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The diagnostic value of
convolutional neural networks
in thyroid cancer detection
using ultrasound images
Pei Zhang, Qijian Xu and Feng Jiang*

Department of Ultrasound Medicine, The First Affiliated Hospital of Wannan Medical College,
Wuhu, China
Objective: To extract and analyze the image features of two-dimensional

ultrasound images and elastic images of four thyroid nodules by radiomics, and

then further convolution processing to construct a prediction model for thyroid

cancer. The purpose of this studywas to explore the diagnostic efficacy of themodel.

Methods: In this study, 199 cases of thyroid nodules were collected from August

2023 to July 2024, and all thyroid nodules had B-ultrasound-guided fine needle

aspiration biopsy (FNA) pathological results/postoperative pathological results,

including 79 cases of benign nodules and 120 cases of malignant nodules. In this

study, four thyroid cancer prediction models were constructed and compared,

including convolutional neural network (CNN), gradient boosting (GB), logistic

regression (LR), and ultrasound and clinical feature models. In addition, the clinical

feature model was constructed by using the clinical information of patients and

ultrasound image features, and the predictive performance of four thyroid cancer

models was evaluated and compared. The area under the receiver operating

characteristic curve (AUC), accuracy, specificity, and sensitivity were used to

validate the predictive power of the model. Finally, we used the Delong test to

comparewhether therewas a significant difference in AUCbetween the fourmodels.

Results: The CNN model performed well in the Area Under the Curve (AUC) and

ACC (Accuracy) indicators, reaching 0.853 and 0.85, respectively, which were

significantly better than the Gradient Boosting, Logistics regression and clinical

characteristics models. The AUC, ACC, SPE, and SEN of the Gradient Boosting

model were 0.653, 0.67, 0.709, and 0.63, respectively, the Logistics regression

model was 0.701, 0.71, 0.6, and 0.714, and the clinical characteristic model was

0.663, 0.69, 0.708, and 0.57, respectively. The outstanding performance of CNN

highlights its potential in the field of image recognition.

Summary: CNN model has shown strong predictive ability in ultrasound image

analysis of suspicious thyroid nodules, which not only provides a powerful

auxiliary diagnostic tool for clinicians, but also provides new directions and

possibilities for future medical image analysis research.
KEYWORDS

ultrasound elastography, thyroid cancer prediction model, convolutional neural
network, sonogram, machine learning
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Background

Thyroid cancer is one of the most common endocrine cancers by

far. With the fast-paced social life, the incidence of thyroid malignancy

is increasing every year, according to global epidemiological data (1–4).

The thyroid gland is one of the important endocrine organs of the

human body, and there are many ways to examine the thyroid gland,

such as physical examination, blood examination, CT, MRI, B-

ultrasound, thyroid scintigraphy, and ultrasound-guided thyroid fine

needle biopsy (5–7). But after comparison, ultrasound is now the most

widely used means to detect and diagnose thyroid cancer (8–10).

Ultrasonography is a safe, convenient, non-invasive, and reproducible

diagnostic technique that can observe thyroid echo changes, accurately

locate thyroid nodules, identify echo signatures within thyroid nodules,

and discover annular punctate blood flow signals within nodules,

allowing small lesions to be detected and blood flow within them

assessed (11–15).

Elastography is an ultrasound technique for evaluating the

stiffness of nodules (16–19). STE is a newly developed shear wave

elastography technology combined with ultra-wide beam tracking

technology, which can display shear wave elastic images in real

time, which can not only detect the edge hardness of the nodule, but

also detect the internal hardness (15, 20, 21). Although ultrasound is

the mainstay of thyroid nodule evaluation, there is inter-observer

variability in the diagnosis of C-TIRADS class 4 nodules,

particularly in the differentiation of ‘indeterminate’ nodules (4a-

4c). Most of the existing computer-aided diagnostic systems are

based on B-ultrasound features or operation-dependent SWE

technology, which has limited reproducibility. In this study, strain

elastography (STE), a more stable technique than SWE, was used in

combination with CNN radiomics methods to solve these problems.

