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Ovarian cancer (OC) is the most lethal malignancy in the female reproductive

system, and chemotherapy drug resistance is themain cause of treatment failure.

The Mitogen-Activated Protein Kinases (MAPK) pathway plays a pivotal role in

regulating cell proliferation, migration, and invasive capacity in response to

extracellular stimuli. This review focuses on the mechanisms and therapeutic

strategies related to the JNK/p38 MAPK signaling pathway in OC resistance. The

JNK/p38 MAPK pathway plays a dual role in OC chemoresistance. This review

examines its role in mediating OC treatment resistance by exploring the

mechanisms of action of the JNK/p38 MAPK signaling pathway, particularly its

involvement in several key biological processes, including apoptosis, autophagy,

DNA damage response, the tumor microenvironment (TME), and drug efflux.

Additionally, the review investigates the timing of activation of this pathway and

its crosstalk with other signaling pathways such as PI3K/AKT and NF-kB.
Targeting JNK/p38 MAPK signaling has shown promise in reversing

chemoresistance, with several inhibitors and natural compounds

demonstrating potential in preclinical studies. Regulating JNK/p38 MAPK may

transform what was once a terminal obstacle into a manageable challenge for

OC patients with chemotherapy resistance, ultimately improving survival and

quality of life.
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1 Introduction

Ovarian cancer (OC) is the gynecologic malignancy with the highest mortality rate,

with approximately 19,680 new cases of OC diagnosed in the United States in 2024 (1). OC

accounts for 5.1% of all female cancer deaths, with a 5-year survival rate of 50.8% (2). The

global incidence of OC is anticipated to rise by 47% and the number of deaths by 58% by

2045 (3). OC is divided into type I and type II, with type I including Low-Grade Serous

Ovarian Carcinoma (LGSOC), clear cell carcinoma, mucinous carcinoma, and
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endometrioid carcinoma. Type II includes high-grade serous

ovarian carcinoma (HGSOC), undifferentiated carcinoma, and

malignant mixed mesodermal carcinosarcoma.

First-line treatment for OC includes surgery and platinum- and

paclitaxel-based chemotherapy, but approximately 70% of patients

relapse and develop platinum and paclitaxel resistance (4). The

main mechanisms contributing to chemotherapy resistance in OC

include dysregulation of drug transport, alterations of apoptosis,

DNA damage repair, alteration of TME, as well as gene mutation

and signaling pathway abnormalities (5). Mutations in four genes—

Tp53, KRAS, BRCA1/2 and PIK3CA—are strongly associated with

the etiology of OC and drug resistance (6).

The Mitogen-Activated Protein Kinases (MAPK) signaling

pathway plays a pivotal role in several biological processes,

including cell proliferation, differentiation, survival, and stress

response (7). It is a fundamental signaling pathway within cells,

and its dysregulation is closely associated with the onset and

development of OC and the emergence of drug resistance (8).

Extracellular Signal-Regulated Kinases (ERK) are extensively

researched MAPK signaling pathways that are closely associated

with cell growth and developmental divisions. Their transduction

pathways adhere to a three-stage enzymatic cascade. In the delivery

pathway of ERK, RAS acts as an upstream activating protein, RAF

acts as a MAPK Kinase Kinase (MAPKKK), which further activates

MEK1/2 through its kinase activity, and MEK1/2 acts as a MAPK

Kinase (MAPKK), which can phosphorylate and activate ERK or

MAPK. These are activated by adenosine triphosphate (ATP)

phosphorylation to form the RAS/RAF/MEK/ERK pathway (9).

A substantial body of evidence indicates that high-frequency

mutations in RAS/RAF, which result in aberrant activation of RAS/

RAF/MEK/ERK signaling, frequently contribute to drug resistance

and poor prognoses in patients with OC (10). Extensive research on

the RAS/RAF/MEK/ERK pathway in the context of OC resistance

has facilitated the development of numerous MAPK inhibitors,

such as Trametinib, Cobimetinib, and Binimetinib. These have been

applied to a small subgroup of OC patients to control tumor

growth, particularly in LGSOC. For instance, the MEK inhibitor,

binimetinib, has been demonstrated to confer clinical benefit to

patients with epithelial OC exhibiting MAPK pathway alterations,

enhancing the efficacy of paclitaxel-induced apoptosis (11).

Additionally, trametinib has emerged as a new standard

treatment option for patients with recurrent LGSOC (12).

OC treatment resistance is a complex process involving many

molecular mechanisms and signaling pathways. Previous studies

have demonstrated that c-Jun N-terminal kinase (JNK) and p38

MAPK impede the progression of OC by regulating apoptosis

in response to stressors such as carcinogens, reactive oxygen

species (ROS), or oncogenes (13). Fawzy et al. (14) proposed that

elevated JNK activity, which contributes to OC chemoresistance,

exhibits partial overlap with other pathways, including

phosphoinositide 3-kinase (PI3K), nuclear factor-kB (NF-kB),
and multiple mechanisms mediating cell transformation

and apoptosis.
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However, the role of the JNK/p38 MAPK pathway in OC

resistance has not been extensively investigated. This review

focuses on the mechanism of the JNK/p38 MAPK signaling

pathway in OC chemoresistance and provides an overview of

potential therapeutic strategies targeting these pathways. The

findings will direct researchers’ attention to the mechanism of OC

resistance and offer novel research avenues.
2 Overview of MAPK signaling
pathway

MAPK consists of four major cascades: the ERK1/2, ERK5, JNK,

and p38 MAPK signaling pathways. The ERK signaling pathway is

closely related to cell proliferation and differentiation, while the

JNK and p38 MAPK signaling pathways are predominantly linked

to cellular stress and apoptosis (Figure 1).
2.1 ERK signaling pathway

The RAS/RAF/MEK/ERK pathway represents a highly

conserved signaling cascade that plays a pivotal role in the

survival and development of tumor cells. OC cisplatin resistance

is regulated between p53 and RAS signaling networks through RAS/

MAPK pathway activation, which mediates apoptosis and

autophagy (15). Synuclein is a small neuron protein, and some

studies have found that g-synuclein is significantly upregulated in

OC (16). Pan et al. (17) demonstrated that the overexpression of g-
synuclein activated ERK and downregulated JNK, collectively

preventing apoptosis. This cell apoptosis is inhibited by 2–3

times, resulting in resistance to paclitaxel and Vincristine

chemotherapy. However, the use of MEK1/2 inhibitors has been

demonstrated to partially mitigate this resistance to paclitaxel.

