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Background: Prostate cancer is one of themost common tumors in men, with its

incidence and mortality rates continuing to rise year by year. Prostate-specific

antigen (PSA) is the most commonly used screening indicator, but its lack of

specificity leads to overdiagnosis and overtreatment. Therefore, identifying new

biomarkers related to prostate cancer is crucial for the early diagnosis and

treatment of prostate cancer.

Methods: This study utilized datasets from the Gene Expression Omnibus (GEO)

to screen for differentially expressed genes (DEGs) and employedWeighted Gene

Co-expression Network Analysis (WGCNA) to identify driver genes highly

associated with prostate cancer within the modules. The intersection of

differentially expressed genes and driver genes was taken, and Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO)

enrichment analyses were performed. Furthermore, a machine learning

algorithm was used to screen for core genes and construct a diagnostic

model, which was then validated in an external validation dataset. The

correlation between core genes and immune cell infiltration was analyzed, and

Mendelian randomization (MR) analysis was conducted to identify biomarkers

closely related to prostate cancer.

Results: This study identified six core biomarkers: SLC14A1, ARHGEF38, NEFH,

MSMB, KRT23, and KRT15. MR analysis demonstrated that MSMB may be an

important protective factor for prostate cancer. In q-PCR experiments

conducted on tumor tissues and adjacent non-cancerous tissues from

prostate cancer patients, it was found that: compared to the adjacent non-

cancerous tissues, the expression level of ARHGEF38 in prostate cancer tumor

tissues significantly increased, while the expression levels of SLC14A1, NEFH,

MSMB, KRT23, and KRT15 significantly decreased. To further validate these

findings at the protein level, we conducted Western blot analysis, which

corroborated the q-PCR results, demonstrating consistent expression patterns

for all six biomarkers. IHC results confirmed that ARHGEF38 protein was highly

expressed in tumor tissues, while MSMB expression was markedly reduced.
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Conclusion: Our study reveals that SLC14A1, ARHGEF38, NEFH, MSMB, KRT23,

and KRT15 are potential diagnostic biomarkers for prostate cancer, among which

MSMB may play a protective role in prostate cancer.
KEYWORDS

prostate cancer, machine learning, weighted gene co-expression network analysis,
Mendelian randomization, biomarkers
1 Introduction

Prostate cancer (PCa) is the second most common cancer

globally and the fifth leading cause of cancer death among men

(1). Statistics show that the incidence of prostate cancer is gradually

increasing every year, especially in developed countries, partly due

to an aging population and changes in lifestyle (2). Early-stage

prostate cancer is usually asymptomatic, and when symptoms

appear, the disease often has progressed to a point where it is

incurable. Over the past decade, the incidence of PCa has risen

significantly while mortality has declined, mainly due to the use of

prostate-specific antigen (PSA) as a biomarker for PCa screening

(3). Therefore, routine screening and monitoring based on reliable

biomarkers are crucial for the early detection and assessment of

tumor progression in prostate cancer, which can significantly

improve patient survival rates and quality of life.

PCa is typically diagnosed through digital rectal examination,

PSA screening, and biopsy. Early studies have shown that PSA is

more sensitive than palpable tumor assessment by digital rectal

examination in the detection of prostate cancer, with a higher

detection rate, and plays an important role in monitoring the

prognosis and recurrence of tumor patients (4, 5). Data from the

European Randomized Study of Prostate Cancer Screening

(ERSPC) indicates that after 16 years of follow-up, PSA screening

significantly reduces the mortality rate of PCa, and the longer the

follow-up, the greater the reduction in PCa mortality (6). Although

PSA as a routine screening indicator has been widely accepted, its

lack of specificity may lead to excessive examination and treatment,

or overlook some potential malignant lesions (7, 8). Biopsy is the

“gold standard” for the diagnosis of prostate cancer, but it may

bring complications, including infection, hematospermia,

hematuria, urinary retention, and erectile dysfunction (9).

Therefore, there is an increasing clinical need to identify new

biomarkers for prediction, diagnosis, and prognosis. These

biomarkers could complement or reduce the reliance on invasive

diagnostic procedures like biopsies.

In recent years, advancements in immunological research have

revealed the critical role of immune cells in the occurrence and

development of PCa. The infiltration of immune cells not only

significantly affects the formation and maintenance of the tumor

microenvironment but also plays a decisive role in the biological

behaviors of tumor growth, invasion, and metastasis (10). For
02
instance, regulatory T cells (Treg cells) play an important role in

regulating tumor progression by modulating immune suppression.

Flammiger et al. detected Tregs in PCa specimens through FOXP3

immunohistochemistry and found that Tregs within tumor tissues

were positively correlated with PCa staging and the Ki67 index (11).

Zhao et al.’s research indicated that in the bone marrow

microenvironment of patients with bone metastases, the number

of Treg significantly increased. In particular, CD4+CD25high Treg

cells may promote the transfer of tumor cells to the skeleton by

suppressing the immune microenvironment within the bone

marrow (12). Furthermore, Yang et al.’s study demonstrated that

in patients with high-risk PCa who underwent radical

prostatectomy, the infiltration level of CD8+ T cells within the

tumor was independently associated with a significant increase in

patient survival rates (13). Therefore, immunotherapy is extremely

important in the treatment of PCa. However, compared to other

malignant tumors, the clinical efficacy of immunotherapy in PCa

has certain limitations (14). In summary, although immunotherapy

has shown potential in the treatment of PCa, it still faces many

challenges. Future research needs to further explore new

biomarkers to provide new immune treatment plans for PCa.

