sensitivity in

detecting LNM of cervical cancer was 0.59 (95% CI: 0.41-0.76),

and the specificity was 0.86 (95% CI: 0.76-0.94) (Table 4).

For PET/CT-based AI, four studies in internal validation were

pooled, the sensitivity in detecting LNM of cervical cancer was 0.87

(95% CI: 0.78-0.93), and the specificity was 0.91 (95% CI: 0.85-

0.95), with an AUC of 0.93 (95% CI: 0.88-0.97) (Table 4). However,

an analysis of the external validation set could not be performed

owing to the unavailability of sufficient data.

For CT-based AI, two studies in internal validation were pooled;

the sensitivity in detecting LNM of cervical cancer was 0.78 (95%

CI: 0.65-0.87), and the specificity was 0.72 (95% CI: 0.63-0.79)

(Table 4). Two studies in external validation were pooled, the

sensitivity in detecting LNM of cervical cancer was 0.80 (95% CI:

0.56-0.94), and the specificity was 0.68 (95% CI: 0.57-

0.77) (Table 4).
3.6 Publication bias

Deeks’ funnel plot asymmetry test indicated no significant

publication bias for the internal validation sets for AI and

radiologists (P = 0.69, 0.50) (Figures 7A, B). Similarly, no
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significant publication bias was identified for the external

validation sets (P = 0.18) (Supplementary Figure 4).
4 Discussion

In recent years, advancements in AI have led to the

development of models aimed at assessing LNM in cervical

cancer using imaging techniques, incorporating technologies such

as MRI, CT, and PET/CT (12, 25, 29). However, despite this

promising integration, the diagnostic performance of imaging-

based AI compared with radiologists, has demonstrated variability

across studies. For instance, research by Kan et al. highlighted that

MRI-based AI models exhibited superior diagnostic accuracy for

detecting LNM in cervical cancer compared to traditional

radiologist assessments, suggesting the potential for enhanced

precision through AI implementation (25). Conversely, findings

from other studies, such as those by Shi et al., indicated that MRI-

based AI models did not surpass the specificity achieved by

experienced clinical radiologists, reflecting inconsistencies in

diagnostic outcomes (32). These discrepancies underscore the

need for further investigation into the comparative diagnostic

efficacy of AI and human radiologists in this domain.

This study presents a meta-analysis of the diagnostic

performance of imaging-based AI in detecting LNM in cervical
TABLE 2 Diagnostic performance of internal validation set, external validation set, and radiologists.

Cohort Studies, n Sensitivity(95%CI) I2(%) Specificity(95%CI) I2(%) AUC(95%CI)

Internal validation set 23 0.83 (0.78; 0.87) 42.82 0.78 (0.74; 0.82) 52.69 0.87 (0.84; 0.90)

External validation set 6 0.70 (0.56; 0.81) 26.22 0.85 (0.66; 0.95) 80.97 0.76 (0.72; 0.79)

Radiologists 8 0.54 (0.42; 0.66) 69.85 0.79 (0.59; 0.91) 95.23 0.65 (0.60; 0.69)
AUC, area under curve.
TABLE 3 Subgroup analysis and meta-regression analysis.

Covariate Studies, n Sensitivity (95%CI) P-value Specificity (95%CI) P-value

Number of patients
included

0.01 0.00

>50 13 0.84 (0.78; 0.89) 0.79 (0.74; 0.84)

≤50 10 0.82 (0.74; 0.90) 0.78 (0.71; 0.85)

Country 0.74 0.86

China 22 0.83 (0.78; 0.87) 0.78 (0.74; 0.82)

France 1 0.88 (0.69; 1.00) 0.89 (0.78; 0.99)

Algorithm type 0.03 0.00

Deep learning 4 0.83 (0.73; 0.94) 0.75 (0.66; 0.84)

Machine learning 19 0.83 (0.78; 0.88) 0.79 (0.75; 0.84)

Imaging 0.03 0.01

MRI 17 0.82 (0.77; 0.88) 0.76 (0.72; 0.81)

Non-MRI 6 0.85 (0.76; 0.93) 0.84 (0.77; 0.90)
MRI, magnetic resonance imaging.
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cancer. Our findings demonstrate that AI models in internal

validation cohorts achieved higher sensitivity (0.83 versus 0.54) and

AUC (0.87 versus 0.65) compared to radiologists while maintaining

comparable specificity (0.79 versus 0.78). The higher sensitivity and

AUC of AI models may be attributed to their ability to detect subtle

imaging features that may be overlooked by human observers,

enhancing diagnostic accuracy (14). Radiologists demonstrate

specificity comparable to that of AI models, possibly due to their

ability to utilize clinical context and experiential judgment, which

helps to reduce false-positive results (41). Overall, imaging-based AI

exhibits enhanced diagnostic performance, particularly in accurately

identifying patients with LNM.

Subgroup analysis of different imaging modalities in internal

validation revealed that MRI, PET/CT, and CT demonstrated

sensitivities of 0.82, 0.87, and 0.78, respectively, with specificities

of 0.76, 0.91, and 0.72. The AUC values were 0.85 for MRI and 0.93

for PET/CT, while the AUC for CT could not be evaluated due to

insufficient data. Our findings indicate that PET/CT-based AI

showed superior diagnostic performance compared to MRI and

CT. This enhanced performance is likely due to the integration of

metabolic information with anatomical imaging in PET/CT and its

ability to extract high-throughput imaging features reflecting

metabolic characteristics (27, 42). In contrast, MRI-based and

CT-based AI primarily rely on anatomical features alone.

