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Single-cell combined
transcriptome probes prognostic
mechanisms of sialylation-
related genes in cervical cancer
Gulinigaer Muhetaer, Xinyi He, Chenqing Yang,
Fenglan Guo and Ruifang An*

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University,
Xi’an, Shaanxi, China
Introduction: Sialylation has been linked to cervical dysplasia, while its

involvement in cervical cancer is uncertain. Hence , the aim of this study was

to develop a prognostic model based on sialylation-related characteristics for

cervical cancer patients and investigate how sialylation-related genes are altered

in cervical cancer via analyses of transcriptome and single-cell RNA sequencing

(scRNA-seq) data.

Methods: The current work incorporated 4 transcriptome datasets relevant to

cervical cancer (including scRNA-seq) and 110 sialylation-related genes (SRGs).

Initially, differentially expressed SRGs (DE-SRGs) were discovered by differential

expression analysis, among other methods. Subsequently, least absolute

shrinkage and selection operator (LASSO) and Cox regression analysis was

applied using DE-SRGs to detect prognostic genes and build prognostic

models. Next, independent prognosis test was conducted, and a nomogram

model was built using clinical characteristics and risk scores. Meanwhile, scRNA-

seq was applied to examine the cellular composition and cell-to-cell regulation

in cervical cancer vs normal group, and key cells were determined via prognostic

genes and their differentiation process was investigated. Finally, the

immunological microenvironment, mutant genes, and medication sensitivity

were assessed. Clinical samples were taken to assess the expression of

prognostic genes by quantitative reverse transcriptase PCR (qRT-PCR).

Results: First, we detected 19 DE-SRGs related with sialylation. Three prognostic

genes, GALNT12, GCNT4, and NPL, were discovered by LASSO cox regression. A

risk model constructed with prognostic genes revealed that patients in high-risk

group had a much poorer survival rate than those in group with low risk.

Meanwhile, low-risk cervical cancer patients were more likely to respond to

immunotherapy and chemotherapy, depending on immunology, tumor

microenvironment, and drug sensitivity. ScRNA-seq data suggests that the

expression of prognostic genes was higher in key cells, macrophages and

fibroblasts, and played a more critical role in cervical cancer. The findings from

qRT-PCR demonstrated that GCNT4 and NPL were considerably overexpressed

in the cervical cancer group.
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Discussion: In this research, GALNT12, GCNT4 and NPL were discovered as

sialylation-related prognostic genes in cervical cancer, providing novel

pathways for detection and treatment.
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1 Introduction

Cervical cancer is one of the most common malignant

gynecological tumors, with squamous cell carcinoma being the

primary histological type, followed by adenocarcinoma (1).

Cervical cancer ranks first among female cancers in 23 countries

globally and is the most common cause of death from cancer in

women in 36 countries (2). It ranks fourth in terms of incidence and

mortality rates among all female cancers worldwide, it accounts for

6.5% of all cancer cases in women and 7.7% of all cancer deaths in

women (2). In recent years, although the incidence of cervical

cancer has decreased due to the widespread use of the human

papillomavirus (HPV) vaccine, the prognosis for patients with

advanced cervical cancer remains poor. The most common

treatments for cervical cancer are surgery, radiation and

chemotherapy (3). In recent years, the application of the tumor

microenvironment in targeted therapy has diversified cancer

treatment. In cancers such as lung cancer, immune cell profiles

aid in early detection and prevention (4), while targeting T-cell

exhaustion has become a key research focus (5). For women with

metastatic or recurrent cervical cancer, the overall prognosis

continues to be poor, with a 5-year survival rate of about 10 to

20% (6). Currently, conventional prognostic indicators for cervical

cancer include age, stage, histological type, and lymph node

metastasis. While these factors can reflect the patient’s prognostic

risk to some extent, their predictive power is limited. Therefore,

there is an urgent requirement for the identification of effective

prognostic genes to further investigate the pathogenesis of cervical
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cancer, promote the diagnosis and treatment of cancer of the cervix,

and guide the prediction of cervical cancer prognosis.

Sialic acid (N-acetylneuraminic acid) is a carbohydrate found

on the surface of mammalian cells and belongs to a family of more

than 50 carbohydrates (7). Sialic acid is biosynthesized from N-

acetyl-mannosamine and transferred to the termini of glycolipids

and glycoproteins by a set of 20 different sialyltransferases (STs) (7).

Malignancy is often associated with changes in cellular sialoglycan

expression, and could therefore be used as a diagnostic and

prognostic biomarker (8). Increased levels of total-sialic acid in

the serum have been found in many patients with cancer.

Hypersialylation helps tumor cells to grow and metastasize,

leading to a poorer prognosis (9). Sialoglycans are recognized by

sialic acid-binding receptors on immune cells, including sialic acid-

binding immuno globulin like lectins (Siglecs). The sialoglycan-

Siglec interaction leads to suppressed immune response because

sialic acids are considered self-associated molecular patterns (10).

Studies have shown that sialylation plays a crucial role in

gynecological cancers such as ovarian, cervical, and endometrial

cancers (10). It is responsible for alterations in immune

surveillance, apoptosis, cell death, changes in cancer cell surface,

and the development, growth and metastasis of the tumor and its

microenvironment (11). Many studies have investigated the role of

sialic acid in gynecological cancers, with most focusing on ovarian

cancer and to a lesser extent endometrial and cervical cancer (12).