In this study, we obtained 5 publicly available PCa datasets from

the Gene Expression Omnibus (GEO) database. Two of these datasets

were merged to create a meta-data cohort, which was used as the

training group. The remaining three datasets were merged into

another meta-data cohort and used as the validation group. We

first compared 189 PCa cases with 63 normal control cases in the

training group to identify differentially expressed genes (DEGs) and

performed principal component analysis (PCA) to eliminate batch

effects. Weighted Gene Co-expression Network Analysis (WGCNA)

was used to select important module genes. DEGs were then

intersected with module genes, and functional enrichment analysis

and KEGG enrichment analysis were performed. Machine learning

techniques were subsequently employed to screen and identify

diagnostic biomarkers for PCa, which were validated in the trial

group. Next, we assessed the diagnostic efficacy of the selected

diagnostic markers using the receiver operating characteristic

(ROC) curve. GSVA analysis was used to analyze the pathways

that these genes might enrich, and immune cell infiltration analysis

was conducted to screen for core immune-related diagnostic

biomarkers for PCa. Finally, we used Mendelian randomization

studies to clarify the causal relationship between core biomarkers
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and PCa. This study aims to provide new molecular markers for the

early diagnosis and treatment of PCa and to provide a scientific basis

for the early diagnosis and personalized treatment of PCa.
2 Materials and methods

2.1 Data collection and processing

All PCa datasets were obtained from the GEO public database

(http://www.ncbi.nlm.nih.gov/geo) including the GSE46602,

GSE79021, GSE200879, GSE60329, and GSE71016 datasets. These

datasets were selected based on their inclusion of both tumor and

normal prostate tissue samples, as well as their relevance to prostate

cancer biomarker discovery. These datasets were divided into a

training group (GSE46602 and GSE79021) with 189 PCa cases and

63 normal control cases, and the test group (GSE200879,

GSE60329, and GSE71016) with 216 PCa cases and 70 normal

control cases. Detailed information about each dataset, including

sample collection methods, sources, purposes, and database

curators, is provided in Table 1. Hyperlinks to the original

datasets are included for further reference.
2.2 Identification of DEGs in PCa

The raw data were processed into standardized data using the R

package “limma”. We screened data from 189 PCa cases and 63

normal control cases in the training group and employed the “SVA”

package to correct for batch effects. The threshold for DEG selection

was set as |logFold Change (logFC)| > 1 and adjusted p-value < 0.05.

Volcano plots for all DEGs and clustering heatmaps were generated

using the R packages “ggplot2” and “pheatmap”, respectively.
2.3 Weighted gene co-expression network
analysis

The R package “WGCNA” is used to construct a gene co-

expression network and identify modules related to PCa. A subset of

genes with a standard deviation greater than 0.5 is selected for

further analysis. The “goodSamplesGenes” function is employed to
Frontiers in Oncology 03
check for missing values in the data, to remove genes or samples

that do not meet the quality standards, and to build a scale-free co-

expression network. The “pickSoftThreshold” function is utilized to

determine the optimal soft threshold. On this basis, the gene

expression data matrix is converted into the corresponding

adjacency matrix, which is then transformed into a topological

overlap matrix to determine the gene weights and similarities. Gene

modules are identified through topological overlap clustering

methods. The module eigengenes (ME) are calculated and merged

among similar modules, followed by the generation of a hierarchical

clustering dendrogram. Subsequently, the Gene significance (GS)

and Module Membership (MM) are computed within the modules

through intramodular analysis.
2.4 Functional enrichment analysis

Using the R package “clusterProfiler,” core genes were subjected

to Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analysis, with a p-value of <0.05

set as the criterion. To further explore the signaling pathways

involved in core differential genes, we employed the Gene Set

Variation Analysis (GSVA) method. The R packages “GSVA” and

“enrichplot” were used for GSVA analysis of the differential genes,

referring to the gene set file “c2.cp.kegg.Hs.symbols.gmt”.
2.5 Construction of a diagnostic model
using machine learning methods

Machine learning is a branch of artificial intelligence, and the

core of machine learning is the algorithms, which can analyze and

extract patterns from data and then use these patterns to make

predictions or decisions without explicit programming (15). We

divided the PCa dataset into a training group and a test group and

included 12 machine learning methods, including SVM, Ridge,

Enet, glmBoost, Lasso, plsRglm, Stepglm, RF, GBM, LDA, XGBoost,

and NaiveBayes. We constructed models with 113 combinations of

the 12 algorithms in the PCa training group dataset, and all

constructed models were evaluated in the PCa test group dataset.

For each model, we calculated its AUC values in the training and

validation groups and extracted the feature genes screened by each
TABLE 1 Fundamental details of the GEO datasets utilized in this research.

GEO series Platform Country
Samples

Category
PCa Normal

GSE46602 GPL570 Denmark 36 14 Train group

GSE79021 GPL19370 USA 153 49 Train group

GSE200879 GPL32170 France 115 9 Test group

GSE60329 GPL14550 Italy 54 14 Test group

GSE71016 GPL16699 USA 48 47 Test group
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method. Then, we ranked the predictive performance of the models

based on the average AUC values to select the optimal model and

the optimal model genes.
2.6 Analysis of immune cell infiltration

The CIBERSORT algorithmwas utilized to assess the composition

and abundance of 22 types of immune-infiltrating cells in both PCa

and control samples. The R package “Cibersort” was employed for the

immune cell infiltration analysis. Bar charts were used to visualize the

proportion of each type of immune cell in different samples.