Evidence indicates that high-frequency mutations in RAS/RAF

result in aberrant RAS/RAF/MEK/ERK signaling activation, leading

to platinum-based chemotherapy resistance in OC cells. Manning-

Geist et al. found that in type I OC, 60% of LGSOC have alterations

in the MAPK pathway (18), with 30–50% and 15–40% carrying RAS

and RAF mutations, respectively (19). Additionally, 88% of

junctional tumors (20) and 75% of mucinous ovarian tumors also

have RAS or RAF mutations (21). Type II tumors almost universally

have p53 mutations, and nearly half have BRCA1/BRCA2

mutations (22). Approximately 12% of HGSOC tumors, the most

common histological subtype of OC, have been found to have RAS

mutations. In OC, particularly in HGSOC, the percentage of RAS

gene mutations is generally lower than 10%. However, the

transcription of RAF and ERK1/2 can still activate the RAS/RAF/

MEK/ERK pathway, which is closely related to the prognosis of OC

(23). Consequently, targeting the ERK signaling pathway with RAF,

MEK, and ERK inhibitors in OC patients (particularly those with

LGSOC) has yielded promising preliminary clinical outcomes

compared to the established standard of care (24–27) (Table 1).
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2.2 JNK/p38 MAPK signaling pathway

The JNK and p38 MAPK pathways are primarily activated by

environmental and genotoxic stressors and regulate cellular

responses to various stimuli, including cytokines, inflammatory

factors, and growth factors. Consequently, they are often called

Stress-Activated Protein Kinases, and they are primarily involved in

cellular stress and apoptosis (28).

2.2.1 JNK signaling pathway
The JNK pathway represents a significant branch of the MAPK

signaling family, characterized by its capacity to phosphorylate and

activate c-Jun transcription factors (29). The JNK pathway is

activated by external stimuli, including ultraviolet light,

inflammatory factors, and oxidative stress, and regulates the

expression of a series of downstream genes. The JNK family

comprises three major isoforms: JNK1, JNK2, and JNK3 (30).

JNK1 and JNK2 are expressed in most tissues, whereas JNK3 is

expressed in a more limited set of tissues, including the brain, heart,

and testis (31).

MAPKKKs (e.g., ASK1, HPK1, MLK-3) are the initial kinases to

be activated following cell stimulation by stress. These kinases then

phosphorylate MAPKKs (MKK4 and MKK7), triggering a signaling
Frontiers in Oncology 03
cascade (32). MKK4 and MKK7 activate JNK proteins by

phosphorylating threonine (Thr183) and tyrosine (Tyr185) at the

Thr-Pro-Tyr (TPY) motif of JNK (33, 34). ROS are also involved in

JNK activation (33, 34).

Activated JNK protein spreads in the cytoplasm and enters the

nucleus. Its phosphorylation leads to the activation or modulation

of a range of non-nuclear and nuclear proteins, including c-Jun,

Activator Protein-1 (AP-1), and FBJ murine osteosarcoma viral

oncogene homolog (FOS). Transcription Factor 2 (ATF-2) and p53,

as well as B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein

(Bax), are involved in regulating cell proliferation, apoptosis,

autophagy, and DNA repair, and they also play a role in

influencing OC resistance (35, 36).
2.2.2 p38 MAPK signaling pathway
p38 MAPK is primari ly activated by extracel lular

inflammatory factors, environmental stress, oxidative stress, and

DNA-damaging agents (e.g., cisplatin and adriamycin) and is

crucial for maintaining cellular homeostasis. The p38 MAPK

family comprises four members: p38a, p38b, p38g, and p38 (35,

36). p38a is universally expressed in most tissues, whereas p38b,
p38g, and p38d are specifically expressed only in a small number

of tissues (37).
FIGURE 1

Overview of the MAPK signaling pathway.
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Similarly, upstream MAPKKK (TAK1, ASK1, MEKK1–4) is

initially activated by dual phosphorylation of Thr and Tyr at the

TGY motif, which is then followed by the activation of MAPKKs

(MKK3 and MKK6). These MAPKKs subsequently activate p38 by

phosphorylating specific serine and Thr residues of p38. It is

noteworthy that MKK4 can also phosphorylate p38 MAPK (38).

p38 phosphorylates a range of substrates, including the

transcription factors ATF2, CHOP, the kinases MK2, MK3, and

other effector proteins, which regulate cell cycle progression, cell

survival, apoptosis, stress responses, and inflammatory responses.

Consequently, p38 plays a role in influencing OC resistance.

JNK/p38 MAPK is often regarded as a critical mediator of cell

death and can act as a tumor suppressor (14). However, it can also

act as a tumor promoter under certain conditions. Evidence

suggests that JNK may play a role in counteracting apoptosis and

promoting cancer cell survival under low oxygen or other forms of

cellular stress (39). Accordingly, this study will concentrate on the

particular mechanisms of JNK and p38 MAPK signaling pathways

in drug-resistant OC to offer new insights for future

clinical treatment.
3 Mechanisms of JNK and p38 MAPK-
mediated drug resistance in ovarian
cancer

Due to the rapid development of chemoresistance, OC remains

a significant challenge in oncology. In this section, we summarize

the mechanisms involved in JNK/p38 MAPK and OC resistance.

These include apoptosis, autophagy, DNA damage response, the

tumor microenvironment, drug metabolism, microRNA, activation

time, and crosstalk between cell signaling pathways (Figure 2).
3.1 Apoptosis of cells

Apoptosis, a natural process of programmed cell death, is

essential for regulating cellular homeostasis. Dysregulation of

apoptosis is a key factor in tumorigenesis and cancer progression.
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Chemotherapeutic agents exert their anti-tumor effects mainly by

inducing apoptosis in cancer cells. The JNK/p38 MAPK signaling

pathway modulates the expression and activity of key apoptotic

regulators, including the Bcl-2 family, caspase family, and p53,

thereby orchestrating critical decisions in apoptotic machinery (37).
3.1.1 The Bcl-2 family
Several factors are responsible for the failure of apoptosis, and

the Bcl-2 family, a core factor of apoptosis, is closely associated with

chemoresistance in OC (38). The Bcl-2 family is a critical regulator

of apoptosis, comprising anti-apoptotic proteins such as Bcl-2, Bcl-

extra large (Bcl-xL), and myeloid cell leukemia 1 (Mcl-1), as well as

pro-apoptotic proteins including Bcl-2-associated X protein (Bax),

Bcl-2-associated death promoter (Bad), and a subgroup of “BH3-

only” proteins (e.g., BH3-interacting domain death agonist [Bid],

Bcl-2-interacting mediator of cell death [Bim], p53 upregulated

modulator of apoptosis [Puma], and phorbol-12-myristate-13-

acetate-induced protein 1 [Noxa]). These members orchestrate

mitochondrial outer membrane permeabilization through

dynamic interactions, ultimately determining cellular fate. Anti-

apoptotic proteins prevent apoptosis by stabilizing mitochondrial

membrane integrity, while pro-apoptotic proteins promote the

increase of mitochondrial outer membrane permeability. JNK/p38

MAPK was shown to induce apoptosis of OC-resistant cells by

phosphorylating and inactivating Bcl-2 (39, 40).