Ultrasound radiomics can extract a large number of

quantitative imaging features from ultrasound images, use

artificial intelligence and other methods to combine ultrasound

images with pathological histology, genetics or proteomics data of

diseases, and provide additional information beyond what can be

detected by conventional ultrasound, so as to improve the accuracy

of ultrasound diagnosis (9, 15, 22). It is capable of extracting high-

throughput features from ultrasound images, such as shape features,

first-order grayscale histogram features, second-order and higher-

order texture features, and filtering and transform-based features

such as wavelet features (18, 22, 23). These features can reflect the

heterogeneity within tumors and provide useful information for

improving the diagnostic efficiency of tumors (10, 12, 21).

Clinically, ultrasound diagnosis is used as a screening

technique, and after a suspicious malignant nodule is diagnosed, a

fine-needle aspiration biopsy is usually performed to confirm the

diagnosis (24, 25). Although ultrasound (US) and ultrasound

elastography (STE) have been maturely applied to the diagnosis

of various thyroid nodules, there are still some misdiagnoses and

needle biopsies. US imaging requires specialized competence and

hands-on experience because it is a handheld imaging modality that

has not yet been standardized like other imaging modalities.

Automatic identification of anatomical structures minimizes the

dependence on subjective judgment of the examiner. Therefore, the
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application of new technologies such as machine learning

algorithms in clinical routine can help to further improve the

diagnosis of suspicious thyroid nodules and help avoid some

unnecessary needle biopsies. Therefore, this study mainly

investigated the accuracy of convolutional neural network

combined with ultrasound technology in diagnosing suspected

thyroid cases, and explored whether the accuracy can be further

optimized to reduce unnecessary needle biopsy (26, 27, 28).
Materials and methods

Dataset

This retrospective study was approved by the Ethics Committee

of our hospital and no written informed permission is required. A

total of 199 patients with thyroid nodules diagnosed with C-

TIRADS category 4 by ultrasound examination in our hospital

from August 2023 to July 2024 and who underwent surgical

treatment or B-ultrasound-guided fine needle aspiration biopsy

with confirmed pathological results, including 65 males and 134

females. Inclusion criteria: (1) C-TIRADS score of 4 categories in

routine ultrasonography without any clinical treatment; (2) All

patients in this study had pathological results of B-ultrasound-

guided fine needle aspiration biopsy/postoperative pathological

results; (3) All patients underwent routine color Doppler

ultrasound and ultrasound elastography before surgery, and the

image data and clinical data were complete. Exclusion Criteria: (1)

Poor image quality, the lump is too large, beyond the reach of the

probe; (2) Those who have undergone radiotherapy and

chemotherapy; (3) Patients with excessive internal calcification of

the nodule accompanied by severe posterior sound and shadow.

We initially included 295 patients. However, in the course of the

study, we encountered some situations that needed to be ruled out.

First, 36 patients had nodules that exceeded the scope of our probes

or had too many cystic or calcified components inside the nodules,

which affected our accurate assessment of the nodules.

Subsequently, 39 patients were excluded due to poor image

quality or incomplete clinical data. Finally, there were 21 patients

who did not have surgery or fine-needle aspiration biopsy (FNA) or

who had already received clinical treatment, which also did not

meet our criteria. After these screenings, we were finally left with

199 patients, including 79 benign nodules and 120 malignant

nodules. These data provide us with a more precise sample

population for subsequent analysis and research. The specific

process is shown in the structural flow diagram of Figure 1.
Image acquisition equipment and
inspection methods