Comparisons in the proportions of different types of immune cells

between the PCa and control groups were visualized using the R

package “ggpubr”. A heatmap depicting the correlations of the 22

infiltrating immune cells was plotted using the R package “corrplot”.
2.7 Correlation analysis between gene
identification and immune cell infiltration

We conducted Spearman’s rank correlation analysis using R

software to examine the correlation between the expression levels of

the identified biomarkers and the levels of infiltrating immune cells.

Finally, the results of the analysis were visualized using the R

packages “ggpubr” and the “linkET” function.
2.8 Mendelian randomization analysis

We obtained expression quantitative trait locus (eQTL) data

from the IEU Open GWAS project (https://gwas.mrcieu.ac.uk/),

which covers 31,684 blood and peripheral blood mononuclear cell

samples involving 19,942 genes. Concurrently, we obtained protein

quantitative trait locus (pQTL) data from https://www.decode.com/

summarydate/, encompassing 4,907 proteins in the plasma of

35,559 Icelandic individuals, and identified 18,084 sequence

variations associated with plasma protein levels. We used these

two datasets as exposure data for subsequent Mendelian

Randomization (MR) analysis. Furthermore, the PCa outcome

data “Finngen_R10_C3_PROSTATE” for MR analysis was

derived from https://www.finngen.fi/en/, including 15,199 PCa

cases and 131,266 control cases. In our study, single nucleotide

polymorphisms (SNPs) were defined as instrumental variables

(IVs), with the selection criteria for IVs being: (a) demonstrating

a genome-wide significant association (P < 5 × 10–8) (16); (b)

showing an independent association (linkage disquilibrium (LD) >

10,000 kb, clump r2 < 0.001) (17). Additionally, to avoid bias caused

by weak instruments, we considered those IVs with an F statistic

>10 as strong instruments and reserved them for the following

analysis (18). In the causal inference of Mendelian Randomization

(MR), valid instrumental variables (IVs) must satisfy three

fundamental assumptions: (1) the genetic variant is directly

related to the exposure; (2) the genetic variant is unrelated to

potential confounders between the exposure and the outcome; (3)
Frontiers in Oncology 04
the genetic variant does not affect the outcome through pathways

other than the exposure.
2.9 Ethical statement and tissue collection

This study was approved by the Ethics Committee of Wuxi No.

2 Hospital affiliated with Nanjing Medical University (2022-Y-80).

The PCa specimens and their paired normal tissues were obtained

from patients at Wuxi No. 2. Hospital and all participants have

signed informed consent forms. All patients received no endocrine

therapy before surgery, and all patients underwent radical

prostatectomy. The tissues were immediately preserved in

liquid nitrogen.
2.10 Reagents

FastPure Cell/Tissue Total RNA Isolation Kit V2, HiScript III

RT SuperMix, and ChamQ Universal SYBR qPCR Master Mix

Q711-02 were all acquired from Vazyme (Nanjing, China). RIPA

lysis buffer was purchased from Beyotime (Shanghai, China).

Protease Inhibitor Cocktails (Cat. HY-K0010) were sourced from

MedChemExpress (Shanghai, China). Anti- ARHGEF38 (Cat.

ab122345) was purchased from Abcam(Shanghai, China).

Antibodies against UT-B (Cat. 25962-1-AP), NEFH (Cat. 18934-

1-AP), MSMB (Cat. 15888-1-AP), KRT23 (Cat. 24049-1-AP),

KRT15 (Cat. 10137-1-AP) and Beta Actin (Cat. 66009-1-Ig) were

purchased from Proteintech (Wuhan, China). Secondary antibodies

(Cat. SA00001-1and Cat. SA00001-2) were purchased from

Proteintech (Wuhan, China).
2.11 Total RNA extraction and quantitative
real-time PCR

Total RNA was isolated from cells with FastPure Tissue Total

RNA Isolation Kit V2 and reverse-transcribed into complementary

DNAs (cDNAs) with HiScript III RT SuperMix. The cDNAs were

amplified based on the standard qPCR protocol with ChamQ

Universal SYBR qPCR Master Mix in an Applied Biosystems 7500

Fast Real-Time PCR System (Thermofisher, US). Quantitative PCR

was conducted at 95 °C for 30 s, followed by 40 cycles of 95 °C for 10 s

and 60 °C for 30 s. GAPDH was used as the internal control and the

results were calculated using 2-DDCT method. The sequences of

primers can be seen in Supplementary Table 1.
2.12 Western blot assay

RIPA lysis buffer containing protease inhibitor was used to

extract tissue protein. Protein concentration was determined with

BCA Protein Assay Kit. ColorMixed Protein Marker was applied as

a protein size marker. Total proteins were separated by 10% sodium

dodecyl sulfate–polyacrylamide gel electrophoresis and then
frontiersin.org
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transferred to a polyvinylidene difluoride (PVDF) membrane

(3010040001, Roche, Germany). The PVDF membrane was then

blocked with 5% milk for 2 h followed by incubation with the

indicated primary antibody overnight at 4°C. After incubation with

the corresponding secondary antibody at room temperature for

1.5 h, the protein bands were visualized using enhanced

chemiluminescence (Tanon, China).
2.13 Immunohistochemistry

Tissues were fixed with 4% paraformaldehyde, dehydrated,

embedded in paraffin and sectioned at 4mm. The sections were

deparaffinized, then boiled with citrate solution, and incubated with

3% H2O2 for 10 min. After antigen retrieval and blocking, the slides

were incubated with the indicated antibodies at 4°C overnight.