BH3-only is a subfamily of the Bcl-2 family, which is considered

to promote mitochondrial apoptosis. “BH3-mimetic drugs” inhibit

the expression of specific pro-survival Bcl-2 family proteins,

promote cell apoptosis, and overcome OC chemotherapy

resistance (41). Naftopidil, an a1-adrenergic receptor antagonist,

has been shown to overcome resistance to the MEK inhibitor

trametinib in OC by activating the JNK signaling pathway and

inducing BH3-only protein expression (42). Additionally, arsenic

trioxide has been shown to promote apoptosis in OC platinum-

resistant cells (43). Yuan et al. (44) found that arsenic trioxide

induces apoptosis in OC cells by activating Bim signaling, a member

of the BH3-only family, through JNK signaling. Furthermore, they

determined the threshold for overcoming cisplatin resistance. Sab is

a mitochondrial outer membrane scaffolding protein, and high
TABLE 1 Targeting the RAS/RAF/MEK/ERK signaling pathway for OC treatment.

Target Therapeutic Cancer Type
Trial
Number

Objective
Response Rate

Reference

MEK
Binimetinib
+ paclitaxel

Endometrioid Ovarian Cancer NCT01849874 14% (10)

MEK Binimetinib
LGSOC, fallopian tube or primary
peritoneum cancer

NCT01849874 16% (24)

MEK
+ PI3K

Binimetinib
+ buparlisib

Advanced solid tumors NCT01363232 12% (25)

MEK Trametinib Advanced solid tumor or lymphoma NCT00687622 10% (26)

MEK
+ PI3K

Buparlisib
+ Trametinib

Advanced solid tumors NCT01155453 29% (27)

MEK Trametinib LGSOC NCT02101788 26.2% (11)
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levels of the protein are associated with decreased Bcl-2 protein and

increased BH3-only proteins, thereby restoring the sensitivity of OC

cells to chemotherapeutic agents (45). Further studies found that

subchronic JNK inhibition induces changes in the concentration of

Bcl-2 and Bim proteins by altering Sab expression, leading to

increased OC resistance.

3.1.2 The caspase family
The cysteinyl aspartate-specific proteinase (caspase) family also

plays a central role in the executive phase of apoptosis. Caspases can

also reverse chemotherapy resistance by cutting specific proteins,

leading to the destruction of cell structure and function and

triggering endogenous or exogenous cell death events. Among

them, caspase-3 is a central effector of apoptosis (46). Pan et al.

(17) found that overexpression of g-synuclein can inhibit the

activation of the JNK pathway, reduce the phosphorylation of

downstream caspase-3, prevent cell apoptosis, and lead to

chemotherapy resistance to paclitaxel and vinblastine. Yan et al.

(47) showed that prostaglandin could regulate JNK activity and

prevent OC cell apoptosis by reducing caspase-3 activity. MT-4, a

derivative of mescalin, has been shown to activate p38 MAPK
Frontiers in Oncology 05
phosphorylation, reduce the expression of heat shock protein 27,

and promote the expression of caspase-3 activity, thereby

overcoming OC resistance (48). Tang et al. (49) found that cross-

reactive material 197 (CRM197), a specific HB-EGF inhibitor, could

enhance caspase-3 activity and OC apoptosis via the JNK/p38

MAPK pathway and reverse paclitaxel resistance.

3.1.3 p53
JNK can also promote apoptosis by regulating p53, which is a

transcription factor involved in apoptosis, cycle regulation, DNA

repair, and other processes (50). The p53 protein plays a key role in

Bcl-mediated apoptosis by regulating the pro-apoptotic BH3-only

proteins PUMA and NOXA to induce apoptosis (38). It can also

prevent the binding of Bcl-2 to pro-apoptotic proteins such as BAX,

thereby deregulating the anti-apoptotic function of Bcl-2 and

promoting apoptosis (38). Yuan et al. (51) found that PUMA, a

p53-upregulated regulator of apoptosis, can sensitize SKOV3 cells

to chemotherapy by enhancing caspase activation and

downregulating Bcl-xL and Mcl-1, resulting in apoptosis. Studies

have shown that p53 mutations lose their cancer suppressor

function and promote tumor initiation and progression (52).
FIGURE 2

Targets of JNK/p38 MAPK signaling pathway in OC drug resistance. ABCB1, ATP-binding cassette sub-family B member 1; P-gp, P-glycoprotein;
DUSP1, Dual specificity phosphatase 1; Beclin 1, LC3, Genes involved in autophagy; TME, Tumor microenvironment; CAFs, Cancer-associated
fibroblasts; VEGF, Vascular endothelial growth factor; ECM, Extracellular matrix; EVs, Extracellular vesicles.
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Potapova et al. (53) demonstrated that inhibiting the expression of

JNK1/2 using highly specific JNK antisense oligonucleotides

suppressed the growth of cells with mutated p53 (e.g., HGSOC)

but did not affect the growth of cells with normal p53 function. This

suggests that JNK exerts its pro-apoptotic function only in P53-

deficient tumor cells. Using in vitro studies, Zhao et al. (54)

demonstrated that insulin and cisplatin can activate the JNK

signaling pathway, increase p53 expression and the percentage of

S-phase cells, promote apoptosis, and enhance the efficacy of

cisplatin (Table 2).
3.2 Autophagy

Autophagy is a cellular process of self-degradation and self-

protection. Under stress conditions such as chemotherapy, hypoxia,

and radiation, autophagosomes are formed to encapsulate damaged

organelles and misfolded proteins in the cytoplasm and transport

them to lysosomes for degradation, thereby maintaining cellular

homeostasis (55). Therefore, autophagy is activated when OC cells

are stimulated by chemotherapy drugs (56). Autophagosome

formation and increased autophagy flux enable tumor cells to

clear the cell damage caused by chemotherapy drugs so that these

cells can survive under drug pressure, leading to the generation of

drug resistance (57). However, excessive or sustained autophagy can

directly mediate or contribute to cell death and reverse OC

resistance (57, 58).

When cells are exposed to commonly used chemotherapy drugs

such as cisplatin or paclitaxel, JNK/p38 MAPK activates and

regulates the expression of autophagy-associated proteins,

promoting autophagosome formation and enhancing autophagy

flow. Beclin 1 and Microtubule-associated protein 1 light chain 3

(LC3) are crucial in autophagy. The JNK/p38 MAPK signaling

pathway induces autophagy in OC cells and increases

autophagosome formation and autophagic flux by promoting the

conversion of LC3-I to LC3-II and the formation of

autophagosomes (59). Zhu (60) et al. analyzed the mutation

profiles of 62 HGSOC and found that overexpression of FGF19 in

the fibroblast growth factor family promotes the phosphorylation of

p38 to induce autophagy, upregulates the expression of LC3 and
Frontiers in Oncology 06
Beclin-1, and promotes cisplatin resistance in OC cells. Conversely,

the knockdown of FGF19 downregulates the phosphorylation of

p38 to reverse cisplatin chemoresistance.