However, the mechanism of sialylation in cervical cancer prognosis

remains unclear, and the role of sialylation will be the subject of

further research in cervical cancer prognosis.

Therefore, to comprehensively understand the prognostic value

and molecular mechanisms of sialylation-related genes (SRGs) in

cervical cancer, this study first utilized the transcriptome data of 174

cervical cancer patients and single-cell sequencing datasets from the

TCGA database. Using a range of bioinformatics methods,

including differential gene expression analysis and LASSO Cox

regression analysis, prognostic genes were identified and a

prognostic model was constructed. Subsequently, through further

bioinformatics analysis, the expression, function, immune

infiltration, and drug sensitivity of sialylation in cervical cancer

were comprehensively explored. Meanwhile, by the analysis of

single-cell RNA sequencing (scRNA-seq) data, key cell types in

cervical cancer were identified, and their differentiation states and

cell-cell interactions were investigated to provide important

references for revealing their potential roles in cervical cancer.
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2 Materials and methods

2.1 Data source

The Cancer Genome Atlas (TCGA)-Cervical Squamous Cell

Carcinoma and Endocervical Adenocarcinoma (CESC), GSE63514

(GPL570), GSE44001 (GPL14951), and scRNA-seq dataset

GSE168652 were the 4 transcriptome datasets connected to

cervical cancer. Among these, GSE63514, GSE168652

(GPL24676), and GSE44001 from the Gene Expression Omnibus

(GEO) database (http://www.ncbi.nlm.nih.gov/geo/) contained 28

cervical cancer and 24 normal samples, 1 cervical cancer and 1

normal sample, and 300 cervical cancer samples with complete

survival time and status, respectively. Then, the TCGA-CESC

collected from the website of UCSC Xena (http://xena.ucsc.edu/)

comprised 174 cervical cancer samples with completed survival

information, according to which all samples were randomly divided

into a training set (121) and validation set (53) in a 7 to 3 ratio via

caret (v 6.0-93) (13) for subsequent analysis. All datasets employed

cervical epithelial tissue as their sample type. Ultimately, 110 SRGs

(including salivary acid transferase, transporter proteins, and

neuraminidase) were extracted from the Molecular Signatures

Database (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb)

(Supplementary Table 1) (14, 15).
2.2 Differential expression analysis and
functional enrichment

The GSE63514 dataset was analyzed by limma (v 3.54.0) (16) to

locate differentially expressed genes (DEGs) (adj. P < 0.05 & |

log2Fold Change (FC)| > 0.5). To visualize DEGs, we used ggplot2 (v

3.4.1) (17) to create a volcano plot and label the top 10 most

significant upregulated and downregulated genes. We also used

ComplexHeatmap (v 2.15.1) (18) to generate a heatmap displaying

the expression patterns of the top 10 upregulated and top 10

downregulated genes, ranked by log2FC, across different samples.

Besides, DEGs were intersected with SRGs to generate differentially

expressed SRGs (DE-SRGs). The clusterProfiler (v 4.2.2) (19) was

implemented to assess Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis for biological processes in DE-SRGs (adj. P < 0.05), the

top 20 remarkably enriched pathways were visualized. Meanwhile, a

protein-protein interaction (PPI) network about DE-SRG proteins

was built with the STRING database (https://string-db.org/)

(medium confidence >0.4; isolated targets were deleted).
2.3 Establishment of prognostic
characteristics

To locate the prognostic genes, a univariate Cox analysis for

DE-SRGs using survival (v 3.3-1) (20) was first conducted. Assume

that the ratio of risk functions at different gene levels does not

change over time, and the survival time and survival status of each
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survival status as dependent variables, and the expression value of

each gene as an independent variable; calculate the hazard ratio

(HR) of each gene, its 95% confidence interval and P-value (HR≠1

& P < 0.05). Then, the least absolute shrinkage and selection

operator (LASSO) regression analysis was carried out through

glmnet (v 4.1-2) (21). Hypothesis one was that there was a linear

relationship between gene expression values and survival outcomes;

hypothesis two was that the hazard ratio remained constant

throughout the follow-up period; hypothesis three was that the

survival time and survival status of each sample were independent

of each other. The cv.glmnet function was used for 10-fold cross-

validation to determine the minimum lambda value. Finally, the

genes whose regression coefficients were not penalized to 0 were

determined as the prognostic genes related to the survival outcome.

Next, risk scores were generated by applying the expression of

prognostic genes in training set, validation set, and GSE44001

dataset, as well as risk coefficients in LASSO, using the following

formulas:

risk score =o
n

i=1
coef (genei)� expr(genei)

