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Prostate cancer (PCa) recurrence affects between 20% and 40% of patients,

being a significant challenge for predicting clinical outcomes and increasing

survival rates. Although serum PSA levels, Gleason score, and tumor staging are

sensitive for detecting recurrence, they present low specificity. This study

compared the performance of three supervised machine learning models,

Naive Bayes (NB), Support Vector Machine (SVM), and Artificial Neural Network

(ANN) for classifying PCa recurrence events using a dataset of 489 patients from

The Cancer Genome Atlas (TCGA). Besides comparing the models performance,

we searched for analyzing whether the incorporation of specific genes

expression in the predictor set would enhance the prediction of PCa

recurrence, then suggesting these genes as potential biomarkers of patient

prognosis. The models showed accuracy above 60% and sensitivity above 65%

in all combinations. ANN models were more consistent in their performance

across different predictor sets. Notably, SVM models showed strong results in

precision and specificity, particularly considering the inclusion of genes selected

by feature selection (NETO2, AR, HPN, and KLK3), without compromising

sensitivity. However, the relatively high standard deviations observed in some

metrics indicate variability across simulations, suggesting a gap for additional

studies via different datasets. These findings suggest that genes are potential

biomarkers for predicting PCa recurrence in the dataset, representing a

promising approach for early prognosis even before the main treatment.
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1 Introduction

Prostate cancer (PCa) poses a global public health challenge

with high mortality. In 2024, an estimated 300,000 new cases of PCa

will be diagnosed, representing about 15% of all global cancers and

with a projected 35% mortality rate (1). According to 2022

GLOBOCAN data, it is the fourth most diagnosed cancer globally

(7.3%) (2). Primary PCa risk factors include age, family history,

genetic traits, obesity, diet, and lifestyle conditions (3–5).

Additionally, socio-environmental and socioeconomic factors play

a role in cancer occurrence, with ethnicity and geographic location

as relevant aspects (6). The Prostate-Specific Antigen (PSA) test is a

widely used biomarker for diagnosing and monitoring PCa. PSA

levels ≥ 4.0 ng/mL are considered elevated, potentially indicating

abnormalities. Disease prognosis is based on the Gleason score and

tumor staging, which assess the tumor’s histological grade, extent,

and spread. Post-treatment, patient follow-up includes PSA

measurements every three to six months (7).

Biochemical recurrence affects 20% to 40% of patients and is

marked by rising PSA levels (8). However, this rise does not

necessarily signal cancer return, as PSA lacks specificity, unable to

distinguish between aggressive and non-aggressive tumors, leading

to high false-positive rates (9, 10). Given that PSA results vary per

patient (11, 12), there is a need to optimize predictions to improve

diagnostic accuracy and reduce recurrence rates. In fact, the

heterogeneity, plurality, plasticity and complexity of PCa make an

assertive therapeutic approach difficult. Surgery and radiotherapy

are adopted for localized tumors. However, late diagnosis is

frequent and metastatic disease requires systemic therapies that,

for the most part, are not curative (13). In this context, improved

prognostic and predictive tools are necessary to overcome the

challenges related to PCa, such as: differentiation of lethal and

non-lethal disease; personalized therapeutic, and accessibility,

especially in low-income countries (14).

In recent years, many studies have explored PCa diagnosis using

machine learning (ML) algorithms, particularly through imaging

techniques (15). Some models have also identified radiomic,

genomic, and clinical biomarkers for PCa diagnosis (9, 16).

However, fewer studies have focused on disease recurrence

prediction using ML, especially with molecular biomarkers. Deng

et al. (17) applied five ML models to predict PCa in patients with

low PSA, achieving high performance with Random Forest (RF).

Liu et al. (18) used ML to predict Gleason score upgrades, with

Lasso-regularized Logistic Regression (Lasso-LR) performing best.

Similarly, Lee et al. (19) tested multiple models for biochemical

recurrence prediction, with Gradient Boosting Machines (GBM)

showing the highest performance.

Machine learning (ML) algorithms have been extensively used

to predict both the diagnosis and prognosis of various cancers.

Zhou et al. (20) assessed the predictive performance of five ML

models in forecasting recurrence in gastric cancer patients post-

surgery, with the logistic regression model demonstrating the

highest accuracy. Furthermore, these algorithms facilitated the

identification of critical factors associated with recurrence,

including body mass index (BMI), operation time, age, among

others (20). For glioblastoma, ML models have been developed
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with high accuracy in predicting disease recurrence and mortality,

utilizing diverse types of data ranging from imaging and genetic

profiles to demographic details (21). Kim et al. (22) proposed

clinically applicable prognostic prediction models for glioblastoma

multiforme, estimating overall survival and progression-free

survival. The Random Survival Forest (RSF) model exhibited the

best performance, but all models successfully stratified high-risk

recurrence groups for glioblastoma multiforme up to 5 years.