The Unfolded Protein Response (UPR) is a pro-survival

mechanism that is activated when unfolded or misfolded proteins

accumulate in the endoplasmic reticulum (ER), leading to JNK/Ap-

1 activation and increased autophagy (61). Yang et al. (62) found

that JNK3 activation through the UPR pathway promoted acid/

lysosomal compartment accumulation, blocked autophagy flux

during ER stress, and reduced ROS levels in OC-resistant cells to

promote OC cell survival.

Sustained activation of the JNK/p38 MAPK pathway can lead

to apoptosis or excessive autophagy, resulting in a state of

“autophagy cell death” or “autophagy addiction.” JNK/p38

MAPK can also reverse OC resistance by regulating the balance

between apoptosis and autophagy (63). Zhao et al. (64) found that

propranolol can upregulate the expression of LC3-II and caspase-3

by activating the ROS/JNK signaling pathway, induce apoptosis

and autophagy of OC cells, and restore cell sensitivity to

chemotherapy. Guo et al. (65) demonstrated that MAP2K6-FP, a

genetically engineered fusion protein targeting the MAPK kinase

pathway, enhances paclitaxel sensitivity in OC by inducing

autophagy. This chimeric protein contains three functional

domains (1): a HO8910 OC cell-specific binding peptide (2), the

TAT protein transduction domain for cellular internalization, and

(3) the MKK6(E) effector domain with anti-tumor activity.

Mechanistically, MAP2K6-FP upregulated p38 expression,

elevated LC-3 and Beclin-1/Bcl-2 levels, and amplified

autophagic flux, thereby overcoming chemoresistance in OC

models. Mishra et al. (66) showed that photothermal therapy can

induce autophagy to overcome drug resistance by activating JNK

signaling and UPR signaling pathways in OC chemoresistant cells.

While autophagy serves as a self-protection mechanism that

enables resistance of OC cells to chemotherapy, sustained activation

of autophagy by JNK/p38 MAPK signaling can trigger the

“autophagic cell death process.” Autophagic cell death can

override cellular survival mechanisms by excessive autophagy or

modulating the balance between apoptosis and autophagy. This

process re-sensitizes OC cells to chemotherapeutic agents and

reverses OC drug resistance.
TABLE 2 Substances affecting OC resistance through apoptosis.

Drug or substance
Effect on JNK/
p38 MAPK

Target Effect on OC References

Naftopidil Activate BH3-ONLY Overcoming drug resistance (42)

Arsenic Trioxide Activate BH3-ONLY Overcoming drug resistance (43, 44)

g-synuclein Inhibit caspase-3 Drug resistance (17)

Prostaglandin Inhibit caspase-3 Drug resistance (47)

MT-4 Activate caspase-3 Overcoming drug resistance (48)

CRM197 Activate caspase-3 Overcoming drug resistance (49)

Insulin Activate P53 Overcoming drug resistance (54)
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3.3 DNA damage response

Platinum chemotherapeutic agents, such as cisplatin and

carboplatin, impede DNA replication and transcription by

twisting the DNA Double helix, causing single-strand breaks,

double-strand breaks (DSB), and chromosome rearrangements,

ultimately resulting in cell death. When DNA damage occurs,

abnormal activation of the DNA damage response (DDR) is

responsible for pausing the cell cycle and initiating DNA repair.

Cell cycle checkpoints regulate cell cycle transitions by acting on the

cell’s G1, S, and G2/M phases. This process can provide time for

DNA repair when cell cycle arrest occurs, leading to chemotherapy

resistance (67). However, in some cases, inducing cell cycle arrest at

specific stages and increasing the accumulation of DNA damage can

promote apoptosis and reverse chemoresistance in OC cells.

3.3.1 DNA damage repair
JNK/p38 MAPK is act ivated when st imulated by

chemotherapeutic agents to regulate apoptosis and enhance the

effect of chemotherapeutic agents. However, in DDR, JNK/P38

MAPK can be activated in response to DNA damage,

participating in the DNA damage repair process and leading to

treatment resistance (68, 69). Cell division cycle 2 (Cdc2)-like

kinase plays a role in RNA splicing, cell cycle regulation, DDR,

and other cellular functions. Jiang et al. (70) found that p38 can

enhance DNA damage repair through phosphorylation of Cdc2-like

kinase, resulting in OC resistance. Erlotinib exerts its anti-tumor

effects by inducing DSBs in cancer cells, triggering cell death by the

accumulation of unrepaired DNA damage (71). However, p38

MAPK activation can initiate the DDR mechanism, which repairs

the DNA damage and regulates cell cycle checkpoints. This repair

process reduces DNA damage-induced apoptosis, ultimately

contributing to erlotinib resistance (72). In p53-deficient tumor

cells, the p38/MK2 pathway is activated and reactivates cell cycle

checkpoints to repair the damage, thereby inducing chemotherapy

resistance (73, 74). However, when combined with platinum or

paclitaxel, RNA peptide nano complexes blocked cell cycle

inspection of p38/MK2, sensitized pp53 deficient HGSOC mice to

chemotherapeutic agents, and improved overall survival by 37%

(75). Seino et al. (76) demonstrated that the high activity of JNK

would promote cisplatin resistance through various phosphokinase

assays, and the combination of cisplatin and JNK inhibitor

(SP600125) could enhance DNA damage to reverse cisplatin

resistance. The longevity gene SIRT6 has been identified as a

critical factor in stimulating DSB repair. Studies have shown that

JNK activates DNA DSB repair by stimulating the phosphorylation

of SIRT6 during oxidative stress conditions, leading to OC

resistance (77).

3.3.2 Mechanisms of cell cycle regulation
JNK/p38 MAPK can reverse chemoresistance by inducing cell

cycle arrest and amplifying DNA damage accumulation. Cyclin D1

and CDK4/6, critical regulators of the G1/S transition, form

complexes that drive cell cycle progression (78). However, p38

MAPK inhibits this process by degrading Cyclin D1 and disrupting
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Cyclin D1/CDK4 complexes, thereby arresting cells in the G1/S

phase (79). Cannell et al. (80) demonstrated that p38 could bind to

growth arrest and DNA damage-inducible 45a (Gadd45a), control
G1/S and G2/M cell cycle checkpoints, and influence OC resistance.

Similarly, tocotrienols activate JNK/p38 MAPK signaling to induce

G1/S arrest, leading to OC cell death and re-sensitization to

cisplatin (81).