The ultrasound examination was performed by a sonographer

with ten years of work experience, using a domestically produced

Mindray Resona 7T ultrasound diagnosis, equipped with an L14–5

high-frequency linear array probe (its frequency range is 5-14MHz),
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with an STE mode inside. The patient was instructed to take a

supine position, remove neck jewelry, fully expose the neck, apply

an appropriate amount of couplant, and perform routine

ultrasound examinations on the patient’s thyroid gland one by

one in order, and ask the patient to avoid shaking, swallowing,

coughing, etc. as much as possible during the examination. Adjust

the instrument reasonably to obtain a clear image of the nodule and

store it in the background of the instrument. After obtaining the

target nodule through routine ultrasound, the maximum

longitudinal section of the nodule was selected, the instrument

was switched to sonotouch elasticography (STE) mode, the nodule

was placed in the center of the area of interest, the patient was

instructed to hold his breath for three seconds, and when the image

was stable, no obvious artifacts were present, and the elastic quality

was the best (i.e., the M-STB Index reached 4 or 5 stars), the image

was frozen and stored in the background of the instrument.
Data collection

The clinical characteristics of thyroid patients in our hospital

were retrospectively collected in the follow-up and case system of
Frontiers in Oncology 03
our hospital, and the relevant ultrasound features were obtained

from the acquired images. This information includes: patient

gender, age, height, weight, smoking history, radiation history,

history of automalignancy, family history of malignancy; Nodule

location, size (<1 cm, >1 cm), morphology (regular, irregular),

internal echo (hypoechoic, medium-high echoic), internal

composition (solid, cystic), aspect ratio (>1, <1), margins (clear,

blurred), relationship with the dorsal membrane (away from the

dorsal membrane, close to the dorsal membrane, breaking through

the dorsal membrane), calcification (coarse calcification,

microcalcification, no calcification), Adler blood flow grading

(grade 0, grade I, grade II, grade III).
Feature extraction

When processing thyroid ultrasound image data, we

implemented a series of pre-processing steps to ensure data

consistency and comparability. First, all ultrasound images,

including elastic and conventional ultrasound images, were

standardized and normalized in a critical step designed to

eliminate image differences due to different imaging devices or
FIGURE 1

Schematic diagram of the collection process of patients with thyroid nodules.
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settings by uniformly adjusting the gray level of the images to a

range of 0 to 1. Then, the Python programming language (version

3.7) was used in combination with its powerful open-source library

Pyradiomics (version v3.1.0) to dig deeper into the radiomics

features in these ultrasound images. This process covers not

only the basic first-order features, but also the shape features,

traditional texture features, and more complex higher-order

texture features. The extraction of higher-order texture features

relies in particular on advanced image processing techniques

such as wavelet transform and Laplace Gaussian (LoG) filtering,

which can reveal subtle structures and patterns in images that

are not easily noticeable. In the end, we succeeded in extracting

a total of 104 features from each thyroid ultrasound image,

which comprehensively and exhaustively portrayed the multiple

attributes of the image. These rich feature sets are then used

as input data to construct a benign and malignant thyroid

diagnostic model, aiming to accurately predict the nature (benign

or malignant) of thyroid nodules through machine learning or deep

learning algorithms.
Model building

The process of processing 199 groups of ultrasound images of

suspicious thyroid nodules and applying machine learning

to classify them is a series of meticulous and systematic steps.

First, participants were randomly divided into a training set and a

test set in a 7:3 ratio, and the collected image data needed

to undergo rigorous preprocessing to ensure image quality,

including denoising, enhanced contrast, and standardized size.

The PyRadiomics package was used to extract key quantitative

features from the images, and the extracted features were

normalized and standardized in the training set and the test set,

respectively, and these features could reflect the morphological and

textural information of the nodules. Subsequently, feature selection

is performed to determine the subset of features that are most

valuable to the classification task, reducing data dimensions and

avoiding overfitting. The Minimum Absolute Shrinkage and

Selection Operator Method (LASSO) was used to reduce the

dimensionality of features, and the features were further selected,

and the optimal tuning parameters were selected through 10-fold

cross-validation, and the features with non-zero regression

coefficients were selected from these candidate features.

In the analysis of ultrasound images of thyroid nodules, the

extracted omics features were applied to three different machine

learning models to evaluate their performance in the classification of

benign and malignant thyroid nodules. Firstly, the scikit-learn library

in Python 3.7 was used to construct a random forest (RF) and a logistic

regression model. Random forest is an ensemble learning method that

improves the accuracy and robustness of classification by constructing

multiple decision trees and voting on them. Logistic regression is a

simple linear model for dichotomous problems that predicts the

probability of an event by estimating the maximum likelihood.

