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Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer

characterized by the lack of estrogen receptor (ER), progesterone receptor (PR),

and human epidermal growth factor receptor 2 (HER2). Chemotherapy remains

the primary treatment option, yet TNBC frequently develops resistance, leading

to relapse and metastasis. Emerging evidence highlights the potential of

combining DNA methylation inhibitors with immune checkpoint inhibitors

(ICIs). DNA methylation contributes to immune escape by silencing immune-

regulatory genes, thereby reducing the tumor’s visibility to immune cells.

Reversing this epigenetic modification can reinvigorate immune surveillance

and enhance the efficacy of immunotherapies. This review discusses the role

of DNA methylation in TNBC progression and immune evasion, focusing on

recent advances in combination therapies involving DNA methylation inhibitors

and ICIs. We discuss the underlying mechanisms that enable these therapeutic

synergies, preclinical and clinical evidence supporting the approach, and the

challenges posed by tumor heterogeneity, drug resistance, and toxicity. Finally,

we explore the potential for personalized treatment strategies incorporating

multi-omics data to optimize therapeutic outcomes. The integration of

epigenetic therapies and immunotherapy offers a promising avenue for

improving survival in TNBC patients.
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Introduction

Breast cancer is a heterogeneous disease comprising several

subtypes, with Triple-Negative Breast Cancer (TNBC) representing

approximately 10-15% of all cases (1). Unlike other subtypes, TNBC

lacks expression of ER, PR, and HER2 (2). The absence of these

critical receptors makes TNBC non-responsive to hormone-based

therapies and correlates with higher metastatic potential and shorter

overall survival rates (3–6). TNBC tumors are often more prone to

early metastasis, particularly to visceral organs, and show poor

differentiation at the cellular level. The tumor microenvironment,

including immune cells and stromal interactions, is crucial in driving

TNBC’s aggressiveness (7). TNBC is also associated with high

genetic and phenotypic heterogeneity, complicating treatment

efforts (8).

TNBC comprises multiple subtypes, including basal-like 1

(BL1), basal-like 2 (BL2), mesenchymal (M), mesenchymal stem-

like (MSL), and luminal androgen receptor (LAR) subtypes. The

BL2 subtype, enriched in growth factor signaling pathways, often

exhibits stronger resistance to chemotherapy, whereas the BL1

subtype typically shows greater sensitivity to DNA-damaging

agents (9). The LAR subtype is characterized by low immune cell

infiltration and M2 macrophage activity, which are associated with

poorer responses to immunotherapy and worse prognoses (10). In

contrast, the BL1 and BL2 subtypes may benefit more from

immunotherapy due to higher immune activation markers.

Chemotherapy remains the mainstay treatment for TNBC, but

it is fraught with challenges. Despite being more sensitive to initial

chemotherapy compared to other breast cancer subtypes, TNBC

frequently develops resistance, leading to relapse and metastasis (8).

Various molecular pathways often mediate this resistance, such as

the overexpression of ATP-binding cassette (ABC) transporter

proteins, which actively efflux chemotherapy drugs from cancer

cells (11). The current standard of care for TNBC involves

anthracycline and taxane-based chemotherapy regimens. While

these therapies have demonstrated efficacy in early-stage disease,

their effectiveness diminishes significantly in relapsed and

metastatic cases due to the emergence of multi-drug resistance

(2). Moreover, newer agents like immune checkpoint and PARP

inhibitors have shown promise, but only a subset of patients

respond favorably, leaving a substantial proportion with limited

options (12). As a result, ongoing research is focused on identifying

novel targets and combination therapies to overcome resistance and

improve outcomes in TNBC patients.
Emergence of immunotherapy in
cancer treatment

Cancer immunotherapy has rapidly expanded, revolutionizing

treatment strategies across multiple malignancies. The main targets

of these therapies are inhibitory receptors such as programmed

death-1 (PD-1), programmed death-ligand 1 (PD-L1), and

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) (13–15).

These molecules play a crucial role in downregulating immune
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responses, which tumors exploit to escape immune surveillance.

Blocking these pathways has significantly improved outcomes for

various cancers, including melanoma, non-small cell lung cancer,

and renal cell carcinoma (16).

The first immune checkpoint inhibitors were approved for

advanced-stage melanoma, showing long-lasting remissions in

previously untreatable patients (17). PD-1 inhibitors such as

nivolumab and pembrolizumab, as well as CTLA-4 inhibitor

ipilimumab, have demonstrated durable responses across multiple

cancer types by releasing the “brakes” on the immune system,

allowing T cells to attack cancer cells more effectively. However,

these treatments are not without challenges, as only a subset

of patients exhibit favorable responses due to factors such

as tumor mutation burden and the immunosuppressive tumor

microenvironment (18).
Limited efficacy of immunotherapy as
a monotherapy in TNBC

Despite the success of immune checkpoint inhibitors in other

cancer types, their efficacy as monotherapy in TNBC has been

limited. Although the introduction of ICIs targeting PD-1 and PD-

L1 has shown promise, especially in combination with

chemotherapy, the immune landscape of TNBC often presents

substantial barriers to effective treatment (19, 20).