In the G2/M phase, Cyclin B1/CDK1 complexes promote cell

cycle progression (82), but p38 MAPK exerts checkpoint control by

degrading Cyclin B1. This regulatory mechanism is exploited by

therapeutic agents such as Chaetoglobosin K (ChK), a fungal

metabolite that induces G2 arrest through p53 activation and

p38-dependent Cyclin B1 phosphorylation, selectively inhibiting

cisplatin-resistant OC cells (83). Conversely, cell cycle and

apoptosis regulator 2 promote cisplatin resistance by suppressing

p38 signaling and sustaining Cyclin B1/CDK1 activity (84).

Notably, pharmacological modulation of this checkpoint

demonstrates clinical potential. The synthetic compound

MPT0G066 (13.28-fold more potent than paclitaxel) activates

JNK to induce G2/M arrest, thereby re-sensitizing resistant OC

cells to cisplatin (85). LB100, a PP2A inhibitor, eliminates cisplatin-

induced G2/M arrest by prolonging JNK activation, effectively

overriding checkpoint-mediated survival and restoring

chemosensitivity (86).
3.4 The tumor microenvironment

TME consists of immune cells, Cancer-associated Fibroblasts

(CAFs), Vascular Endothelial Growth Factor (VEGF), adipocytes,

Extracellular Matrix (ECM), and extracellular vesicles (EVs), which

play a crucial role in OC treatment resistance. Due to the unique

characteristics of OC metastasis in the peritoneal cavity, OC cells

can survive in ascites as floating unicellular or multicellular spheres,

forming a characteristic OC TME (87). Increasing evidence suggests

that targeting the TME may be a promising strategy for reversing

OC chemoresistance.

Tumor-associated macrophages, an essential component of

immune cells in TME, can secrete many pro-inflammatory

cytokines, TNF-a, TGF-b, IL-1, IL-6, and IL-12, to enhance the

immune response. JNK can be activated by TGF-b, interferon-g,
and other mediated immune evasion mechanisms that affect OC

resistance (76, 88). Mitra et al. (89) found that TGFb1 can induce

stemness and chemoresistance in OC cells by activating ERK1/2

and JNK/p38 MAPK pathways and targeting them to participate in

epithelial-mesenchymal transition (EMT). Bioinformatic analysis of

Gene Expression Omnibus and The Cancer Genome Atlas

databases revealed that CAFs affect OC chemoresistance through

the p53, cell cycle, PI3K-AKT, and MAPK pathways (90). Izar et al.

(91) found that stimulating the expression of CAFs stimulated the

formation of OC-specific TME, which increased HGSOC

aggressiveness and drug resistance. IL-6 secreted by CAFs is one

of the essential pro-inflammatory cytokines and plays a crucial role

in OC resistance (92). Alspach et al. (93) reported that p38

promotes IL-6 expression by affecting the RNA-binding protein
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AUF1, but inhibition of p38 blocks the tumor-promoting ability of

CAFs. Curtis et al. (94) found that p38 can provide nutrients

through glycogen phosphorylation to alter the metabolic state in

OC TEM and support the survival of drug-resistant OC cells.

Samuel et al. (95) found that administering chemotherapeutic

agents to OC cells induced EV release via JNK/p38 MAPK

signaling, increasing drug resistance in OC cells. Octreotide, a

somatostatin analogue, in combination with paclitaxel, can

reverse paclitaxel resistance by inhibiting p38 and decreasing the

expression of VEGF (96).

ROS, a critical regulator of TME, is closely related to the

occurrence of OC resistance (97). Elevated levels of ROS can

induce oxidative DNA damage and stimulate long-term activation

of JNK, which plays an essential role in reversing drug resistance

(98). ROS can mitigate OC resistance by oxidizing cysteine residues

of ASK1, thereby activating the downstream JNK/p38 MAPK

pathway (99). Li et al. (100) found that BH3-only protein mimic

ABT-737 enhanced the activation of JNK and ASK1 by increasing

ROS levels in cells in a time-dependent manner, overcoming

cisplatin resistance in A2780/DDP cells. Ovendazole can inhibit

the proliferation of drug-resistant OC cells through ROS-mediated

activation of the JNK/p38 MAPK signaling pathways, leading to

G1/S or G2/M cell cycle arrest (99).

Thus, JNK/p38 MAPK activation interacts with immune cells

and pro-inflammatory factors in the TME to support the survival of

OC cells, leading to chemoresistance. However, during persistently

elevated levels of ROS, sustained activation of JNK/p38 MAPK can

lead to apoptosis of otherwise drug-resistant cells. This finding

offers insights into the development of novel therapeutic strategies

for treating OC resistance.
3.5 Drug effluent

Multidrug Resistance (MDR) leads to a lack of sensitivity to

multiple chemotherapy drugs, which is the main reason for

chemotherapy failure. The overexpression of ATP-binding

cassette (ABC) transporters is the leading cause of MDR in

chemotherapy. P-glycoprotein (P-gp), the most studied protein of

the ABC transporter family, is encoded by the ABCB1 gene encodes

and affects the uptake of chemotherapy drugs by pumping them out

of tumor cells (101).

Evidence suggests that the p38 signaling pathway can enhance

drug efflux and participate in OC resistance formation by inducing

the upregulation of ABC transporter protein expression. p38 can

increase the expression of ABC transporter proteins by activating

the downstream transcription factor NF-kB, which binds to and

upregulates the ABCB1 promoter. Afatinib, an ATP-competitive

aniline-quinazoline compound, can inhibit ABCB1 transcriptional

expression by downregulating p38-dependent activation of NF-kB,
thereby reversing ABCB1-mediated MDR (102). Dual specificity

phosphatase 1 (DUSP1), also known as MKP-1, is a class of

phosphokinase capable of dephosphorylating MAPK substrates.

Overexpression of DUSP1 leads to increased phosphorylation of

p38. Kang et al. (103) found that activation of p38 by DUSP1
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enhanced the expression of P-gp, but did not alter the activation of

ERK1/2 and JNK1/2, ultimately affecting the efflux of anticancer

drugs from the OC.
3.6 MicroRNA

MicroRNA (miRNA) is a class of small non-coding RNAs,

which are 18–25 nucleotides long, and alter tumor sensitivity to

treatment by regulating gene expression and apoptosis (104).

Dysregulation of miRNA expression is an important cause of OC

chemotherapy resistance (105). Therefore, correcting miRNA

dysregulation is a promising therapeutic strategy to reverse

chemoresistance (106).