Secondly, the convolutional neural network (CNN) model

was built using the PyTorch package. One-dimensional
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CNNs are particularly effective for processing sequence data,

as they can capture local features efficiently. Additionally, CNNs

have a relatively small number of parameters, making them

computationally efficient. This allows for faster training and

inference, reducing the demand for computing resources.

Moreover, CNNs are highly adaptable and can handle various

types of ultrasound radiomics data. The structure of the model is

illustrated in Figure 2.

In SPSS 27, a logistic regression model is constructed, and its

statistical analysis capabilities are used to evaluate the predictive

power of the model. After the model is built, the prediction results

are displayed in tabular form, including the AUC values of each

model on the training and test sets. The AUC value, i.e., the area

under the receiver operating characteristic curve, is an important

indicator to evaluate the performance of the classification model,

which can reflect the ability of the model to distinguish between the

two categories.

By comparing the AUC values of different models on the

training set and the test set, the model with the best performance

was selected. For the selected optimal model, the ROC curves of the

training set and the validation set are plotted and summarized.

Finally, AUC, accuracy (ACC) and confusion matrix were used to

comprehensively evaluate the performance of the model.
Outcome

Clinical features

A total of 199 cases were included in this study, including 120

cases of malignant nodules and 79 cases of benign nodules. Among

them, there were 65 males and 134 females, aged 21~83 years old,

with an average age of 47.4 ± 13.6 years. There were statistically

significant differences between the benign and malignant groups in

the size, morphology, internal composition, aspect ratio, and family

history of malignant tumors (P < 0.05), however, there were no

significant differences between the benign and malignant groups in

terms of age, height, weight, gender, smoking history, radiation

history, menstrual status, mass location, margin, and the

relationship between the mass and the dorsal membrane (P >

0.05), as shown in Table 1.
Clinical feature analysis and model
establishment

By integrating the clinical features of thyroid cancer, such as

tumor size, morphology, internal composition, aspect ratio, and family

history of malignant tumors, and using logistic regression analysis, a

thyroid benign and malignant classification model was successfully

constructed, as shown in Table 2. This model can effectively classify

and predict thyroid cancer based on these clinical features. The

accuracy and predictive ability of the model were demonstrated

through the ROC curve, as shown in Figure 3. The AUC value of

the thyroid benign and malignant classification model based on
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clinical features can reach 0.663. This curve comprehensively

considers the sensitivity and specificity of the model, and evaluates

its diagnostic performance.
Ultrasound imaging omics feature
extraction

In the omics feature analysis of ultrasound medical images, I used

machine learning, convolutional neural networks (CNN), and logistic

regression methods to conduct in-depth mining and analysis of image

data. Through LASSO feature dimensionality reduction technology,

we have selected the most representative features from a large number

of image features to construct an efficient classification model.

For the machine learning model, we ultimately selected five

ultrasound imaging omics features that showed high discriminative

ability in image analysis. They are original_firorder_Sinimum:

minimum eigenvalue.

Origina_firstorder_range: range of grayscale values; Original-

glcm_ClusterShade: Cluster shadow, an indicator used to measure

the skewness and uniformity of GLCM; Original-ngtdm_Cntrast:

contrast; Original-ngtdm_Strength: Intensity, as shown in Figures 4,

5, the minimum eigenvalue, grayscale value range, and correlation

coefficient values of cluster shadows can be observed to reach 0.05643,

0.04401, and 0.05286, respectively. Among the five radiomics

features, in the convolutional neural network model, we further

refined the feature selection and selected 10 features, including the

original first-order statistical features (such as minimum value, range,

etc.), the features of the gray level co-occurrence matrix (GLCM)

(such as Cluster Shade), and the features of the adjacent gray level

tone difference matrix (NGTDM) (such as Contrast and Strength).

The selection of these features is based on their importance in

image texture analysis. For example, first-order statistical features
Frontiers in Oncology 05
can reflect the grayscale distribution of the image, while GLCM and

GLDM can reveal the texture information of the image, such as

roughness, uniformity, and directionality. NGTDM can provide

additional information about grayscale changes in images.