Despite these advances, predicting PCa recurrence remains

challenging and less defined than diagnosis prediction. Recent

research has targeted potential molecular biomarkers, such as

mRNAs, microRNAs, lncRNAs, and repetitive sequences, to

enhance disease prediction. Wang et al. (23) identified six omic

biomarkers that differentiated high- and low-risk recurrence

groups. Tong et al. (24) used ML techniques to identify and

validate biomarkers associated with PCa prognosis through

protein-protein interaction networks. These studies underscore

ML’s potential in improving PCa prognosis, though further

research is needed to refine recurrence prediction using

molecular features.

Given previous study limitations and the need to enhance

recurrence predictions, this study aims to compare three supervised

ML models—Naive Bayes (NB), Support Vector Machines (SVM),

and Artificial Neural Network (ANN)—in predicting PCa recurrence.

We also investigate whether adding potential molecular biomarkers

to traditional clinical features (PSA levels, Gleason score, and tumor

staging) can boost model performance. The data and models used in

this study contribute to the development of tools that address key

biological features of PCa and can be adapted to investigate other

tumors, particularly those with a worse prognosis. The paper is

structured as follows: Section 2 describes the methodology,

including the dataset, preprocessing, and the models and metrics

used for comparison. Section 3 presents the results of feature selection

and model performance. Section 4 discusses the findings and

potential applications.
2 Methodology

An overview of the methodology and analyses employed in this

study is presented in Figure 1. The applied methodology is

described in the following subsections.
2.1 Database

To construct classification models and identify potential new

biomarkers for predicting PCa recurrence events a dataset of 489

patients with the disease available from The Cancer Genome Atlas

(TCGA)1, accessed in January 2023, was used. The expression of the

genes KLK3, AR, GSTM3, NETO2, HPN, PRUNE2, and FOLH1, as

provided in the RNA-seq version 2 files (Illumina Hi-Seq), was

evaluated. Each gene expression profile (tag count per gene - CDS)
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was normalized to reads per kilobase of exon per million mapped

sequence reads (RPKM), according to the CDS length and total tag

count using the following relation:

109  �  C
(N  �   L)

, (1)

where 109 is a correction factor, C is the number of reads

corresponding to a gene, N is the total number of mappable tags in

the experiment, and L is the CDS length (25).

Table 1 presents the attributes of the selected database. In

addition to gene expression data, information already used in the

clinic for PCa diagnosis and prognosis was also considered:

preoperative serum PSA level, Gleason score, and tumor staging.

The staging is nominal, thus a value between 0 and 1 was assigned

to each stage (T1 to T4). For the class of interest “recurrence

events”, a value of 0 was assigned to non-recurrence events and 1 to

recurrence events. Of the 489 patients, only 419 were used because

of missing information in some attributes. Among these, 85

presented cancer recurrence events, whereas 334 did not.

As shown in Table 1, the attributes have different value ranges.

Therefore, all data were normalized between 0 and 1 using the

following equation:

xnorm =
x  −   xmin

xmax  −   xmin
, (2)

to improve training characteristics and prevent attributes with

high values from exerting a greater influence on the classification

(26, 27).

To eliminate the effect of class imbalance, a subsampling

process was applied to the dataset, consisting of the random

selection of an adequate number of samples from the majority

class (0) and equalizing the number of samples among classes. This

ensures equitable representation during modeling. After this
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rearrangement, 90% of the data were used for training and

validation, while 10% were reserved as a completely independent

test set (28). Within the training data, a 10-fold cross-validation

scheme was applied to tune the hyperparameters and evaluate the

models performance. This ensures that the hyperparameter

optimization process does not involve the independent test set,

thereby preventing overfitting to already analyzed data. This

random subsampling process was repeated 50 times, creating 50

different training and testing datasets. Each data point was used for

validation exactly once across all iterations, ensuring robust and

representative results. All model simulations were performed on

each of these 50 datasets, ensuring representativeness and

robustness of the analysis.

For the simulations, the Classification Learner toolbox (29) in

MATLAB© 2 was used for feature selection and optimization of the

models, which will be described in the next section. Due to the

limited availability of data, and consequently the training data in

this study, we decided to use these three models, which are effective

in different contexts. The NB classifier generally exhibits good

binary classification accuracy, which aligns with the problem

addressed here (30). SVM, on the other hand, is widely used in

pattern recognition problems and tends to deliver good results (31),

although the appropriate choice of hyperparameters and kernels is

crucial for optimal performance, especially with small datasets.