Inhibition of the JNK/p38 MAPK signaling pathway was found

to downregulate the expression levels of miRNAs involved in

regulating chemotherapeutic drug sensitivity-related miRNAs and

mediated OC chemoresistance. Kumar et al. (107) showed that the

downregulation of miR-20b targets genes such as DUSP8 and

inhibits p38 in A2780/CP70 drug-resistant OC cell lines, leading

to cisplatin resistance. Yin et al. (108) showed that downregulating

miR-545-3p leads to cisplatin resistance by reducing the activity of

the JNK signaling pathway. Fos-related antigen-1 (Fra-1), a part of

the AP-1 transcription factor complex, can amplify ERK/JNK

signaling and reduce chemosensitivity in OC cells by promoting

miR-134 expression (109). Activation of JNK-1/c-Jun pathway was

found to upregulate its miR-21 expression, leading to decreased

levels of the tumor suppressor gene programmed cell death protein

4 (PDCD4), increased cell proliferation, and development of OC

cisplatin resistance (110). Jiang et al. (111) showed that restoring the

expression of miR-139-5p in drug-resistant cells can inhibit the

expression of c-Jun, increase the expression of Bcl-xl, activate

caspase-9 and caspase-3, and reverse cisplatin resistance in

OC (Table 3).
3.7 Activation time

Further study of the JNK/p38 MAPK pathway has revealed that

different activation times may lead to different cellular responses

and biological effects. The JNK/p38 MAPK pathway is usually

activated during the initial phase of chemotherapy to induce

apoptosis or other cell death mechanisms. However, in drug-

resistant cells, activation of the pathway may be delayed,

attenuated, or shortened in duration.

Different activation timings may determine the fate of OC cells.

Transient JNK/p38 MAPK activation is usually associated with pro-

survival effects, whereas sustained JNK/p38 MAPK activation may

be pro-apoptotic (112). Davis et al. (112) found that the activation

time of JNK/p38 MAPK persisted for 12 hours in cisplatin-sensitive

cells, while it was limited to 1–3 hours in cisplatin-resistant cells.

LB100 can eliminate cisplatin-induced cell cycle arrest and sensitize

OC cells to cisplatin by altering the temporal order and persistence

of JNK activation (91). Elevated expression of HB-EGF (an EGFR

ligand) contributes to cancer cell resistance to paclitaxel, and
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shedding the extracellular domain of HB-EGF can induce sustained

activation of JNK/p38 MAPK to overcome this resistance (113).

Mansouri et al. (114) showed that the JNK/p38 MAPK pathway

plays a central role in cisplatin-induced apoptosis of OC cells by

activating the expression of the downstream target pro-apoptotic

cytokine FasL. Furthermore, the duration of sustained activation is

a critical early determinant of cisplatin-induced apoptosis, as

transient activation fails to maintain c-Jun and ATF-2

phosphorylation and upregulate FasL expression.

Thus, successful treatment depends not only on the

combination and dosage of drugs but also on the timing,

duration, and order of administration (115). A better

understanding of the dynamic process of OC resistance will

facilitate the clinical development of more effective therapeutic

strategies for OC resistance.
3.8 Crosstalk between signaling pathways

The mechanism of drug resistance in OC is complex and

multifactorial, involving multiple pathways. The PI3K/AKT

pathway engages in bidirectional crosstalk with JNK/p38 MAPK,

creating a dynamic equilibrium that dictates OC cell survival under

therapeutic stress. Mechanistically, AKT suppresses JNK-mediated

apoptosis by phosphorylating and inactivating ASK1, a key

upstream kinase in the JNK pathway (116). Conversely, p38

inhibition prevents AKT dephosphorylation and inhibits the AKT

pathway, thereby reinforcing PI3K/AKT-dependent survival

signaling—a paradoxical interaction that underscores the

complexity of pathway interdependencies (117). This stress-

adaptation mechanism contributes to the development of OC

resistance. For example, the ER protein HERPUD1 activates both

PI3K/AKT/mTOR and p38 pathways to maintain autophagy and

block apoptosis, thereby driving platinum resistance in OC models

(118). Clinically, compensatory pathway activation poses a

significant challenge. Resistance to PI3K/AKT inhibitors in OC

patients is frequently associated with ERK upregulation and p38

suppression, suggesting a survival mechanism where ERK

compensates for inhibited AKT. Notably, dual inhibition of ERK

and AKT disrupts this cytoprotective feedback, synergistically

eliminating cisplatin-resistant OC cells (119, 120). Growth factor

signaling further amplifies this network, with FGF2 overexpression
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activating p38 and AKT to upregulate anti-apoptotic proteins (Bcl-

2/Bcl-xL) and cell cycle drivers (Cyclin D1). Co-targeting FGF2-

activated p38 and PI3K/AKT pathways reverses adriamycin

resistance, highlighting the therapeutic potential of combinatorial

approaches (121).

NF-kB acts as a key sink node to promote inflammatory

responses and cellular survival under stress by blocking DNA

damage-induced apoptosis through the inhibition of sustained

activation of JNK (122, 123). Meanwhile, p38 upregulates anti-

apoptotic proteins (such as Bcl-xL) and inflammatory factors (such

as IL-6) through NF-kB activation. Hence, p38 promotes OC cell

survival (124, 125).

Additionally, Wnt/b-catenin and HIF-1a pathways are

involved in JNK/p38MAPK pathway crosstalk. Phosphorylation

of b-catenin by JNK contributes to OC chemotherapy resistance

by promoting cancer stem cell survival and inducing EMT (126–

128). Furthermore, glycolysis mediated by the p38-HIF1a axis

promotes the survival of chemoresistant OC cells in a hypoxic

environment. Modulating HIF-1a activity by inhibiting p38, in

combination with glucose analogues and platinum compounds,

could enhance the efficacy of chemotherapy and represents a

promising therapeutic strategy for OC (129).

In summary, the intricate crosstalk between JNK/p38 MAPK,

PI3K/AKT, NF-kB, Wnt/b-catenin, and metabolic pathways forms

a robust network that sustains OC cell survival under therapeutic

stress. While this complexity poses significant challenges, it also

offers multiple therapeutic vulnerabilities. Future research should

focus on combinatorial therapies: Simultaneously targeting multiple

nodes (e.g., PI3K/AKT + JNK/p38 + NF-kB) to overcome

compensatory pathway activation.
4 JNK/p38 MAPK inhibitors and
natural compounds to treat OC
resistance

Targeting JNK and p38 MAPK may be a promising strategy to

reverse OC resistance due to their important roles in

chemoresistance. Several potent and specific inhibitors of JNK and

p38 MAPK have been developed to restore cancer cells’ sensitivity to

chemotherapy drugs and reverse chemotherapy resistance (Table 4).
TABLE 3 Effect of miRNAs on OC drug resistance.

miRNA Target
Signaling
pathways

Function Impact on OC References

miR-20b DUSP8 p38 Downregulate drug-resistant (107)

miR-545-3p PPA1 JNK Downregulate drug-resistant (108)

miR-134 Fra-1 ERK/JNK Upregulate drug-resistant (109)

miR-21 PDCD4 JNK Upregulate drug-resistant (110)

miR-139-5p Bcl-xl/caspase-3/9 JNK Downregulate reverse drug resistance (111)
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4.1 JNK inhibitors