In the convolutional neural network model, in addition to the

above features, there are also percentile based statistical features such

as 10th percentile, 90th percentile, and maximum value, which can

provide more details about the grayscale distribution of the image. In

addition, it also includes variance features that reflect local

dependencies and changes in the image, such as the Dependence

Variation of GLDM and the Gray Level Non Uniformity of GLRLM.

By fusing these features, convolutional neural networks can capture

both micro and macro features of images, thereby improving the

accuracy of the model in classifying benign and malignant thyroid

nodules. The weight graph analysis shows that specific features such as

wavele t-LHH_glcmSizeShade_CC and log-s igma-3-0-

mm3D_glcmContrast MLO have significant weights in the model,

indicating that they play a key role in classification decision-making.
Model effectiveness evaluation

When comparing the diagnostic performance of four model

classification algorithms for benign and malignant thyroid cancer,

we found that the CNN classification model had the best predictive

performance on the test set, as shown in Table 3, with the highest

AUC value of 0.853 (95% confidence interval: 0.773-0.933), and

demonstrated high accuracy (ACC) of 0.85, specificity (SPE) of

0.909, and sensitivity (SEN) of 0.807 on the training set. The

Gradient Boosting classification model performs the worst among

all models, with an AUC value of 0.653 (95% confidence interval:

0.504-0.802), accuracy of 0.67, specificity of 0.709, and sensitivity of

0.63. The AUC value of the Logistics Returns classification model is
FIGURE 2

Schematic diagram of the CNN model structure.
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TABLE 1 Shows the distribution of chi-square clinical features.

Clinical and Ultrasound
Characteristics

Malignant group (n=120) Benign group (n=79) c2 P

Gender

man 35 (63.4%) 20 (36.6%) 0.353 0.552

woman 85 (59.0%) 59 (41.0%)

Menopause

\ 34 (63.0%) 20 (37.0%) 3.452 0.178

Not postmenopausal 48 (66.7%) 24 (33.3%)

Postmenopausal 38 (52.1%) 35 (47.9%)

Family history of malignancy

Not 100 (56.8%) 76 (43.2%) 7.718 0.005*

Yes 20 (87.0%) 3 (13.0%)

History of smoking

Not 85 (58.2%) 61 (4.8%) 0.993 0.319

Yes 35 (66.0%) 18 (34.0%)

History of radiology

<3 45 (60.0%) 30 (40.0%) 0.005 0.946

>3 75 (60.5%) 49 (39.5%)

History of malignancy

Not 115 (61.2%) 73 (38.8%) 0.516 0.472

Yes 5 (45.5%) 6 (54.5%)

Morphology

Irregular 75 (67.6%) 36 (32.4%) 5.536 0.019*

Regular 45 (51.1%) 43 (48.9%)

The site of the lump

Isthmus 7 (53.8%) 6 (46.2%) 6.772 0.342

Upper right lobe 14 (82.4%) 3 (17.6%)

Middle right lobe 18 (62.1%) 11 (37.9)

Lower right lobe 30 (57.7%) 22 (42.3%)

Upper left lobe 14 (73.7%) 5 (26.3%)

Left lobe in the middle 11 (57.9%) 8 (42.1%)

Lower left lobe 26 (52.0%) 24 (48.0%)

Internal composition

Cystic 5 (33.3%) 10 (66.7%) 4.929 0.026*

Solidity 115 (62.5%) 69 (37.5%)

Relationship with the dorsal

Stay away from the back membrane 46 (56.8%) 35 (43.2%) 1.514 0.469

Keep away from the back 59 (60.8%) 38 (39.2%)

Breakthrough the back membrane 15 (71.4%) 6 (28.6%)

(Continued)
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0.701 (95% confidence interval: 0.583-0.819), with an accuracy of