Subsequently, the slides were incubated with the corresponding

secondary antibody for 30 min at room temperature and then

incubated with the streptavidin peroxidase complex. Staining was

performed using a 3,3-diaminobenzidine (DAB) substrate kit for

peroxidase reaction and counterstained with hematoxylin. Sections

were washed, dehydrated, and sealed with neutral balsam. Finally,

an Olympus microscope was used to acquire images.
2.13 Statistical analysis

All statistical analyses were conducted using Perl version 5.38.2

and R software version 4.3.1. A P-value of less than 0.05 was used to

determine statistical significance. In MR analysis, we employed five

methods, including “MR Egger,” “Weighted Median,” “Inverse

Variance Weighting (IVW),” “simple mode,” and “weighted

mode.” Among these, IVW is the primary method for causal

inference due to its superior precision and stability. A P-value of

less than 0.05 was considered indicative of a significant correlation

between exposure and outcome. We conducted sensitivity and

heterogeneity tests based on the Q statistic. The MR-egger

regression test was utilized to assess the presence of horizontal

pleiotropy based on its intercept term. MR-PRESSO compares the

observed distance of all variants to the regression line with the

expected distance under the null hypothesis of no horizontal

pleiotropy. To evaluate whether the removal of individual

influential SNPs influenced the overall estimate of causal effects,

leave-one-out analyses were performed.
3 Results

3.1 Identification of DEGs in PCa

DEGs in the GEO database (GSE46602 and GSE79021) were

identified in 189 cases of PCa and 63 normal controls using the R
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package “limma”. Due to batch effects present between different

datasets (as shown in Figures 1A, C), after removal, the distribution

of data across different datasets became significantly more uniform,

with medians aligned and both mean and variance showing

stronger consistency(as shown in Figures 1B, D). This indicates

that after adjustment, the integrated data can be considered as a

unified batch for subsequent analysis. Based on this, we identified a

total of 21 DEGs in the training group, 11 of which were

upregulated and 10 were downregulated. The expression levels of

the 21 DEGs are displayed in heatmaps and volcano plots

(Figures 1E, F).
3.2 Weighted gene co-expression network
analysis and identification of key modules

We constructed a scale-free co-expression network using

WGCNA to identify the most highly correlated modules in PCa.

The optimal “soft” threshold b = 4 (scale-free R² = 0.9) was selected

based on scale independence and mean connectivity (Figures 2A,

B). A total of 5 modules with different colors were obtained through

dynamic tree shearing (Figure 2C). Then, the modules were

correlated with clinical characteristics to further identify the

driver genes of the most strongly positively correlated module.

We ultimately identified the ME turquoise module as being most

highly correlated with DCM in PCa (R = 0.39, p < 0.001)

(Figure 2D). A significant distribution of Gene Significance (GS)

was observed across the five modules (Figure 2E). Therefore, we

selected the turquoise module, which contains 1,195 genes, for

further analysis. Additionally, we performed a correlation analysis

between module membership (MM) and gene significance (GS),

and found a significant positive correlation between them (R = 0.84,

p < 0.001; Figure 2F).
3.3 Functional enrichment analysis

We intersected the DEGs with the WGCNA module genes to

obtain a total of 20 genes (Figure 3A). To further assess the potential

regulatory pathways of these genes in PCa, we conducted GO and

KEGG enrichment analyses. The GO analysis indicated that these

genes are primarily enriched in the biological process (BP) terms

“intermediate filament organization,” “intermediate filament

cytoskeleton organization,” and “intermediate filament-based

process.” Regarding the cellular component (CC) ontology, these

genes are involved in “intermediate filament” and “intermediate

filament cytoskeleton.” The molecular function (MF) analysis

showed that the genes are enriched in “structural constituent of

cytoskeleton” and “scaffold protein binding” (Figure 3B). The

KEGG enrichment analysis demonstrated that these genes

participate in the “Staphylococcus aureus infection” and

“Estrogen signaling pathway” (Figure 3C).
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3.4 Identification of candidate core genes
through machine learning methods

To construct a diagnostic model for PCa-related genes, we

utilized a combination of 113 machine learning algorithms to

analyze the previously selected 20 genes. In the training group
Frontiers in Oncology 06
dataset, we calculated that “RF” produced the best predictive

performance among the 113 tested algorithms, and this model

also performed well in the test group dataset. Furthermore, we

calculated the AUC values for each model in both the training and

validation groups, with the RF machine learning algorithm

achieving the highest AUC value (Figure 4A). Therefore, we
FIGURE 1

Identification of differential genes in PCa. (A, C) The dataset before batch effect removal. (B, D) The integrated dataset after batch effect removal. (E, F)
Heatmaps and volcano plots display the expression of differentially expressed genes in PCa samples and control samples.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1534612
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lv et al. 10.3389/fonc.2025.1534612
identified RF as the optimal diagnostic model. Additionally, we

plotted the ROC curves for the RF model in the training and

validation groups across three datasets (Figures 4B–E). The RF

model identified six genes (SLC14A1, ARHGEF38, NEFH, MSMB,

KRT23, KRT15) as the final validated core genes (Figure 4F).
Frontiers in Oncology 07
3.5 Diagnostic assessment and validation
of core genes

To assess the diagnostic value of the six candidate core genes

selected, we established ROC curves to evaluate the diagnostic
FIGURE 2

WGCNA analysis. (A) The scale-free topology fit index (R²) for soft threshold powers (b) ranging from 1 to 20. (B) The mean connectivity for b from 1
to 20. (C) Dendrogram of all genes clustered based on topological overlap. (D) Correlation heatmap of modules and clinical traits. (E) Boxplot of
Gene Significance (GS) distribution across five modules. (F) Scatterplot of Module Membership (MM) in the turquoise module versus GS for PCa.
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specificity and sensitivity of each gene. The results are as follows:

SLC14A1 (AUC 0.862), ARHGEF38 (AUC 0.817), NEFH (AUC

0.805), MSMB (AUC 0.784), KRT23 (AUC 0.728), KRT15 (AUC

0.824), all candidate genes have a high diagnostic value for PCa

(Figure 5A). To delve deeper into the biological significance of these

six core genes, we utilized GeneMANIA to analyze the relationships

and interaction patterns between these genes and other closely

related genes. we found 20 genes that are closely related to these 6

genes (Figure 5B). Next, we applied the Gene Set Variation Analysis

(GSVA) method to analyze the signaling pathways in the KEGG

database to assess the enrichment of each gene in these pathways.

We found that the genes SLC14A1, MSMB, KRT23, and KRT15 are

primarily enriched in “prostate cancer” signaling pathway

(Supplementary Figure S1). We also analyzed the expression level

differences of these core genes in PCa patients and normal

populations. The results showed that SLC14A1, NEFH, MSMB,

KRT23, and KRT15 are underexpressed in PCa, while ARHGEF38

is highly expressed in PCa (Figure 5C). In addition, we also analyzed

the correlations between these core genes and found that SLC14A1,

NEFH, MSMB, KRT23, and KRT15 genes are all positively

correlated with each other, while ARHGEF38 is negatively

correlated with the other five genes (Figure 5D).
3.6 Immune cell infiltration analysis

We used the CIBERSORT algorithm to evaluate the

composition and abundance of 22 types of immune cell

infiltration in the training group (Figure 6A). In addition, the

correlation analysis of the 22 types of immune cells showed that
Frontiers in Oncology 08
Dendritic cells resting were positively correlated with Macrophages

M1 (r = 0.62), T cells regulatory were positively correlated with NK

cells activated (r = 0.50), while T cells CD4 memory resting were

negatively correlated with T cells follicular helper (r = −0.70)

(Figure 6B). The box plots showed that compared to the control

group, PCa patients had higher levels of Plasma cells and

Monocytes, while the levels of Mast cells resting were

lower (Figure 6C).
3.7 Correlation analysis between PCa-
associated core genes and immune
infiltrating cells

To validate the relationship between the selected core genes and

immune cell infiltration, we conducted a correlation analysis. The

results indicated that SLC14A1 is positively correlated with

Dendritic cells activated (R = 0.48, P = 0.027) and NK cells

resting (R = 0.45, P = 0.039), and negatively correlated with

Dendritic cells resting (R = -0.45, P = 0.039) and Macrophages

M1 (R = -0.52, P = 0.016) (Figure 7A); ARHGEF38 is negatively

correlated with T cells regulatory (Tregs) (R = -0.52, P = 0.017) and

Mast cells resting (R = -0.56, P = 0.009) (Figure 7B); NEFH is

positively correlated with NK cells activated (R = 0.46, P = 0.038)

and negatively correlated with T cells CD4 memory activated (R =

-0.58, P = 0.006) (Figure 7C); MSMB shows no significant

correlation with immune cell infiltration (Figure 7D); KRT23 is

positively correlated with Monocytes (R = 0.47, P = 0.031) and NK

cells resting (R = 0.45, P = 0.040), and negatively correlated with

Macrophages M1 (R = -0.45, P = 0.039), Dendritic cells resting (R =
FIGURE 3

Functional enrichment analysis. (A) Venn diagram showing common genes of key module genes and differential genes. (B) GO enrichment analysis
of Intersecting genes. (C) KEGG enrichment analysis of Intersecting genes.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1534612
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lv et al. 10.3389/fonc.2025.1534612
-0.48, P = 0.029), T cells CD4 memory activated (R = -0.49, P =

0.025), and B cells memory (R = -0.52, P = 0.015) (Figure 7E);

KRT15 is positively correlated with NK cells resting (R = 0.48, P =

0.028) and negatively correlated with Macrophages M1 (R = -0.45,

P = 0.039) (Figure 7F). Additionally, we visualized the correlations

between the expression of all core genes and the infiltration of 22

immune cells (Figure 7G). These findings suggest that the

associated core genes may contribute to PCa by influencing

immune cell infiltration.
Frontiers in Oncology 09
3.8 MR analysis of the association between
core genes and PCa

In our study, we initially conducted a two-sample MR analysis

using eQTL data of six core genes combined with PCa data.

Unfortunately, this analysis did not reveal any causal associations

between these genes and PCa. Subsequently, we turned to another

round of two-sample MR analysis using the pQTL data of these core

genes along with PCa data. In this analysis, we found that only the
FIGURE 4

Identification of core genes in prostate cancer using machine learning methods. (A) Constructing a prostate cancer diagnostic prediction model with
combinations of 113 machine learning algorithms in training and test group. (B–E) ROC curves of RF model for training and test group. (F) Volcano
plot of the 6 core genes identified by the RF model.
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MSMB pQTL had a significant causal relationship with the

incidence of PCa (OR: 0.8589, 95% CI: 0.8085-0.9125, P < 0.05)

(Figure 8A). This indicates that the expression of MSMB is a major

protective factor in the pathogenesis of PCa, while the other core

genes may only appear as biomarkers after the occurrence of PCa.