Where was the risk coefficient, and was the prognostic gene

expression. In addition, the cervical cancer samples in three datasets

were split into high and low risk groups according to median risk

scores. Survival analyses were conducted using the survminer (v

0.4.9) (P < 0.05) (22) with a significance level of P < 0.05. The survfit

function was used to calculate the differences in survival curves, and

the ggsurvplot function was employed to plot the survival

probability curves. To assess the survival differences between the

high and low-risk groups, the log-rank test was used to evaluate the

significance of the differences. Meanwhile, the receiver operating

characteristic (ROC) curves at 1, 3, and 5 years were plotted with

timeROC (v 0.4) (23) to evaluate the risk model’s prediction ability

(Area Under the ROC curve (AUC) > 0.6). Furthermore, different

risk curves were drawn to investigate the link between survival

status, risk scores, and prognostic gene expression in cervical cancer

patients of three datasets.
2.4 Independent prognostic analysis

To explore the association between distinct clinical features and

prognostic characteristics, survival analyses between two risk

groups were conducted with the training set’s various clinical

characteristics of cervical cancer patients. In the meantime, the

univariate Cox analysis involved risk scores, age, pathologic_Stage,

pathologic_T, pathologic_N, histologic_Grade, and HPV type (24)

was conducted using survival (v 3.3-1) (20) (P < 0.2). After

acquiring independent prognostic indicators by multivariate Cox

(P < 0.2) and proportional hazards (PH) assumption testing (P >

0.05), nomogram was created using rms (v 6.5-0) (25) to forecast

the 1-, 3-, and 5-year survival of patients with cervical cancer. And

calibration curve was subsequently utilized to evaluate the

nomogram’s prediction ability.
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2.5 Functional enrichment and mutation
analysis

To further understand the functional pathways involved in

prognostic genes, single-gene Gene set enrichment analysis (GSEA)

was utilized. In brief, the Spearman correlation of prognostic genes

with the remaining portion of the genes was computed separately in

training set and ordered in descending order of coefficient size. Then,

GSEA was conducted on the sorted genes via clusterProfiler (v 4.2.2)

(26), with the KEGG gene set in msigdbr (v 7.5.1) (15) as background

gene set (adj. P < 0.05). Additionally, the frequency of mutated genes

between two risk groups in training set was then calculated with

TCGAmutations (v 0.3.0) (27).
2.6 Construction of mRNA-miRNA-lncRNA
network

The TarBase (http://www.microrna.gr/tarbase) and

miRTarBase databases (http://miRTarBase.mbc.nctu.edu.tw/) were

utilized to predict miRNAs targeting prognostic genes relying on

the NetworkAnalyst platform (https://www.networkanalyst.ca/). A

cross-section of prognostic gene-miRNA pairs predicted by the two

databases was taken. And the miRNAs in the intersected pairings

were extracted to forecast the corresponding lncRNAs using

starbase database (https://rnasysu.comencori/). Ultimately, the

mRNA-miRNA-lncRNA regulation network was built.
2.7 Immunological correlation analysis

To investigate the involvement of immune cells in cervical

cancer, the single sample GSEA (ssGSEA) algorithm in GSVA

package (v 1.42.0) (28) was implemented to evaluate the

functional status of different immune cells in the samples. Gene

expression data (FPKM) was ranked, and analysis was performed

using kcdf=“Gaussian” to calculate the enrichment scores for each

sample in specific gene sets, such as immune cell marker genes. A

heatmap was generated to display the differences in immune cell

scores between the high-risk and low-risk groups. Next, the

Wilcoxon signed rank test was used to compare the differential

expression of 28 immune cells between the two risk groups (adj. P <

0.05). Meanwhile, the Spearman correlation between prognostic

genes and distinct immune cells was assessed with psych (v 2.2.9)

(29). Besides, to further comprehend the composition of tumor

microenvironment, the stromal score, immune score, and

ESTIMATE score of cervical cancer patients in two risk groups

were evaluated in training set via estimate (v 1.0.13) (30), and their

correlations with risk score was computed. In addition, 48 immune

checkpoint molecules retrieved from the literature were employed

to examine expression differences between two risk groups in

training set (adj. P < 0.05) (31). Additionally, to assess the

potential response of cervical cancer patients to immunotherapy,
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training set were taken from the Tumor Immune Dysfunction

and Exclusion (TIDE) website (http://tide.dfci.harvard.edu/), and

their correlation with risk score was calculated. At last, to probe

differences in chemotherapeutic agent sensitivity among cervical

cancer patients in two risk groups, drug semi-inhibitory

concentrations (IC50) of 138 chemotherapeutic agents were

estimated using pRRophetic (v 0.5) (32) and compared across

groups by Wilcoxon signed rank test (adj. P < 0.05).
2.8 Pre-processing of scRNA-seq data

To generate high-quality data, Seurat (v 5.0.1) (33) initially served

to remove cells with fewer than 200 genes and fewer than three cells

covered with genes. To determine the final cells and genes chosen for

the study, the quality control criteria were set to nFeature_RNA

number larger than 300 but less than 5000, nCount_RNA number

less than 20,000, and percent.mt less than 20%. The data were then

gradually normalized, and highly variable genes were selected using

Seurat’s (v 5.0.1) (33) NormalizeData and FindVariableFeatures

functions. Next, the data were normalized with the ScaleData

function and gravel displayed with the ElbowPlot function to look

for principal components (PCs). The Uniform Manifold

Approximation and Projection (UMAP) clustering was conducted by

applying the screened PCs, with the resolution set at 0.5. Furthermore,

the cell population composition was obtained through annotating the

clusters with marker genes (34), and bar graphs were generated to

illustrate the cell ratio between cervical cancer and normal groups.
2.9 Cellular communication and
pseudotime analysis