0.71, specificity of 0.6, and sensitivity of 0.714. The AUC value of

the Clinical Features classification model is 0.663 (95% confidence

interval: 0.544-0.782), with an accuracy of 0.69, specificity of 0.708,

and sensitivity of 0.57. Overall, the CNN classifier performs the best

among all models, with the highest AUC value and overall

performance. As shown in Figure 6, the performance of Gradient
Frontiers in Oncology 07
Boosting classifiers is generally poor, while Logistics Returns and

Clinical Features classifiers, although performing fairly well in some

metrics, are inferior to CNN classification models in overall

performance. Therefore, based on its comprehensive performance,

we choose CNN as the preferred diagnostic algorithm for benign

and malignant thyroid cancer. Figure 7 shows the classification

results of the model constructed by the CNN classifier. The DeLong

test showed that there was a significant difference in AUC values

between Gradient Boosting and CNN (p=0.035), as well as between

CNN and Clinical Features and Logistics Returns (p=0.015 and

p=0.00015), as shown in Table 4.
TABLE 1 Continued

Clinical and Ultrasound
Characteristics

Malignant group (n=120) Benign group (n=79) c2 P

Aspect ratio

<1 58 (52.3%) 53 (47.7%) 6.794 0.009*

>1 62 (70.5%) 26 (29.5%)

The size of the lump

<1 93 (65.5%) 49 (34.5) 5.581 0.018*

>1 27 (47.4%) 30 (52.6%)
*P<0.05, the difference is statistically significant.
TABLE 2 Logistic regression analysis of thyroid ultrasound images.

Clinical and Ultrasound
Characteristics

b Standard deviation P OR 95% CI

Family history of malignancy 1.591 0.659 0.016 4.909 1.349~17.870

The size of the lump -0.457 0.355 0.198 0.633 0.316~1.270

Morphology -0.373 0.333 0.263 0.688 0.358~1.323

Internal composition 0.744 0.647 0.250 2.104 0.592~7.471

Aspect ratio 0.461 0.339 0.174 1.586 0.816~3.083

Constant -1.672 0.803 0.037 0.188
FIGURE 3

ROC curve chart based on the logistic regression model of clinical
characteristic model.
FIGURE 4

Bar chart of the correlation coefficients of ultrasound imaging
biomarker features for thyroid nodules.
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Discuss

Convolutional neural networks (CNNs) have shown significant

advantages in the field of medical image analysis, especially in the

classification of benign and malignant thyroid nodules, compared

to other traditional models such as gradient boosting models,
Frontiers in Oncology 08
logistic regression models, and models that rely solely on clinical

information. CNN can automatically learn complex feature

representations from image data through its deep learning

architecture, eliminating the tedious manual feature engineering,

which is particularly valuable in medical image analysis.

In this study, by comparing and analyzing the predictive value of

CNN with other models, the performance of each model can be

comprehensively evaluated, including the comparison of key

indicators such as accuracy, sensitivity, specificity, and AUC value.

Through the predictive performance tables of CNN, gradient

boosting model, logistic regression model, and clinical feature

model, as well as the confusion matrix of the four models for

predicting benign and malignant thyroid cancer, we can intuitively

see the high AUC and ACC values of the CNN model. The

performance of the CNN model on the training set is significantly

better than other models. Although its specificity is slightly lower

than sensitivity, it has the highest AUC and ACC values, as well as the

highest specificity and sensitivity, and performs the best in the test set.

The performance of Gradient Boosting model and Logistics Returns

model is similar, but they each have advantages in specificity and

sensitivity. The Clinical Features model needs further improvement

as it performs poorly on all evaluation metrics.

Delong test is a commonly used statistical method to evaluate

whether there are significant differences in the area under the

operating characteristic curve (AUC) of subjects in different

diagnostic models when comparing model performance. In this

study, we used the Delong test to compare the Delong test table of

three different models, namely the gradient boosting model, logistic

regression model, and clinical feature model, relative to the CNN

model. The results showed that the CNN model performed well in

predicting the malignancy of thyroid cancer, with significantly

higher AUC values than the other two models and the prediction

model that only used clinical features. This significant difference is

statistically significant because the P-values are all less than 0.05,

indicating that the predictive performance of the CNN model is

significantly better than other models in statistics. In contrast,

although the Gradient Boosting model and Logistics regression
FIGURE 5

The LASSO algorithm for feature selection in ultrasound imaging-based radiomics of thyroid nodules: A feature selection map screened by
LASSO algorithm.
TABLE 3 Predictive efficacy of CNN, gradient boosting model, logistic
regression model, and clinical feature model.