One major limitation is immune evasion. These include the

recruitment of immunosuppressive cells such as regulatory T cells

(Tregs) and myeloid-derived suppressor cells, as well as upregulation

of inhibitory receptors like TIM-3 and LAG-3, which reduce the

efficacy of PD-1/PD-L1 blockade (19). TNBC often exhibits the

characteristics of cold tumors, including a lack of tumor antigens,

defects in antigen presentation, and insufficient T-cell infiltration in

tumor tissues due to the failure of T cells to go home successfully.

These mechanisms limit the effectiveness of ICIs (21). Moreover,

MYC gene amplification is associated with the absence of immune

cell infiltration, while mutations in the PI3K-AKT pathway may

suppress the activation of innate immunity (22). To overcome these

limitations, ongoing research explores combination therapies that

include ICIs with chemotherapy, PARP inhibitors, and other

immune-modulatory agents. These combinations aim to turn

“cold” tumors into “hot” tumors, enhancing the immunogenicity of

TNBC and improving patient outcomes (23, 24).
Epigenetic mechanisms and
cancer progression

Epigenetic modifications, including DNA methylation, histone

modifications, and non-coding RNA (ncRNA) regulation, are

pivotal in cancer development and progression. DNA methylation

typically occurs at CpG islands in the promoter regions of genes,

silencing tumor suppressor genes in many cancers (25). Histone

modifications, such as acetylation and methylation, regulate

chromatin structure, influencing gene expression. The enzymes
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involved in these modifications, such as histone deacetylases

(HDACs) and histone methyltransferases, are often dysregulated

in cancer, leading to aberrant transcriptional activation or

repression (26). Non-coding RNAs, particularly microRNAs and

long non-coding RNAs (lncRNAs), further modulate gene

expression by affecting mRNA stability and translation (27).

These epigenetic mechanisms are reversible, making them

attractive targets for therapeutic intervention. Drugs targeting

DNA methylation and histone modifications, such as DNA

methyltransferase inhibitors (DNMTis) and HDAC inhibitors, are

actively explored for cancer therapy, demonstrating promising

results in hematologic and solid tumors (28).

Epigenetic modifications, particularly DNA methylation, are

intimately involved in TNBC’s immune evasion strategies. DNA

methylation is a critical epigenetic mechanism that adds a methyl

group to the cytosine ring within CpG islands, primarily in gene

promoters. This process is catalyzed by DNA methyltransferases

(DNMTs), such as DNMT1, DNMT3A, and DNMT3B, which play

a crucial role in maintaining gene silencing (29, 30). Aberrant DNA

methylation is prevalent in tumors, with variations in methylation

levels across different regions exerting distinct impacts on gene

transcription (Figure 1). Aberrant DNA methylation, particularly

promoter hypermethylation, leads to the transcriptional repression

of tumor suppressor genes, contributing to cancer initiation and

progression (31). On the other hand, increased CpG site

methylation within gene bodies can enhance gene expression,

potentially by stabilizing the transcript (32). Blagitko-Dorfs (33)

et al. discovered that the combined use of DNMT and HDAC
Frontiers in Oncology 03
inhibitors can downregulate oncogenes such as MYC in acute

myeloid leukemia cells through the demethylation of gene bodies.

This demonstrates that targeting gene body demethylation may

represent a viable epigenetic therapeutic strategy. DNAmethylation

can silence the expression of immune-related genes, including those

involved in antigen presentation and interferon signaling pathways,

which are critical for an effective immune response (34).
Interaction between DNA methylation
and immune evasion

DNA demethylating agents have demonstrated therapeutic

or diagnostic potential in hematological disorders (35), and in

clinical trials involving patients with recurrent glioblastoma (36)

and chemotherapy-resistant hepatocellular carcinoma (37).

Furthermore, as reported by Linnekamp et al. (38), partial clinical

responses have been observed in several solid tumors, including

breast cancer, lung cancer, and colorectal cancer. These responses

are characterized by gene demethylation and re-expression in certain

patients. DNA methylation frequently silences immune-regulatory

genes, impacting immune surveillance and evasion (39, 40).