SP600125 is a JNK inhibitor that inhibits JNK kinase activity and the

JNK signaling pathway by specifically blocking the ATP-binding site of

the JNK protein. There is growing evidence that SP600125 can mediate

autophagy and apoptosis to overcome drug resistance in several

malignant tumors and reverse OC resistance by regulating the cell

cycle in the G2/M phase (122). Seino et al. (76) showed that combining

cisplatin and SP600125 enhanced DNA damage to reverse cisplatin

resistance, but the therapeutic effect was diminished when SP600125 was

combined with paclitaxel. Notably, pretreating OC cells with SP600125

for three days before administrating cisplatin or paclitaxel inhibited basal

JNK activity and reduced chemotherapy resistance without increasing

toxicity. Thus, this time-staggered inhibition of JNK effectively enhances

the sensitivity of cisplatin and paclitaxel. However, the clinical

application of SP600125 is limited because it is a broad-spectrum JNK

reversible inhibitor that is non-specific and can inhibit multiple kinases.

AS602801 is an oral, selective JNK inhibitor and anticancer stem cell

candidate, which has been shown to reduce the expression of survivin,

making OC-resistant cells sensitive to paclitaxel but not carboplatin or

cisplatin (123). In the future, AS602801 can be combined with other

inhibitors to inhibit the growth and survival of OC cells more effectively.
4.2 p38 inhibitor

Evidence suggests that p38 inhibitors can increase the sensitivity of

OC cells to cisplatin and reverse drug resistance. SB203580, a widely

used p38 inhibitor, showed a synergistic effect of cisplatin and SB203580

in OC Cisplatin IGROV-1/Pt1 cells, resulting in greater apoptosis than

cisplatin alone (130). Xie et al. (131) found that metformin combined

with SB203580 application inhibited Excision Repair Cross-

Complementation Group 1 (ERCC1) expression in OC-resistant cells

and enhanced the sensitivity of OC cisplatin-resistant cells. Additionally,

JNK inhibitors can be used in combination with p38 inhibitors. Zhu

et al. (132) found that SB203580 or SP600125 inhibited EMT and

reduced metastasis in OC cells. Chen et al. (133) showed that SB202190

combined with SP600125 inhibited autophagy flux and EMT to inhibit
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drug resistance. Despite the promising evidence from in vivo and in

vitro studies demonstrating the effectiveness of JNK/p38 MAPK

inhibitors, progress has been slow in clinical trials. The p38 inhibitor

BIRB 796 has been shown to inhibit ABCB1-mediated MDR147 and is

currently undergoing clinical trials (NCT02211157) (134).

Research on JNK/p38 MAPK inhibitors in OC is still in the initial

stage. JNK/p38MAPK inhibitors may cause side effects on normal cells,

affecting their efficacy and safety in vivo. Additionally, many inhibitors

lack specificity and may interact by targeting other kinases, affecting

drug selectivity and side effects. Furthermore, effective drug delivery

remains a crucial challenge because different isoforms have different

functions in a cellular environment-dependent manner. Further in-

depth studies on its mechanism of action and clinical application are

needed to develop new strategies and methods for treating OC.
4.3 Natural compounds targeting JNK/p38
MAPK to reverse ovarian cancer
chemoresistance

Natural compounds derived from medicinal plants and

traditional formulations have emerged as promising agents to

overcome chemoresistance in OC by modulating JNK/p38 MAPK

signaling. Compared with traditional chemotherapy, these

compounds exhibit multi-target effects, including apoptosis

induction, DNA repair suppression, and cell cycle arrest, while

demonstrating lower systemic toxicity than conventional

chemotherapy (135) (Table 5).

4.3.1 Apoptotic pathway activation
Astragalus polysaccharide, derived from Astragalus

membranaceus, activates JNK to downregulate Bcl-2 and

upregulate Bax/caspase-3, restoring cisplatin sensitivity in OC

cells (136). Tubeimoside I, derived from Bolbostemma

paniculatum, enhances p38-mediated Bax activation while

suppressing Bcl-2, effectively reversing platinum resistance (137).

Deguelin, a flavonoid from Derris trifoliata, synergizes with

paclitaxel to inhibit p38, downregulating Bcl-2 and Mcl-1 in
TABLE 4 Summary of inhibitors targeting the JNK/p38 MAPK signaling pathway.

Target Name of inhibitor Mode of action Note References

JNK SP600125 Regulate G2/M phase Non-specific: may inhibit multiple kinases (122)

Enhanced DNA damage
Therapeutic effect attenuated when combined with paclitaxel,
but pretreatment of OC cells for three days enhanced the
sensitivity of cisplatin and paclitaxel

(76)

JNK AS602801 Decreases survivin expression Not effective against carboplatin or cisplatin (123)

p38 MAPK SB203580 Increase apoptosis Non-specific: affecting other members of the MAPK family (130)

Increased ERCC1 expression (131)

JNK/p38 MAPK SB203580/SP600125 Suppresses EMT (132)

JNK +
p38 MAPK

SB202190 + SP600125
Inhibits autophagic flux
and EMT

(133)

p38 MAPK BIRB796 Inhibits ABCB1-mediated MDR Entered clinical trials (NCT02211157) (134)
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SKOV3-TR cells (40). Kaempferol, a flavonoid from fruits/

vegetables, upregulates ERK/JNK/CHOP signaling and increases

death receptors (DR4/DR5) expression, overcoming OC resistance

(138). Noscapine, derived from Papaver somniferum, activates JNK

to induce apoptosis in paclitaxel-resistant cells by disrupting

tubulin dynamics (139).

4.3.2 DNA repair disruption
Glaucocalyxin B, derived from Rabdosia japonica, overcomes

OC cisplatin resistance by mediating JNK pathway activation and

increasing DNA damage (140). b-Elemene, derived from Curcuma

wenyujin rhizomes, downregulates DNA repair activity and inhibits

JNK activation, sensitizing OC cells to cisplatin (141). Tanshinone

IIA, derived from Salvia miltiorrhiza, activates p38 to downregulate

ERCC1, a critical mediator of platinum adduct removal (142).

4.3.3 Cell cycle arrest
NK007, derived from Litsea cubeba, induces G1/S arrest via p38

upregulation, overcoming paclitaxel resistance (143). Curcumin,

derived from Curcuma longa, induces p38-dependent G2/M arrest

and inhibits PI3K/AKT survival signaling in cisplatin-resistant OC

cells (144). Evodiamine, derived from Nvidia officinal, induces G2/

M phase arrest by activating p38 and inhibits P-glycoprotein (P-

gp)-mediated drug efflux (145).