To further comprehend cell relationships, cell communication

analysis was conducted independently in cervical cancer and normal

groups employing celltalker (v 0.0.7.9000) (35). Subsequently, the

expression of prognostic genes was evaluated in all cells, and cells

with high expression of prognostic genes were chosen as key cells and

submitted to pseudotime analysis via monocle (v 2.26.0) (36) to

determine their differentiation state. Meanwhile, the expression of

prognostic genes in various differentiation phases of key cells, as well

as GSE63514, was observed.
2.10 The quantitative reverse transcriptase
PCR

Five cancer samples from cervical cancer patients and five

samples of normal tissue were gathered from the First Affiliated

Hospital of Xi’an Jiaotong University Hospital to confirm the

expression of prognostic genes. In order to extract RNA, 50 mg

of tissue from each sample was first homogenized using 1 ml of
frontiersin.org
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TRIzol reagent (Ambion, USA). After measuring the amount of

RNA, reverse transcription was started right away. In short, a

reaction system was set up in accordance with the manufacturer’s

instructions for the SweScript First Strand cDNA Synthesis Kit

(servicebio, China) to generate cDNA. Next, using a CFX96 real-

time fluorescence quantitative PCR device, 40 cycles of qPCR

amplification were carried out. The primer sequences were

displayed in Table 1, and the 2-DDCt method was employed to

evaluate the prognostic genes’ expression.
2.11 Statistical analysis

The R programming language (v 4.2) was implemented for

bioinformatics analyses. Differential expression analysis was

conducted using the limma package, assuming that the residuals

followed a normal distribution and applied a linear model to fit the

data. The Wilcoxon signed rank test was used to compare the data

between different groups, and multiple hypothesis correction was
Frontiers in Oncology 05
performed using the Benjamini-Hochberg method (BH) to control

the false discovery rate (FDR) (P < 0.05). The Log-rank test was

employed to assess the significance of differences in survival

probability curves between the high-risk and low-risk groups.
FIGURE 1

DE-SRGs gene screening and functional analysis in the GSE63514 dataset of cervical cancer. (A) Volcano plot of differentially expressed genes
between cervical cancer and normal tissue. (B) Heatmap of differentially expressed genes between cervical cancer and normal tissue. (C) Candidate
gene intersection Venn diagram. (D) PPI network of candidate genes.
TABLE 1 Table of RT-qPCR primer sequence.

Primer Sequence

GALNT12 F CCAACAAGAGAGAGGGCCTG

GALNT12 R CGGAGTTCCCCAGGTATTCG

GCNT4 F GGGATCCGAGCCGAGAAAC

GCNT4 R GGAGGTGCTACAGATGGCTG

NPL F CGGAGGCCTGGAGAAATCAA

NPL R ATCCTCATGCAGCCACTCAC

GAPDH F CGAAGGTGGAGTCAACGGATTT

GAPDH R ATGGGTGGAATCATATTGGAAC
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3 Results

3.1 The 19 DE-SRGs had a substantial
association with sialylation

After differential expression analysis in GSE63514 dataset, a total of

4,403 DEGs were detected between cervical cancer and normal groups,

of which 2,791 were elevated and 1,612 reduced (Figures 1A, B,
Frontiers in Oncology 06
Supplementary Table 2). After taking the intersection of 110 SRGs

and 4,403 DEGs, 19 DE-SRGs were acquired (Figure 1C). Consistent

with our hypothesis, functional enrichment subsequently confirmed

that they were primarily linked to 112 KEGG signaling pathways (e.g.

Mucin type O-glycan biosynthesis and Glycosphingolipid biosynthesis-

ganglio series) and 112 GO items (e.g. sialylation, Golgi stack and

glycosyltransferase activity) (Supplementary Figure 1, Supplementary

Tables 3, 4). In the meanwhile, complicated interactions between DE-
FIGURE 2

Screen for prognostic genes, classify cervical cancer samples into high-risk and low-risk groups based on these prognostic genes, and perform
survival analysis between the groups. (A) Forest plot of univariate cox analysis. (B, C) Ten-fold cross-validation for adjusting parameters in Lasso
analysis and coefficient path plot. (D) Kaplan-Meier survival analysis and the number of patients in different groups of the training set. (E) Kaplan-
Meier survival analysis and the number of patients in different groups of the internal test set. (F) Kaplan-Meier survival analysis and the number of
patients in different groups of the validation set.
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SRG-encoded proteins, including GALNT12-ST6GALNAC1, GCNT3-

ST3GAL1, GCNT4-GCNT3, and NPL-NANP, were discovered

through the PPI network (Figure 1D).
3.2 A risk model constructed around
GALNT12, GCNT4, and NPL correctly
predicted the survival r ate of cancer
patients

A univariate Cox regression study of 19 DE-SRGs detected

4 prognosis-related genes. GALNT12 and GCNT3 had HRs
Frontiers in Oncology 07
greater than 1, indicating that they were risk factors for

cervical cancer, whereas GCNT4 and NPL had the reverse effect

(Figure 2A). Further LASSO analysis demonstrated that the

lowest model error rate occurred when the minimal lambda

was equal to 0.00591. The genes corresponding to this point,

GALNT12, GCNT4 and NPL, were defined as prognostic genes

(Figures 2B, C).