Model classification AUC ACC SPE SEN

CNN 0.853 0.85 0.909 0.807

Gradient Boosting 0.653 0.67 0.709 0.63

Logistics returns 0.701 0.71 0.6 0.714

Clinical featurs 0.663 0.69 0.708 0.57
FIGURE 6

ROC plots of four model.
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model also have some predictive ability, they have not reached the

level of CNN models in terms of AUC values.

In summary, CNN models have high accuracy and predictive

ability in distinguishing benign and malignant thyroid nodules.

Moreover, CNN models have significant advantages in processing

complex image data, especially in the field of medical image

analysis, such as benign and malignant classification of thyroid

nodules. This may be because CNN can automatically learn

complex feature representations from images without manually

designing feature extraction algorithms, thereby improving the

model’s generalization ability and prediction accuracy.

However, this study has certain limitations: 1. As a retrospective

study, it is difficult to avoid certain selection biases; 2. This study is a

single center, small sample size study, and further sample size

expansion and multi center validation of the model are needed in

the future; 3. Manually delineating ROI not only has certain

differences, but also increases the required time. In the future, we

will explore deep learning as an automatic segmentation method to

replace manual delineation.
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The CNN model can automatically learn the hierarchical

features of images through its multi-layer structure, which is

particularly prominent when compared with other traditional

models such as gradient boosting models, logistic regression

models, and models that rely solely on clinical information. This

article specifically applies the CNN architecture to ultrasound

radiomics, and greatly improves the accuracy of thyroid cancer

diagnosis through radiomics analysis of two-dimensional

ultrasound images and ultrasound elastography of thyroid

nodules. This was relatively rare in previous studies.

In addition, research progress in the field of medical image

analysis also indicates that deep learning models need to consider

the specificity of medical image data when processing it, such as

high inter class similarity, limited data volume, label noise, and

other issues. In order to improve the performance of the model,

researchers have adopted various strategies, including transfer

learning, unsupervised learning, semi supervised learning, and self

supervised learning. These methods help improve the performance

and generalization ability of the model with limited labeled data.
TABLE 4 Delong test of gradient boosting model, logistic regression model, and clinical feature model relative to CNN model.

Model classification Z P AUC differences Standard deviation 95% CI

Gradient Boosting 2.107 0.035* 0.189 0.090 0.013~0.366

Logistics returns 2.444 0.015* 0.152 0.062 0.030~0.274

Clinical features 3.509 1.05×10-4* 0.190 0.054 0.084~0.296
*P<0.05, the difference is statistically significant.
FIGURE 7

Confusion matrix of four models for predicting benign or malignant thyroid cancer.
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Using CNNs for thyroid cancer detection has great potential to

improve clinical practice. These models can analyze ultrasound images

accurately, helping doctors make better decisions. For example, CNNs

could be used as a first step to identify suspicious nodules, allowing

doctors to focus on more complex cases. This could reduce diagnostic

errors and make the process faster and more efficient.

However, there are some challenges. The model’s performance

depends on the quality and size of the dataset used for training. If

the dataset is too small or lacks diversity, the model might not work

well for all patients. Future research should focus on using larger,

more diverse datasets and improving the model’s ability to handle

different types of ultrasound images.

Another issue is that CNNs can be like a “black box,” making it

hard to understand how they make decisions. Developing methods

to explain the model’s predictions could help doctors trust and use

it more effectively.

In the future, combining ultrasound images with other patient

data, like medical history or lab results, could make the model even

more accurate. Testing the model in real-world clinics will also be

important to see how well it works in practice.

Overall, CNNs have the potential to transform thyroid cancer

diagnosis, but more work is needed to address current limitations

and ensure they can be used effectively in hospitals.
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