4.3.4 Clinical challenges and emerging strategies
In treating OC, natural compounds have demonstrated

significant potential for reversing chemoresistance by modulating

the JNK/p38 MAPK signaling pathway. However, clinical

application faces challenges, including poor bioavailability, limited
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pharmacokinetic stability, and batch-to-batch variability in

quality control.

Advanced delivery systems have been developed to improve

efficacy and reduce off-target toxicity. For instance, triptolide-loaded

nanoparticles derived from Tripterygium wilfordii enhance the

targeting efficiency of JNK/p38 while reducing hepatotoxicity (146).

Similarly, curcumin demonstrates promising effects in drug-resistant

human OC cells when delivered via nanocarriers (146). These

innovative approaches improve the therapeutic efficacy of natural

compounds and mitigate their side effects, enhancing their clinical

applicability. Future studies on bioavailability, pharmacokinetics, and

quality control of natural compounds are expected to change the

treatment landscape for patients with OC resistance.
5 Discussion and conclusion

The JNK/p38MAPK signaling pathway exhibits a dual role in OC

chemoresistance, paradoxically promoting both apoptosis and tumor

cell survival. Our analysis reveals that JNK/p38 MAPK activation

under chemotherapy-induced stress initially triggers apoptosis and

DDR to eliminate compromised cells. However, dysregulated

signaling shifts toward pro-survival mechanisms, including

enhanced autophagy, DNA repair, and drug efflux, enabling OC

cells to evade treatment. This adaptive reprogramming is amplified

through crosstalk with PI3K/AKT, NF-kB, Wnt/b-catenin, and HIF-

1a pathways, collectively sustaining a therapy-resistant TME. Notably,

transient JNK/p38 MAPK activation promotes survival, whereas

prolonged signaling induces apoptosis or autophagic cell death. This

temporal duality highlights the potential of chronotherapeutic
TABLE 5 Natural compounds reverse OC resistance via JNK/p38 MAPK.

Category Compound Source Pathway Target Function Reference

Apoptotic

Astragalus polysaccharide
Astragalus
membranaceus

JNK Bcl-2 Downregulate (136)

Tubeimoside I
Bolbostemma
paniculatum

p38 Bcl-2 Downregulate (137)

Deguelin Derris trifoliata p38 Bcl-2/Mcl-1 Downregulate (40)

Kaempferol Fruits/vegetables ERK/JNK/CHOP DR4/DR5 Upregulate (138)

Noscapine Papaver somniferum JNK
Disrupt
tubulin dynamics

(139)

DNA
Repair Disruption

Glaucocalyxin B Rabdosia japonica JNK
DNA
repair disruption

(140)

b-Elemene
Curcuma
wenyujin rhizomes

JNK
DNA
repair disruption

(141)

Tanshinone IIA Salvia miltiorrhiza p38 ERCC1 Downregulate (142)

Cell Cycle Arrest

NK007
Litsea
cubeba (Lauraceae)

p38 G1/S (143)

Curcumin Curcuma longa
p38
PI3K/AKT

G2/M (144)

Evodiamine Evodia officinalis p38
G2/M
P-gp

Downregulate (145)
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approaches, such as staggered chemotherapy dosing, to exploit

cumulative DNA damage in resistant cells.

Targeting JNK/p38 MAPK presents a promising strategy to reverse

OC chemoresistance. Preclinical studies demonstrate that inhibitors like

SP600125 (JNK) and SB203580 (p38) restore cisplatin sensitivity by

augmenting apoptosis and cell cycle arrest, although clinical translation

remains limited. Natural compounds, including curcumin, Astragalus

polysaccharides, and b-elemene, show multimodal regulation of JNK/

p38 MAPK signaling with lower toxicity profiles compared to

conventional chemotherapeutics. Nanotechnology innovations (e.g.,

curcumin-loaded liposomes and triptolide nanoparticles) address

bioavailability challenges while improving tumor-specific delivery.

Despite these advances, clinical implementation faces multifaceted

challenges. First-generation JNK/p38 MAPK inhibitors exhibit off-

target effects and systemic toxicity. While natural products offer multi-

target advantages, standardization issues related to pharmacokinetics,

stability, and quality control hinder their clinical adoption.

Furthermore, OC heterogeneity necessitates biomarker discovery

(e.g., p38a overexpression, RAS/RAF mutations) to identify patients

most likely to benefit from JNK/p38-targeted therapies.

Future research should focus on the following three aspects.

First, exploring the mechanism of action of the JNK/p38 MAPK

signaling pathway, developing JNK and p38 MAPK inhibitors with

higher specificity and fewer adverse reactions, and exploring new

natural compounds will be key to advancing OC treatment. Second,

combination therapy targeting multiple nodes in the JNK/p38

MAPK pathway and other interacting pathways helps to

overcome compensatory pathway activation. Alternatively,

interleaved administration before chemotherapy, combined with a

chronotherapy approach, provides a more comprehensive

therapeutic strategy. Third, advancing research and the discovery

of innovative biomarkers such as p38a overexpression and RAS/

RAF mutations will facilitate the stratification of patients according

to their gene expression profiles, thereby providing personalized

treatment options for patients. Therefore, regulating JNK/p38

MAPK can help mitigate resistance to OC chemotherapy

ultimately improving the survival and quality of life of OC patients.
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Glossary

AKT protein kinase B
Frontiers in Oncology
AMPK AMP-activated protein kinase
CAF Cancer-associated fibroblast
OC Ovarian cancer
MAPK Mitogen-Activated Protein Kinases
ERK Extracellular Signal-Regulated Kinases
JNK c-Jun N-terminal kinase
LGSOC Low-Grade Serous Ovarian Carcinoma
HGSOC High-grade serous ovarian carcinoma
ROS Reactive oxygen species
NF-kB Nuclear factor-kB
PI3K Phosphoinositide 3-kinase
TME Tumor microenvironment
TNF-a Tumor necrosis factor-a
TGF-b Transforming growth factor-b
IL-1 Interleukin-1
IL-6 Interleukin-6
IL-12 Interleukin-12
16
VEGF Vascular endothelial growth factor
ECM Extracellular matrix
EVs Extracellular vesicles
MDR Multidrug resistance
ABC ATP-binding cassette
P-gp P-glycoprotein
DUSP1 Dual specificity phosphatase 1
MKP-1 MAPK phosphatase-1
miRNA MicroRNA
DSB Double-strand breaks
DDR DNA damage response
Gadd45a Growth arrest and DNA damage-inducible 45a
ChK Chaetoglobosin K
HB-EGF Hepatocyte growth factor-regulated tyrosine kinase substrate
FGF2 Fibroblast growth factor 2
HIF-1a Hypoxia-inducible factor-1a
ERCC1 Excision repair cross-complementation group 1
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