Afterwards, the cervical cancer samples were then classified into

high and low risk groups, with median risk scores of -1.493621,

-1.173702, and -10.86075 in training set, validation set, and GSE44001

dataset, respectively. Between-group survival analysis revealed that

patients in high-risk group in all three datasets had considerably worse
FIGURE 3

Evaluation and validation of the risk model in the training, test, and validation sets. (A-C) Expression levels of prognostic genes in tumor samples. (D-F) ROC
curves for 1, 3, and 5 years.
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survival rates than those in low-risk group (Figures 2D–F). The risk

curves additionally indicated that the number of cervical cancer deaths

increased as risk scores rose (Supplementary Figure 2). And GALNT12

expression wasmuch higher in high-risk group than GCNT4 andNPL,

consistent with the univariate cox results (Figures 3A–C). The ROC

curves demonstrated that the AUC values of cervical cancer patients

were greater than 0.6 in all three datasets for years 1, 3, and 5, implying

that prognostic genes established by risk model could be employed to

accurately assess the risk of cervical cancer patients (Figures 3D–F).
3.3 Risk score and HPV typing recognized
as independent prognostic factors

In several subgroups with diverse clinical features, we noticed

substantial survival differences between two risk groups in patients

with Pathologic T (T1/T2), Pathologic T (T3/T4), Pathologic N

(N0), and Histologic Grade (Figure 4, Table 1). Furthermore, all

clinical variables and risk score, were evaluated in cox regression

analysis and PH assumption test, which confirmed that risk score

and HPV typing were independent prognostic indicators

(Figures 5A–C). A nomogram developed on this basis

demonstrated that the higher the overall score, the worse the

survival rate of cervical cancer patients, and the slope of
Frontiers in Oncology 08
calibration curve tended to be 1, validating the nomogram’s

prediction accuracy (Figures 5D, E).
3.4 Prognostic genes were involved in
multiple functions and molecular
regulatory mechanisms

GSEA outcomes indicated that GALNT12 was primarily

associated with glycan biosynthesis and propanoate metabolism,

among other things (Figures 6A); GCNT4 was primarily associated

with the functions of focal adhesion and Alzheimer’s disease (AD)

(Figures 6B); and NPL was linked to with the pathway regulation of

T cell receptor, chemokine signaling pathway, and other pathways

(Figures 6C). Moreover, mutation analysis discovered that

PIK3CAhad the highest mutation rates in high-risk groups, at

33% (Figure 6D), which may suggest that mutations in this gene

are associated with the invasiveness and poor prognosis of cervical

cancer. In contrast, the mutation rate of TTN was the highest in the

low-risk group, at and 41% (Figure 6E), which may be related to the

lower invasiveness and better prognosis of the tumor. After

predicting the TarBase and miRTarBase databases, we located two

target miRNAs (hsa-mir-192-5p and hsa-mir-335-5p) (Figure 6F).

The mRNA-miRNA-lncRNA network proved that prognostic genes
FIGURE 4

Kaplan-Meier survival curves for patients with different clinical characteristics. The x-axis represented time (in days), and the y-axis represented the
disease-free survival probability, with values ranging from 0 to 1. From left to right, the clinical stages, pathological T, pathological N, and histological
grades were shown. The pink solid line represented the high-risk group, while the blue dashed line represented the low-risk group. This was used to
compare the disease-free survival of patients under different clinical characteristic groupings. A p-value less than 0.05 typically indicated a significant
survival difference between the two groups.
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were involved in the regulation of several non-coding RNAs (no

prediction findings for NPL), including GALNT12-hsa-miR-192-

5p-LINC01547 and GCNT4-hsa-miR-335-5p-GAS5, among

others (Figure 6G).
3.5 Patients in low risk group might
respond more effectively to
immunotherapy

The outcomes of immune infiltration demonstrated substantial

differences between two risk groups for 19 types of immune cells,

including immature dendritic cells andmemory B cells, both of which

were observed in high levels in cervical cancer patients in low risk

group (Figures 7A, B). Correlation study suggested that GALNT12

negatively correlated with almost all differential immune cells,

although NPL and GCNT4 did not (Figure 7C). NPL exhibited the

strongest positive correlation with T follicular helper cell (Tfh)

(r=0.51), whereas GALNT12 displayed the strongest negative

association with CD56 bright natural killer cell (r=-0.5).
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Meanwhile, further exploration of the composition of the tumor

microenvironment showed that, the Stromal, Immune, and

ESTIMATE Scores were all higher in low risk group compared to

high risk group, and they were all inversely connected with the risk

score (Figure 7D). The stromal score reflected the characteristics of

stromal cells in the tumor microenvironment, and higher stromal

scores suggested that certain features of stromal cells were more

pronounced in the low-risk group. The immune score quantified the

status of immune cells in the tumor microenvironment. The higher

immune score in the low-risk group indicated that the immune cell

status in this group might be more favorable for combating the

tumor. The ESTIMATE score, which is a composite measure of both

stromal and immune cell statuses, was higher in the low-risk group,

suggesting that the interaction between tumor cells and the

microenvironment in this group may have been more beneficial to

patient prognosis. These scores were inversely correlated with the risk

score, meaning that in the low-risk group, a more favorable tumor

microenvironment status was associated with a lower tumor risk.