The forest plot shows the effect sizes of various SNPs in the MSMB

pQTL (Figure 8B). The scatter plot shows the regression trends of

the five methods, all of which are consistent (Figure 8C). The funnel

plot shows the distribution of causal effects (Figure 8D). The leave-

one-out analysis reveals the impact of individual SNPs on the

overall causal estimate (Figure 8E). The MR-Egger intercept

analysis for the MSMB pQTL did not detect any potential

horizontal pleiotropy (P = 0.55), indicating that the instrumental

variables do not significantly affect the outcome through pathways

other than the exposure. In the Cochran Q test for heterogeneity,

heterogeneity was observed in the MSMB pQTL data (P = 0.013).

This may be due to IVs originating from different analysis

platforms, different studies or datasets, and different populations.
Frontiers in Oncology 10
3.9 Validation of core gene expression
in prostate cancer and adjacent
non-cancerous tissues

We measured the mRNA expression levels of six core genes in

PCa tumor tissues and their corresponding para-cancerous tissues.

Our results revealed that, compared to para-cancerous tissues, the

expression levels of SLC14A1, NEFH, MSMB, KRT23, and KRT15

were significantly downregulated in PCa tumor tissues, while

ARHGEF38 expression was notably upregulated, consistent with

our initial predictions (Figures 9A–F). To further validate these

findings at the protein level, we conducted Western blot analysis on

tumor tissues and adjacent normal tissues from PCa patients. The

results demonstrated that ARHGEF38 protein expression was

significantly elevated in tumor tissues. In contrast, the expression

levels of UT-B (encoded by SLC14A1), NEFH, MSMB, KRT23, and

KRT15 were reduced in tumor tissues compared to adjacent normal

tissues, although the decrease in UT-B did not reach statistical
FIGURE 5

Assessment of Diagnostic Value of Core Genes and Correlation Analysis. (A) The ROC curves for the diagnostic validity of 6 core genes. (B) PPI network
among 6 core genes.(C) The expression of 6 core genes in PCa and control tissues. (D) Correlation analysis among 6 genes. *P < 0.05, **P < 0.01,
***P < 0.001 compared to control.
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significance (Figure 9G). Quantitative analysis of the Western blot

results is presented in Figure 9H, further supporting the observed

protein expression trends.

Additionally, immunohistochemistry (IHC) was performed to

evaluate the localization and expression levels of two key proteins in

PCa and para-cancerous tissues. The IHC results revealed that

ARHGEF38 protein was highly expressed in tumor tissues, while

MSMB exhibited reduced expression in tumor tissues compared to

para-cancerous tissues (Figure 9I). These findings were consistent

with the mRNA and protein expression patterns observed in qRT-

PCR and Western blot analyses.
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4 Discussion

PCa is one of the most common malignant tumors in the male

reproductive system and is the fifth leading cause of cancer-related

deaths in men. Its pathogenesis is complex, involving a variety of

factors such as genetics, environment, and lifestyle. Although the

causes of PCa are not yet clear, early prevention and treatment

remain key to improving prognosis and prolonging survival. PCa-

related biomarkers play an important role in the early diagnosis,

prognosis assessment, and monitoring of treatment response in PCa

(19). In recent years, with the advancement of molecular biology
FIGURE 6

Immune cell infiltration analysis between PCa and control. (A) The box-plot diagram indicating the proportion of 22 kinds of immune cells between
PCa and normal controls. (B) The heat map illustrates the correlation among 22 different immune cell populations.(C) The box plot shows the
differences in immune infiltration between prostate cancer and normal controls. *P < 0.05, **P < 0.01 compared to control.
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and genetic technology, more and more PCa-related biomarkers

have been discovered and applied in clinical and research settings.

For example, Srikantan et al. (20)identified a prostate-specific gene

PCGEM1 that is expressed only in human prostate tissue and is

upregulated in the vast majority of tumor tissues by comparative

analysis of differentially expressed genes between normal prostate
Frontiers in Oncology 12
tissue and PCa tissue. This indicates that PCGEM1 may be involved

in the occurrence and progression of PCa. Wei et al. (21) assessed

the value of urine prostate cancer antigen 3 (PCA3) for screening

PCa in men, and the results showed that urine PCA3 plays an

important role in reducing the medical burden of men undergoing

repeat prostate biopsies, and for men who have not undergone a
FIGURE 7

Correlation analysis of 6 PCa-related core genes with infiltrating immune cells. (A–F) Correlation between SLC14A1, ARHGEF38, NEFH, MSMB,
KRT23, KRT15, and infiltrating immune cells. (G) A visualization chart of the correlations between 6 core genes and the infiltration of 22 types of
immune cells.
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biopsy, a high PCA3 score significantly increases the likelihood of

detecting cancer in the initial prostate biopsy. We obtained five

datasets from the GEO database, of which two were combined into

the training group, and the remaining three were combined into the

test group. In the training group, we identified 21 DEGs, of which

11 genes were upregulated and 10 genes were downregulated.

Additionally, KEGG enrichment analysis revealed that these

differentially expressed genes are involved in pathways related to

“Staphylococcus aureus infection.” The identification of shared

genetic pathways between PCa and Staphylococcus aureus

infection suggests potential interactions between microbial
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infections and PCa progression. For example, S. aureus may play

a role in modulating the tumor immune microenvironment,

thereby influencing prostate cancer pathogenesis (22, 23). For

example, S. aureus may influence the progression and metastasis

of prostate cancer by modulating the tumor immune

microenvironment. These genetic overlaps may play an important

role in the regulation of microbial infections and the immune

microenvironment. Further studies are needed to explore these

mechanisms in detail.