Hypermethylation leads to silencing tumor suppressor genes and

immune-related genes, including those involved in antigen

presentation and interferon signaling pathways (31). This silencing

directly impacts immune escape mechanisms, as it reduces the

expression of major histocompatibility complex (MHC) molecules

and other immune-related markers, which are essential for effective
FIGURE 1

The role of DNA methyltransferase inhibitors in tumor immunity. DNMTis reactivate epi-silenced genes and suppress oncogene expression by
reducing DNA methylation. This process enhances antiviral immune responses, activates immune-related genes, and strengthens T-cell-mediated
immunity. It modulates the tumor microenvironment, restores immune escape genes, and suppresses oncogene-driven pathways, collectively
improving tumor immune surveillance and therapeutic outcomes.
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immune surveillance and response (41). Hypermethylation of

immune-regulatory genes like PD-L1 reduces the tumor’s ability to

be recognized by cytotoxic T lymphocytes, promoting immune

evasion and resistance to therapies (26). These findings suggest that

targeting DNAmethylation pathways could restore immune function

and improve therapeutic outcomes in TNBC.

DNA methylation also plays a role in downregulating immune

checkpoints, further enhancing immune evasion. The silencing

of STING (stimulator of interferon genes), a crucial component

of the innate immune response through DNA methylation,

has been observed in TNBC. This silencing reduces the

recruitment of immune cells to the tumor site, diminishing the

anti-tumor immune response (42). Additionally, epigenetic

modifications of immune-related genes contribute to the

resistance in immunotherapy treatments, highlighting the

potential of combining DNA methylation inhibitors with

immunotherapy to overcome immune evasion (43).
Epigenetic modifications and the
tumor microenvironment

Epigenetic modifications also influence the tumor

microenvironment, enhancing tumor survival and resistance

to therapy. TNBC’s aggressive nature is partly due to the

epigenetic remodeling of the extracellular matrix (ECM), which

facilitates metastasis and therapeutic resistance (44). TNBC is

notorious for its ability to evade the immune system by creating

an immunosuppressive tumor microenvironment (TME) (45). One

of the primary mechanisms involves the upregulation of immune

checkpoint molecules such as PD-L1, which binds to PD-1 on T

cells, effectively “turning off” the immune response and allowing the

tumor to grow unchecked (46). This immune checkpoint blockade

dampens cytotoxic T cell activity and enables TNBC cells to evade

immune surveillance. TNBC tumors are also proficient at recruiting

immunosuppressive cell populations, including regulatory T cells

(Tregs) and myeloid-derived suppressor cells (MDSCs), further

suppressing the anti-tumor immune response (47, 48).

Tregs (CD4+Foxp3+) cells, play a crucial role in immune

evasion by secreting immunosuppressive cytokines such as IL-10

and TGF-b. These cytokines inhibit the activity of cytotoxic T cells

and natural killer cells, thereby protecting the tumor from immune-

mediated destruction (46). Similarly, MDSCs are known to suppress

T cell proliferation and cytokine production, facilitating the tumor’s

ability to escape immune detection (49). Together, these

mechanisms create an immune-tolerant environment that allows

TNBC to progress.
Clinical relevance

DNA methylation biomarkers hold significant prognostic value

in TNBC. Studies show that aberrant DNAmethylation patterns are

associated with poor prognosis and resistance to conventional

therapies, such as chemotherapy and immunotherapy (50, 51).
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DNA methylation-induced silencing of tumor suppressor genes

and immune-related genes contributes to chemotherapy resistance

by preventing the reactivation of apoptotic pathways in cancer

cells (52).

Moreover, DNA methylation has emerged as a mechanism of

resistance to immunotherapies. Tumors with hypermethylated

immune-regulatory genes often show reduced responsiveness to

immune checkpoint inhibitors, which aim to enhance the body’s

immune response against cancer (53). Combining DNMT

inhibitors with immunotherapies has demonstrated the potential

to reverse resistance and improve outcomes in TNBC patients.
Combining DNA methylation with
immunotherapy in TNBC

DNA methylation inhibitors, such as azacitidine and decitabine,

are designed to reverse the epigenetic silencing of genes involved in

immune regulation and tumor suppression. In the context of TNBC,

these inhibitors can restore the expression of immune-related genes,

enhancing the effectiveness of immunotherapies like ICIs (54). The

hypermethylation of immune-related genes, particularly those involved

in antigen presentation, limits immune cell infiltration and recognition,

thus contributing to immune evasion in glioma (55). By reversing these

epigenetic modifications, DNA methylation inhibitors promote

immune activation, increasing tumor antigen visibility to cytotoxic T

cells (56, 57). Preclinical studies have demonstrated the synergistic

effects of combining DNA methylation inhibitors with ICIs in various

cancers, including TNBC. For example, the combination of decitabine

with anti-PD-1 therapy in mouse models of pancreatic cancer showed

significantly improved survival rates, mediated by increased tumor-

infiltrating lymphocytes and a reduction in immunosuppressive cell

populations (58). Similar results have been observed in TNBC, where

decitabine treatment increases the expression of antigen-presenting

genes, such as MHC class I, leading to enhanced T cell-mediated

immune responses (59). The underlying mechanisms of synergy

between DNA methylation inhibitors and ICIs include enhanced

immune cell infiltration, increased antigen presentation, and

decreased levels of immunosuppressive factors within the TME.