Furthermore, 34 out of 48 immunological checkpoints were

substantially different between two risk groups, with all differential
frontiersin.or
FIGURE 5

Independent prognostic analysis and construction of the nomogram. (A) Forest plot of one-way cox regression clinical indicators. (B) GALNT12,
GCNT4, NPL Multifactor cox regression PH Hypothesis test. (C) Multifactor cox regression forest plot. (D) Create a nomogram for predicting the 1-
year, 3-year, and 5-year survival rates of cervical cancer patients based on a multivariate Cox regression model. (E) Plot a calibration curve to
evaluate the performance of the prognostic prediction model.
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immune checkpoints except VTCN1 being overexpressed in low risk

group (Figure 8A). Moreover, the TIDE analysis was used to evaluate

the response of tumor patients to immunotherapy. The results

showed that both Dysfunction and Exclusion scores were lower in

low risk group than in high-risk group, and these two scores had

different associations with risk scores, implying that cervical cancer

patients in low-risk group were more likely to respond effectively to
Frontiers in Oncology 10
immunotherapy, though the relationship with prognostic

characteristics requires further investigation (Figures 8B, C).

Ultimately, 61 chemotherapeutic medicines (e.g., Temsirolimus and

Vinorelbine) illustrated substantial differences in IC50 between two

risk groups, and the top ten agents with the most notable variations

might have a superior therapeutic effect on cervical cancer patients in

low risk group (Figure 8D).
FIGURE 6

Perform GSEA (Gene Set Enrichment Analysis) to explore the various functions and molecular regulatory mechanisms involved with the prognostic genes.
(A-C) GSEA enrichment analysis of GALNT12, GCNT4 and NPL. (D) Plot a waterfall chart for the top 20 genes with the highest mutation frequencies in the
high-risk group. (E) Plot a waterfall chart for the top 20 genes with the highest mutation frequencies in the low-risk group. (F) Venn plots of miRNA-mRNA
relationships obtained from both databases. (G) A ceRNA (competitive endogenous RNA) regulatory network,Orange circles represent prognostic genes, red
rectangles represent miRNAs, and green rectangles represent lncRNAs.
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3.6 Prognostic genes might play a key role
in cervical cancer by regulating
macrophages and fibroblasts

After quality control, the scRNA-seq dataset included 20,401

cells and 22,100 genes (Supplementary Figures 3A, B). The top 30

PCs were chosen for UMAP clustering using high variance gene and

principal component analysis (Figures 9A, Supplementary

Figure 3C). The results displayed that a total of 13 clusters were

included in scRNA-seq dataset (Figures 9B, Supplementary

Figure 3D), and an all of 7 cell types were acquired after

annotation, i.e., lymphocytes, macrophages, fibroblasts,

endothelial cells, smooth muscle cells, and end ostromal
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(Figures 9C, D, Supplementary Figure 3E, Supplementary

Table 5). The scale bar graph revealed that the majority cells in

tumor and normal groups were epithelial cells and end ostromal

cells, correspondingly (Figure 9E).

Furthermore, the cellular communication data suggested

substantial variations in cell interactions between two groups, with

lymphocytes, macrophages, and epithelial cells predominating in

tumor group and the remaining four cell types populating the

normal group (Figures 10A, B). In addition, macrophages and

fibroblast cells were recognized as key cells since we saw increased

expression of prognostic genes in these cells (Figure 10C). Nine and

five differentiation states in all were discovered in fibroblasts and

macrophages, according to the results of pseudotime analysis
FIGURE 7

Immune infiltration analysis and ESTIMATE immune characteristic analysis. (A) Heatmap of immune infiltration cell enrichment scores based on
highand low-risk groups. (B) Boxplot of the enrichment scores of 28 types of immune infiltration cells between high-risk and low-risk sample
groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. The blue labels on the (C) Heatmap showing the correlation between differential
immune infiltration cells and model genes. ns represented no significance, *P < 0.05, ***P < 0.001, ****P < 0.0001. (D) Estimate the StromalScore,
ImmuneScore, and ESTIMATEScore for tumor samples based on expression data, and plot the corresponding scatter plots to visualize
the relationships.
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(Supplementary Figure 4). The analysis of temporal gene expression

in cells showed that the expression of the NPL gene increased initially

and then decreased during macrophage differentiation, indicating

that its expression was time-dependent. This dynamic change likely

reflected the activation role of NPL during the early stages of

macrophage differentiation, which gradually weakened as

differentiation matured. Additionally, the GALNT12 gene was

highly expressed in tumor samples during the third stage of

differentiation, suggesting that it might play an important role

during the later stages of macrophage differentiation or in tumor-

related phases (Figure 10D).
3.7 Validation of the expression of
prognostic genes

InGSE63514 dataset, GALNT12 expressionwas elevated in normal

group,whereas theoppositewas true forGCNT4andNPL (Figure 11A).

The outcomes of qRT-PCR revealed that GCNT4 and NPL were

substantially increased in cervical cancer group, which corresponded

to the expression trend in GSE63514 dataset (Figure 11B).
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4 Discussion

Cervical cancer is one of the three most common types of

gynecological malignancy, and the prognosis for advanced and

recurrent cervical cancer remains poor (3). More research is

needed to explore prognostic genes to guide the diagnosis,

treatment, and prognosis prediction of cervical cancer. Sialylation

is associated with the occurrence and development of various

tumors. It affects tumor prognosis by influencing the tumor

microenvironment. Research has shown that sialic acid content in

cervical cancer tissues is usually higher than that in normal cervical

tissues, and this abnormal sialylation is closely associated with

malignancy, invasiveness, and the prognosis of cervical cancer

(11). However, the relationship between sialylation and cervical

cancer prognostic mechanisms has not been fully investigated. This

study identified three key prognostic sialylation-related genes,

GALNT12, GCNT4 and NPL, which showed significant

differences in expression between cervical cancer samples and

normal samples. These genes have an impact on the survival of

tumor patients and on the immune infiltration and drug sensitivity

of tumor cells by influencing the sialylation process of tumor cells.
FIGURE 8

Immune therapy response prediction, and chemotherapy drug sensitivity prediction between high- and low-risk groups. (A) Create a boxplot of
immune checkpoint molecule expression levels between the high-risk and low-risk groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (B,
C) Correlation analysis between TIDE (Tumor Immune Dysfunction and Exclusion) scores and risk scores. **P < 0.01. (D) top10 Chemotherapy drug
IC50 based on boxplots between high and low risk groups. ***P < 0.001, ****P < 0.0001.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1534247
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Muhetaer et al. 10.3389/fonc.2025.1534247
This provides an important reference for unravelling the