This meta-analysis represents the first effort to evaluate the

diagnostic performance of imaging-based AI models and directly

compare their performance with that of radiologists in predicting

LNM in cervical cancer patients. A meta-analysis by He et al. on

traditional imaging techniques (MRI vs. PET/CT) reported a
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sensitivity of 0.65 (0.60–0.69) and specificity of 0.93 (0.91–0.94)

for PET/CT, along with a sensitivity of 0.58 (0.54–0.63) and

specificity of 0.91 (0.90–0.92) for MRI (43). Compared with the

internal validation results of our study, their findings show lower

sensitivity. These results are consistent with our comparison of

imaging-based AI models and radiologists, further demonstrating

the robustness of our findings.

Our study introduces an innovative approach by incorporating

both internal and external validation datasets to evaluate the

generalizability and reliability of AI models. A previous meta-

analysis by Li et al., which evaluated the diagnostic performance

of MRI-based AI in detecting lymph node metastasis in cervical

cancer, reported a sensitivity of 0.80, specificity of 0.76, and AUC of

0.83 (44), results that are closely aligned with our findings for MRI-

based AI models. However, we extended the scope beyond MRI to

include multiple imaging modalities (CT and PET/CT). This

broader approach offers novel and clinically relevant insights into

AI applications in diverse imaging methods, providing actionable

strategies for optimizing diagnostic workflows.

Imaging-based AI models present significant advantages in

predicting LNM in cervical cancer patients, particularly due to their

higher sensitivity compared to traditional methods, which can

enhance detection performance. Our results demonstrates that AI

achieves superior diagnostic performance (AUC: 0.87 versus 0.65 for

radiologists), suggesting its potential to reduce healthcare providers’

workload and enhance patient outcomes through early detection and

timely intervention. Notably, PET/CT-based AI showed superior

diagnostic performance, warranting future studies to compare AI

models across different imaging modalities.
TABLE 4 Subgroup analysis based on different AI imaging techniques.

Interval validation External validation

Imaging Studies,
n

Sensitivity
(95%CI)

Specificity
(95%CI)

AUC
(95%CI)

Studies,
n

Sensitivity
(95%CI)

Specificity
(95%CI)

AUC
(95%CI)

MRI 17 0.82 (0.78;0.86) 0.76 (0.72;0.79) 0.85 (0.81;0.88) 2 0.59 (0.41;0.76) 0.86 (0.76;0.94) NA

PET/CT 4 0.87 (0.78;0.93) 0.91 (0.85;0.95) 0.93 (0.88;0.97) 1 NA NA NA

CT 2 0.78 (0.65;0.88) 0.72 (0.63;0.79) NA 2 0.80 (0.56; 0.94) 0.68 (0.57; 0.77) NA
MRI, magnetic resonance imaging; CT, computed tomography; PET, positron emission tomography; AUC, area under curve; NA, not available.
FIGURE 7

Deek’s funnel plot of imaging-based artificial intelligence on the internal validation set (A) and radiologists (B) for diagnosing lymph node metastasis
in cervical cancer.
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The clinical significance of imaging-based AI lies in its ability to

enable rapid detection and its high acceptance among patients.

Although previous studies have explored other invasive methods

for diagnosing and treating early cervical cancer patients, concerns

regarding surgical trauma and complications remain substantial (45).

Integrating imaging-based AI with these methods represents a

potential direction for future clinical practice. Additionally, the

study by Mereu et al. on locally advanced cervical cancer

demonstrates that the treatment approach combining neoadjuvant

chemotherapy with radical surgery shows limited effectiveness for

patients with LNM, as it does not result in significant improvements

in disease-free survival or overall survival (46). Consequently, the

early detection of LNM in cervical cancer is crucial in clinical practice

to prevent unnecessary surgery and chemotherapy and to develop

appropriate strategies, such as precise resection or radiotherapy (12).

However, the high heterogeneity of our results highlights the need for

further research and external validation to confirm their robustness.

Several limitations of this meta-analysis must be considered

when interpreting the results. First, the high heterogeneity among

the included studies may have affected the overall sensitivity and

specificity of AI models in both internal and external datasets.

Meta-regression identified patient numbers, algorithm types, and

imaging modalities as potential sources of heterogeneity. Notably,

heterogeneity may also be attributed to variations in study design

methodologies, patient demographic characteristics, tumor staging

criteria, institutional imaging protocols, image acquisition

parameters, and differences in radiologist experience levels and

training backgrounds. Additionally, to reduce variability in the

research, our study focused exclusively on imaging-based AI

models and did not evaluate AI models incorporating other

factors, such as clinical variables. The primary objective was to

assess LNM detection in cervical cancer; other pathological factors,

such as lymphovascular space invasion (LVSI), were not included in

this analysis. Although some studies have explored the diagnostic

performance of these pathological factors, integrating them into a

comprehensive analysis remains a critical avenue for future research

(47). Second, all included studies were retrospective, which

introduces potential biases. Well-designed prospective studies

with external datasets are necessary to validate our findings.

Additionally, the majority of the studies were from China, which

may also contribute to potential bias. Third, external validation was

insufficient. Only six of the 23 studies included external testing.

External validation is critical to address overfitting, a common issue

in AI development, where models perform well on internal data but

may underperform on external datasets. This discrepancy

underscores the importance of following AI development

guidelines that emphasize external validation before clinical

application (48). Future research should prioritize rigorous

external validation to ensure the durability and practical utility of

AI algorithms in real-world clinical applications.
5 Conclusion

Imaging-based AI demonstrates higher diagnostic performance

than radiologists. Prospective studies with rigorous standardization
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as well as further research with external validation datasets, are

necessary to confirm the results and assess their practical

clinical applicability.
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