Subsequently, we used WGCNA and 12 machine learning

methods to screen for PCa-related core genes. Ultimately, we
FIGURE 8

Mendelian randomization study results on the relationship between MSMB and PCa. (A) MR analysis demonstrated the causal relationship of MSMB
pQTL on PCa. (B–E) Forest plot, Funnel plot, Scatter plot and Leave-one-out analysis of the causal association between MSMB pQTL and PCa.
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FIGURE 9

Validation of mRNA and protein expression levels of six core genes in PCa tumor tissues and adjacent non-cancerous tissues. (A–F) mRNA
expression levels of SLC14A1, ARHGEF38, NEFH, MSMB, KRT23, and KRT15 in PCa tumor tissues and adjacent non-cancerous tissues, as determined
by qRT-PCR. (n=3). (G) Protein expression levels of UT-B (encoded by SLC14A1), ARHGEF38, NEFH, MSMB, KRT23, and KRT15 in PCa tumor tissues
and adjacent non-cancerous tissues, as determined by Western blot. (H) Quantitative analysis of Western blot results. (I) Immunohistochemistry
(IHC) analysis of ARHGEF38 and MSMB protein expression in PCa tumor tissues and adjacent non-cancerous tissues. Data are presented as mean ±
SEM. ns P>0.05, *P < 0.05, ***P < 0.001 compared to normal tissues.
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identified Random Forest (RF) as the optimal machine learning

method and discerned six core genes from it, including SLC14A1,

ARHGEF38, NEFH, MSMB, KRT23, and KRT15. To validate

whether these genes could act as diagnostic biomarkers, we

analyzed their diagnostic value in PCa. The results demonstrated

that all of these genes exhibited certain diagnostic potential, with

AUC values all exceeding 0.7.

Previous studies have indicated that immune cell infiltration is

closely related to the development and prognosis of PCa. In the

tumor microenvironment of PCa, the mechanism and interaction of

immune cells are very complex, and they play significant roles in the

occurrence and progression of cancer (24). Our study used

CIBERSORT to evaluate the infiltration of immune cells in PCa,

and the results showed an increase in the expression of Plasma cells

and Monocytes, while the expression of Mast cells resting decreased

in PCa patients. In addition, we analyzed the relationship between

the six core genes and PCa-related immune cells, and the results

revealed that SLC14A1, NEFH, KRT15, and KRT23 were

significantly correlated with NK cells. Furthermore, SLC14A1,

KRT15, and KRT23 were significantly associated with

Macrophages M1. Natural Killer (NK) cells are a subset of

lymphocytes that play a central role in the innate immune

response to tumors and infections. NK cells can detect changes in

the expression of self MHC-I molecules on the surface of autologous

cells and maintain cytotoxic activity against tumors with high

expression of MHC-I (25). A follow-up study over 11 years

indicated that low NK cell cytotoxic activity is associated with an

increased risk of cancer (26). Pasero et al. (27) retrospectively

analyzed natural killer (NK) cells in the peripheral blood of 39

patients with metastatic PCa and found that patients with longer

survival and castration-resistant time showed high expression of

NK cell receptors (NKp46 and NKp30). Seki et al. (28)

demonstrated that NK cells can target PCa stem-like cells through

a pathway, thereby inhibiting the occurrence, progression,

metastasis , and recurrence of PCa. Tumor-associated

macrophages are one of the major types of immune cells in the

TME, and an increase in their density is associated with poor

prognosis in PCa. Kainulainen et al. (29) showed that the secreted

factors of M1 macrophages can upregulate the plasticity of PCa

stem cells through the NF-kB signaling pathway, thereby affecting

the progression and drug resistance of PCa. Hadimani et al. (30)

analyzed the expression of CD68 and CD163 in tumor tissues from

62 patients with PCa to evaluate the expression of tumor-associated

macrophages M1 and M2 in PCa and explore their association with

tumor stage. The results showed that CD68 expression was

associated with a good prognosis with fewer lymph node and

distant metastases, while CD163 expression was associated with a

poor prognosis and an increased likelihood of lymph node and

distant metastases. These studies, including our own, indicate that

various types of immune cells play important roles in PCa,

providing new insights for immunotherapy of PCa.

Although we have identified 6 core genes associated with PCa,

the genetic associations of these genes with PCa still need to be

studied in depth. Therefore, I employed Mendelian randomization

analysis to further explore the potential causal effects of these
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genetic variants on the risk of developing PCa. Our study did not

find any significant association between the eQTL data of any genes

and PCa; however, we did find that the pQTL data of the MSMB

gene showed a significantly negative correlation with the occurrence

of PCa. This finding suggests that the expression level of the MSMB

gene may have a significant impact on the risk of developing PCa.

In this study, we systematically validated the expression

patterns of six core genes (SLC14A1, ARHGEF38, NEFH, MSMB,

KRT23, and KRT15) in PCa tissues and adjacent non-cancerous

tissues using qRT-PCR, Western blot, and IHC. Our qRT-PCR

results demonstrated that SLC14A1, NEFH, MSMB, KRT23, and

KRT15 were significantly downregulated in PCa tissues, while

ARHGEF38 was markedly upregulated. These findings were

further corroborated at the protein level through Western blot

analysis, which revealed consistent expression trends for

ARHGEF38, NEFH, MSMB, KRT23, and KRT15. Although the

reduction in UT-B (encoded by SLC14A1) protein expression did

not reach statistical significance, the overall trend aligned with the

mRNA data, suggesting a potential role of these genes in PCa

pathogenesis. This lack of statistical significance for UT-B may be

attributed to the relatively small sample size, which could limit the

power to detect subtle differences in protein expression. Future

studies with larger cohorts are needed to confirm these findings and

further explore the functional implications of UT-B in PCa.