pathogenesis of cervical cancer as well as improving the

prognostic outcome of patients.

Three prognostic genes may influence the prognosis of cervical

cancer by regulating the sialylation pathway. The GALNT12 gene

encodes an enzyme called core 2 b-1,4-N-acetylgalactosaminyl

transferase, which plays a crucial role in the cell and is involved in a

protein modification process called O-glycosylation (37). GSEA

enrichment results in this study showed that GALNT12 was

significantly enriched in the O-glycan biosynthesis signaling pathway.

Core 2 O-glycans are the basis for many sialylations, and the

GALNT12 gene may have a significant impact on the sialylation

process by catalyzing the synthesis of core 2 O-glycans, thereby

affecting the prognosis of cervical cancer. Studies have shown that

the expression of the GALNT12 gene is altered in several types of

cancer. Additionally, GALNT12 and ST6GALNAC1 are associated

within the protein-protein interaction (PPI) network, and this

interaction may collaboratively regulate the sialylation process (38),

further influencing tumor cell invasion, metastasis, and immune

evasion (39). The results of this study are that the GALNT12 gene is

a high-risk gene and has a higher expression in the high-risk group,

which is consistent with previous studies. The GCNT4 gene encodes

core 3 b1,3-N-acetylgalactosaminyl transferase, which plays a crucial

role in cellular O-glycosylation (40). Notably, GCNT4 and GCNT3

may cooperatively regulate the structure and function of glycans

through synergistic effects in the O-glycosylation process, thereby

influencing tumor cell adhesion, migration, and immune evasion

(41). The interaction between GCNT3 and ST3GAL1 further reveals
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the complex regulatory mechanisms of O-glycosylation and sialylation

in tumor progression. High expression of GCNT4 has been associated

with associated with poor prognosis in colorectal and breast cancer

(40). But studies on gastric cancer have suggested that GCNT4 can act

as a tumor suppressor and induce tumor growth arrest (40). In this

study, this prognostic gene had a higher expression in the low-risk

group and its high expression was associated with longer survival in

patients with cervical cancer. Moreover, the GCNT4 gene was

markedly enriched in the NOD-like receptor signaling pathway. As

intracellular proteins, NLR proteins may be affected by O-glycosylation

modifications. Abnormal expression of the GCNT4 gene may affect the

function of NOD-like receptors by influencing glycosylation in the

tumor microenvironment, thereby affecting tumor immune escape.

The NPL gene encodes N-, a key enzyme involved in neuraminic acid

metabolism (40). NPL catalyses the conversion of N-acetylneuraminic

acid (sialic acid) into N-acetyl-D-mannosamine and pyruvate, thereby

regulating intracellular sialic acid concentrations (40). In this study,

NPL was significantly upregulated in the ubiquitin-mediated

proteolysis signaling pathway, and its expression was higher in the

low-risk group than in the high-risk group. One interpretation of these

results could be that the high expression of the NPL gene in the low-

risk group promotes the prognosis of cervical cancer patients by

regulating the protein degradation signaling pathway, catalyzing the

cleavage of sialic acid, and thereby reducing the expression of sialic acid

in cervical cancer tissues. Furthermore, the interaction between NPL

and NANP may play a crucial role in the sialylation modification of

tumor cells (42), affecting tumor cell invasion, metastasis, and immune

evasion (12). Future studies could further explore the specific
FIGURE 9

Cell annotation in single-cell analysis. (A) Scree plot of principal component analysis (PCA). (B) Clustering of UMAP cell taxa for all samples. (C) Cell
type annotations for all samples. (D) Cell type annotations for both sample groups. (E) Proportion of each cell type.
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mechanisms of NPL and NANP in cervical cancer and their potential

as therapeutic targets.

A risk score model was created based on three prognostic genes

to classify cervical patients into high and low risk groups. With the

increase in risk score, survival time decreased, and the number of

deaths increased. Through immune infiltration analysis, 19 types of

immune infiltrating cells showed significant differences between the

high-risk and low-risk groups, and all of them were expressed at

higher levels in the low-risk group. NPL showed the strongest

positive correlation with T follicular helper cells, while GALNT12

showed the highest negative correlation with correlation with CD56

bright natural killer cells. Previous studies have shown that the high

expression of GALNT12 not only promotes the sialylation process

but also inhibits natural killer cells, thereby suppressing anti-tumor

immune responses. The high expression of the NPL gene, by

cleaving sialic acid and regulating the function of NOD-like

receptors, also regulates the expression of T follicular helper cells,

thereby promoting anti-tumor immune responses. Therefore, these

prognostic genes have the potential to serve as prognostic genes for

cervical cancer. Future studies should further verify the regulatory

mechanisms and clinical significance of these prognostic genes to

confirm their prognostic value for cervical cancer patients. This

study also found 34 immune checkpoint molecules with significant
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differences between the high risk group and the low risk group. The