Additionally, ANN were included due to their ability to capture

complex non-linear relationships in the data, which may not be

easily modeled by simpler algorithms (26).
FIGURE 1

Detailed flowchart of the methodology applied in this study. The diagram illustrates the main steps, from the processing and organization of gene
expression data from TCGA to the optimization and comparative evaluation of NB, SVM, and ANN models.
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2.2 Naive-Bayes classifier

The NB method attempts to solve the problem of predicting a

class based on a vector of d features using generative hypotheses (32,

33). To realize this, it assumes (naively) that, given a class, features

are independent of each other. That is, considering y  ∈   0, 1f g as

the classes and x =   x1, x2,…, xdf g as the feature vector, where each
xi ∈   0, 1f g, we obtain

P½X = xjY = y� =
Yd

i=1

 P Xi = xi½ jY = y� : (3)

To describe the probability function presented in Equation 3, 2d

parameters are required, meaning that the number of examples

required for classification increases exponentially with number of

features. To identify an optimal classifier, Bayes theorem can be

used, which defines the probability of an event A occurring given

that B has occurred. Considering the theorem and Equation 3, the

optimal Bayes classifier (hBayes(x)) can be defined as class y that

makes the expression (Equation 3) the most probable (maximum

possible) for feature vector x, that is,

hBayes xð Þ = argmax 
y∈ 0,1f g

P Y = y½ �
Y

i=1

 P Xi = xi½ jY = y� : (4)

For each class, the classifier estimates the probability of a given

feature belonging to that class and selects the value of y that

maximizes the expression. The generative hypothesis of the

classifier reduces the number of parameters learned by the model,

which is very advantageous (33). NB is a simple and effective

technique then it can be applied to a range of problems, including

disease prediction, such as cancer, because it has a good ability to

handle complex datasets, which allows for robust analysis (34).
Frontiers in Oncology 04
2.3 Support vector machine

SVM is a classification algorithm that seeks to find the optimal

separating hyperplane for a dataset controlling the complexity of

the models by selecting important data (the so-called support

vectors) to construct the separation surface (35, 36). SVM models

are built around a function (kernel) that transforms input data in an

n-dimensional space to obtain the best-separating hyperplane. The

models decision function is fully defined by the support vectors,

which are the data points closest to the hyperplane (28).

SVM emerged (37) as a solution to circumvent situations where

the training error of classification was low; however, the test error

was high, indicating poor generalizability to unseen data. The

formulation of SVM is typically presented as a quadratic

programming problem and when the data are not linearly

separable, the algorithm penalizes violations with loss terms or

uses kernel tricks to construct nonlinear separation surfaces (35,

36). A limitation of the proposed algorithm is the high

computational cost of the training and testing phases (27).

Despite this, SVM is used in machine learning models to predict

cancer development and prognosis because it is simple to interpret

and provides a sparse solution, making it advantageous over other

approaches (34).
2.4 Artificial neural network

ANN is a graph-based structure composed of interconnected

units, known as nodes, which mathematically model the behavior of

biological neurons. These nodes are connected by unidirectional or

bidirectional edges, where the weights represent the strength of the

connections between units. Inspired by the biological model of

neurons, the weights of these connections simulate the influence of

synapses inhibiting or facilitating the transmission of signals

between neurons (33, 36).

The neural network processes input data through specialized

input nodes, transmitting it through hidden layers to generate

outputs via dedicated output nodes. A node can serve both input

and output functions, depending on its role within the network. The

design of an ANN is typically divided into two phases: training and

testing. During the training phase, the network is trained to predict

outputs based on given input data. In the testing phase, the network

is evaluated to determine whether to halt or save the training and it

is then used to make predictions on unseen data (36).

For classification models, an ANN consists of three main

components: (i) the neural model, which describes how each

node processes input to produce output; (ii) the network

architecture, which defines the connections between nodes; and

(iii) the training algorithm, which adjusts the connection weights to

optimize the model. The learning process aims to estimate the set of

weights that allow the network to perform classification tasks
TABLE 1 Attributes and range of values of prostate cancer data.

Attributes Range of values

Serum PSA levels (ng/mL) 4 - 107

Gleason Score 6 - 10

Tumor Staging 0.4 - 1

KLK3 310.81 - 43729.25

AR 0.05 - 24.31

GSTM3 0.45 - 39.80

NETO2 0.08 - 13.08

HPN 0.29 - 612.77

PRUNE2 0.03 - 62.53

FOLH1 0.58 - 914.05

Class no-recurrence-events,
recurrence-events
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optimally by minimizing a classification error metric. Each class of

networks offers a specific learning scheme tailored to its architecture

(33, 36).

Proposed in the mid-20th century, neural network learning has

become an effective machine learning paradigm. This methodology

has been successfully applied to a wide range of real-world

classification problems across various domains. In particular, ANNs

have shown significant potential in improving the accuracy of disease

detection and predicting patient outcomes, thereby contributing to

more informed clinical decision-making (26, 28, 33).
2.5 Metrics

The performance of each model, for different groups of attributes,

was evaluated using the following metrics derived from confusion

matrix information: true positives (T P), true negatives (T N), false

positives (F P), and false negatives (F N). The metrics evaluated in, the

context of binary classification problems are, described below.