These effects are critical for converting immunologically “cold”

tumors into “hot” tumors, which are more responsive to immune

checkpoint blockade (53). Preclinical evidence suggests combining

these therapies can induce durable anti-tumor responses, even in

patients with advanced or resistant cancers.
Challenges and limitations of
combination therapy

One of the most significant challenges in treating TNBC with

combination therapies, is the intrinsic heterogeneity of TNBC

tumors. This diversity leads to varying responses to treatments, as

different subclones within a tumor may respond differently to the

same therapy (60). Recent studies suggest that identifying TNBC

subtypes with specific DNA methylation or immune-related gene
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expression patterns may help personalize treatment strategies,

improving the likelihood of therapeutic success (61). By

classifying tumors into more homogeneous subgroups, therapies

can be tailored to target the unique molecular features of each

subtype, potentially overcoming the challenges posed by

heterogeneity. Integrating large-scale multi-omics data requires

addressing challenges such as computational demands, data

standardization, and robust bioinformatics pipelines. From an

ethical perspective, greater attention must be given to patient

privacy, data security, and equitable access to personalized

treatments derived from multi-omics data.

DNA methylation inhibitors face limitations in clinical application

due to the broad spectrum of their target effects. Currently, these

inhibitors are primarily used for refractory myelodysplastic syndromes

and leukemia, where their therapeutic benefits have been clinically

validated. However, the therapeutic efficacy remains unclear in solid

tumors, as multiple genes may be epigenetically activated, complicating

the treatment outcomes. DNA methylation inhibitors may also trigger

compensatory or demethylation events that allow cancer cells to

maintain their malignant phenotype despite treatment. Biomarkers

such as PD-L1 expression, tumor mutational burden, and specific

methylation patterns are being investigated to predict which patients

will most likely benefit from these treatments (62).

The combination of DNA methylation inhibitors with

immunotherapy introduces potential toxicity concerns, including

immune-related adverse events (irAEs) and off-target effects.

Immune checkpoint inhibitors can lead to autoimmune reactions,

affecting organs such as the liver, lungs, and thyroid (38, 63).

Similarly, DNA methylation inhibitors can cause off-target gene

demethylation, potentially leading to unwanted gene expression

changes that exacerbate toxicity. Studies have reported toxicities

such as neutropenia, anemia, and elevated liver enzymes in patients

receiving combination therapy.
Future prospects

Biomarkers such as DNA methylation signatures, immune cell

infiltration profiles, and circulating tumor DNA (ctDNA) are emerging

as potential tools for predicting response to combination therapies in

TNBC. Recent advances in single-cell sequencing have enabled more

precise characterization of tumor heterogeneity and immune cell

interactions, leading to the discovery of novel biomarkers that may

guide treatment decisions (64). These biomarkers can also helpmonitor

treatment response and detect early signs of resistance, allowing for

timely adjustments in therapy (65). Developing predictive biomarkers

such as tumor-infiltrating lymphocyte (TIL) profiles and PD-L1

expression could improve patient selection for immunotherapy-based

treatments, increasing the likelihood of therapeutic success (66).

There is growing interest in exploring other epigenetic therapies,

such as histone deacetylase (HDAC) inhibitors. HDAC inhibitors can

modulate gene expression, enhancing immune recognition of tumors

and sensitizing cancer cells to immune checkpoint inhibitors (67).

Dual targeting of epigenetic mechanisms, such as combining HDAC

inhibitors with DNA methylation or immune checkpoint inhibitors,

may lead to more robust anti-tumor responses in TNBC (13).
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the infiltration of immune cells into tumors and promote the

expression of tumor antigens, making them attractive candidates

for combination therapies in TNBC (68).
Conclusion

The combination of DNA methylation and immune checkpoint

inhibitors holds promise for enhancing the therapeutic efficacy of

TNBC. By reversing the epigenetic silencing of immune-regulatory

genes, tumor visibility to immune cells can be improved, potentially

overcoming the immune evasion characteristic of TNBC. While

preclinical and early clinical trials have provided encouraging

results, challenges such as tumor heterogeneity, resistance, and

toxicity must be addressed. Future research should focus on

utilizing multi-omics integration techniques within combination

therapy groups to explore the mechanisms of personalized

treatment, thereby defining specific therapeutic strategies to

improve patient outcomes.
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