immune checkpoint VTCN1 was highly overexpressed in the high-

risk group. It is speculated that tumor cells in the high-risk group

upregulate the expression of this immune checkpoint molecule,

thereby inhibiting the anti-tumor activity of the immune system

and promoting tumor cell growth (43). This immune checkpoint

may serve as a target for cervical cancer immunotherapy, and

further research is needed to verify its immune escape

mechanism, providing new ideas for clinical immunotherapy. A

drug sensitivity analysis was performed on 138 drugs, and 10

chemotherapy drugs with the most significant differences between

the high-risk and low-risk groups in IC50 were identified. The IC50

of these drugs was significantly higher in the high risk group than in

the low risk group, which indicates that these chemotherapy drugs

were more efficient in the high risk group. Previous studies have

suggested that AP.24534 is effective in the treatment of cervical

cancer patients (44). Based on the prognostic gene-based high- and

low-risk grouping of cervical cancer patients, these drugs can be

considered for low-risk group patients. This result has potential

guiding value for the clinical use of chemotherapy drugs.

Through single-cell analysis, we found that the prognostic genes

were expressed at a higher level in the macrophages and in the

fibroblasts. Therefore, Macrophages and Fibroblasts were
FIGURE 10

(A, B) Ligand-receptor interaction prediction network. The left image shows the communication interactions in Tumor cells, while the right image
depicts the communication interactions in Normal cells. (C) Bubble map of prognostic gene expression in all cells. (D) Cellular temporal gene
expression in Macrophages.
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considered as the key cells in this study. As important members of

the immune system, macrophages can both exert anti-tumor effects

and promote tumor growth and metastasis. This dual role mainly

depends on the stimulation of the tumor microenvironment and the

polarization state of macrophages (45). M1 macrophages involved

in anti-tumor immune responses, can directly kill tumor cells,

activate T cells, and promote anti-tumor immune responses. M2

macrophages can inhibit T cell activity, promote tumor

angiogenesis, and provide growth factors for tumor cells, thereby

promoting tumor growth and metastasis (46, 47). In this study, the

expression of the NPL gene showed a trend of first increasing and

then decreasing during macrophage differentiation, while the

GALNT12 gene was expressed in tumor samples during the third

stage of macrophage differentiation. These findings suggest that

both genes may influence tumor progression by regulating

macrophage differentiation states. In the early stages of

macrophage differentiation, high NPL expression may promote

differentiation into an anti-tumor phenotype, thereby inhibiting

tumor progression. However, as NPL expression declines, its anti-

tumor function weakens, potentially facilitating tumor progression.

Meanwhile, the expression of GALNT12 at specific differentiation
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stages may contribute to the regulation of macrophage states and

indirectly affect tumor progression, though the precise regulatory

mechanisms require further investigation. Fibroblasts are an

important type of stromal cell in the tumor microenvironment.

Through a variety of mechanisms, they can promote chemo- and

radioresistance in tumor cells, such as promoting DNA repair and

reducing drug concentration (48). The different expression levels of

prognostic genes in different differentiation processes of key cells

suggest that prognostic genes may affect the prognosis of cervical

cancer by influencing the differentiation state of key cells and thus

regulating anti-tumor functions.

This study utilized bioinformatics analysis based on public

databases to identify key prognostic genes associated with cervical

cancer, including GALNT12, GCNT4, and NPL. Preliminary

findings suggest that these genes may influence tumor

progress ion and immune evas ion within the tumor

microenvironment (TME) by regulating macrophage and T-cell

functions. Although RT-qPCR has initially validated the expression

of these key genes, extensive experimental validation is still

required. Future studies should employ gene knockout

techniques, cellular models, and animal models to further
FIGURE 11

Expression of prognostic genes in single cells. (A) Box plot of prognostic gene expression in CC and Normal. *P < 0.05, ***P < 0.001. (B) Expression
of prognostic genes was verified using qRT-PCR. ns represented no significance, *P < 0.05.
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elucidate their precise mechanisms in cervical cancer. Additionally,

assessing the clinical prognostic value of these genes through

clinical trials is an important research direction. Currently, the

regulatory mechanisms between prognostic genes and immune cells

(such as macrophages and T cells) remain unclear. Investigating the

interactions between these genes and immune cells will help

uncover the complex relationship between immune cell types and

the TME, offering new insights for improving cervical cancer

prognosis. Notably, the area under the curve (AUC) of the

constructed prognostic model in external validation was

suboptimal, indicating the need for further optimization. Future

studies should integrate more external datasets to refine and

validate the model, enhancing its clinical applicability. In

conclusion, through multi-level experimental validation and

clinical translation research, this study has the potential to

provide new theoretical foundations and therapeutic targets for

cervical cancer prognosis assessment and treatment strategies.

This study analyzed the expression level and regulatory

mechanism of sialylation in cervical cancer. Three prognostic

genes related to sialylation were screened and subjected to a range

of analyses, including functional enrichment, survival analysis and

immune infiltrates, to demonstrate the potential clinical value of

these prognostic genes in the prognosis of cervical cancer. This

provides a new orientation for research on the regulatory

mechanism of sialylation in cervical cancer.
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