To strengthen our findings, we performed IHC analysis for two

key proteins, ARHGEF38 and MSMB. The IHC results confirmed

that ARHGEF38 protein was highly expressed in tumor tissues,

while MSMB expression was markedly reduced, consistent with the

qRT-PCR andWestern blot data. These results not only validate the

dysregulation of these genes at both mRNA and protein levels but

also highlight their potential as biomarkers or therapeutic targets in

PCa. The consistent downregulation of MSMB, a known tumor

suppressor in prostate cancer, further supports its role in inhibiting

tumor progression. Conversely, the upregulation of ARHGEF38, a

gene implicated in cell signaling and cytoskeletal reorganization,

suggests its potential involvement in promoting tumor growth

and metastasis.

This study indicates that the genes SLC14A1, ARHGEF38,

NEFH, MSMB, KRT23, and KRT15 hold significant diagnostic

value in the onset and progression of PCa. SLC14A1, a member

of the urea transporter family and a type B urea transporter (UT-B),

plays a crucial role in regulating urine concentration (31).

Furthermore, the SLC14A1 gene is also considered a novel tumor

suppressor for urothelial carcinoma, and in PCa, the

downregulation of its expression promotes tumor progression by

activating the CDK1/CCNB1 and mTOR pathways and is closely

associated with biochemical recurrence (BCR) of PCa (32–34).

ARHGEF38 is a component of the human Rho guanine

nucleotide exchange factor family, which plays an important role

in cell migration and tumorigenesis. Studies have shown that

knocking down the expression of ARHGEF38 can inhibit the

proliferation, migration, and invasion of PCa cells, suggesting that

ARHGEF38 may promote the progression of PCa (35). The protein

encoded by the NEFH gene is a key component of the

neurofilament cytoskeleton and belongs to the family of
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intermediate filament proteins; its gene mutations are associated

wi th var ious neuro log ica l d i seases (36) . MSMB (b -
microseminoprotein), primarily expressed in the prostate, is an

abundant component in semen and is considered one of the

biomarkers for PCa, holding significant value in the diagnosis and

treatment of PCa (37). KRT23 is a member of the keratin family and

an acidic keratin expressed in various cancer types, including

pancreatic, colorectal, and hepatocellular carcinomas (38–40).

Research by Wang et al. (41) indicates that the knockout of the

KRT23 gene can enhance the metastatic and invasive capabilities of

PCa DU145 cells. KRT15, also a member of the keratin family, is an

intermediate filament protein expressed in various epithelial cells

and plays an essential role in maintaining cellular structural

stability, proliferation, and differentiation. Research by Xiao et al.

(42) shows that KRT15 is expressed at lower levels in PCa tissues

and cell lines (LNCaP, DU145, and PC3), and the low expression of

KRT15 is correlated with higher pathological staging and Gleason

scores. Our study results are consistent with existing research,

indicating that these genes may significantly impact the

development of PCa and can be used for early diagnosis. In

particular, MSMB shows a strong causal relationship in the

Mendelian randomization analysis related to the occurrence of

PCa and may become an important protective factor for PCa.

However, it is important to clarify that these biomarkers are not

intended to replace biopsy as the gold standard for definitive

diagnosis. Instead, they aim to serve as non-invasive

supplementary tools to reduce the reliance on biopsy, particularly

in cases where PSA levels are ambiguous or patients are at high risk

of complications from invasive procedures. By integrating these

biomarkers into existing diagnostic workflows, clinicians can make

more informed decisions about whether a biopsy is necessary,

thereby minimizing unnecessary invasive interventions.

This study has certain limitations. Firstly, the sample size of the

datasets used in this study is limited, which means that our findings

need to be validated in larger datasets and clinical trials to enhance

the reliability of the research results. Secondly, while our qRT-PCR,

Western blot and IHC experiments confirmed the differential

expression of the identified biomarkers, further functional studies

are needed to elucidate their roles in prostate cancer progression

and immune modulation. Future research should include in vitro

experiments, such as gene knockdown or overexpression, and in

vivo studies using animal models to validate the mechanistic roles of

these biomarkers. Thirdly, our MR analysis suggests that MSMB is a

protective factor for PCa; however, the presence of heterogeneity

may limit the strength and reliability of the research conclusions.

This could be due to the IVs originating from different analysis

platforms, different studies or datasets, and different populations.

Future studies should employ more stringent criteria for selecting

instrumental variables to enhance the robustness of MR findings.

In summary, our study has made a significant contribution to

prostate cancer research by combining advanced computational

methods with experimental validation, especially in the context of

personalized treatment strategies. The genes SLC14A1,

ARHGEF38, NEFH, MSMB, KRT23, and KRT15 have been
Frontiers in Oncology 16
identified as biomarkers associated with PCa. Mendelian

randomization analysis indicates that MSMB is an important

protective factor related to the occurrence of PCa. These

biomarkers could be used to stratify patients based on their risk

profiles, enabling more targeted and effective interventions.

Additionally, these biomarkers may serve as non-invasive tools

for early diagnosis, reducing the need for invasive procedures like

biopsies. However, addressing the noted limitations, including

expanding functional validation and exploring comparative

analyses with PSA, will be essential for translating these findings

into clinical practice. Future studies should include longitudinal

analyses to assess changes in biomarker expression across different

stages of prostate cancer. Such analyses could validate the

prognostic utility of these biomarkers and provide insights into

their roles in disease progression.
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