2.5.1 Sensitivity
Sensitivity is defined as the true positive rate obtained from the

classifier (38), that is,

Sensitivity =
TP

TP   +   FN
: (5)
2.5.2 Specificity
Specificity is the complementary metric to sensitivity because, it

is defined as the rate of true negatives identified by the classifier

(38), that is,

Specificity =
TN

FP   +  TN
: (6)
2.5.3 Accuracy
Accuracy is defined as the fraction of instances correctly

classified by the classifier, whether they are true positives or true

negatives (28, 38), that is,

Accuracy =
TP   +  TN

TP   +  TN   +   FP   +   FN
: (7)
2.5.4 Precision
Precision is defined as the accuracy at which the classifier can

correctly classify positive examples (28, 38), that is,

Precision =
TP

TP   +   FP
: (8)
2.5.5 AUC
The receiver operating characteristic (ROC) curve is a graphical

tool that provides a summary visualization of the performance of

learning algorithms in relation to varying decision criteria, typically
Frontiers in Oncology 05
in binary classification scenarios. It helps identify regions of optimal

behavior, facilitates model selection, and allows for comparison of

learning algorithms. In this context, the AUC measures the

probability that the classifier will assign a higher score to a

randomly chosen positive example than to a randomly chosen

negative example. It always ranges between [0, 1], with the upper

bound obtained by a perfect classifier. A reasonable classifier

performance is indicated by an AUC greater than 0.5 (28, 38).
3 Results

In this section we present the results obtained from the feature

selection, the performance of the models and their respective

predictions in the tests.
3.1 Feature selection

The feature selection procedure aims features from the dataset

reducing the number of required variables while retaining as much

relevant information as possible for the problem classification. Two

features may individually carry valuable information classification,

however their combining into a feature vector with high mutual

correlation may offer little additional benefit. Furthermore, a high

number of features are directly related to a high number of classifier

parameters, which can be computationally disadvantageous.

Therefore, keeping the number of features as small as possible

aligns with the optimized predicting classifiers and good

generalization capabilities (27).

One possible step in feature selection is to analyze each

biomarker independently and test its categorizing ability for the

given problem, thereby avoiding the use of elaborated techniques

involving unnecessary computational effort. This analysis can be

performed using hypothesis tests (27). Thus, the feature selection

algorithm used in this study was the univariate feature classification

using a chi-square test. The algorithm checks whether each

predictor variable is independent of the response variable using

individual chi-square tests and then it ranks features based on chi-

square tests statistic p-values. The scores provided by the proposed

algorithm correspond to −log(p) (39).

Figure 2 illustrates the ranking of the attribute contribution for

the classification models. As expected, the top three attributes

contributing to classification are tumor staging, Gleason score,

and preoperative PSA level, which are already used clinically for

disease diagnosis and prognosis (40). In addition, following this

sequence, the prominent genes were NETO2, HPN, and AR (the

latter two with the same importance score), as well as KLK3. Other

genes had scores below 0.5 and were not considered relevant for the

classification of PCa recurrence in this dataset.

Using the results from feature selection, six different predictor

groups were organized aiming to identify the best combination for

classification. The composition of these groups is presented

in Table 2.
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3.2 Optimized models

With the predictors defined, the optimized models were

obtained using the Classification Learner to enhance the

performance of the classification algorithms. This technique

attempts to determine the hyperparameters of the models, which

are settings that must be defined prior to training and they are not

learned from the data (41). The hyperparameter optimization

process was carried out exclusively on the training data, using a

10-fold cross-validation scheme to evaluate and select the best

combination of hyperparameter values for each model. For a

given type of model, the software tests various combinations of

hyperparameter values using an optimization scheme that searches

to minimize the classification error of the algorithm and returns a

model with the optimized hyperparameters (42).

For the NB classifier, the optimized hyperparameters were the

distribution types (called Distribution names), and the Kernel types

(Gaussian, Box, Epanechnikov, or Triangle). For the SVM, the

optimized hyperparameters included the kernel function (Gaussian,

linear, quadratic, or cubic), the box constraint level and the kernel

scale being both positive values on a log scale between [0.001, 1000].
Frontiers in Oncology 06
Finally, for the ANN, networks were used with only one fully

connected layer, where the hyperparameters to be optimized were

the size of this layer (integers on a log scale in the range [1,300]), the

activation function (ReLU, Tanh, None, and Sigmoid), and the

regularization strength l (real values on a log scale in the range

[0.00001/n, 100000/n], where n is the number of observations) (42).

In all cases, the optimization method was grid search, using 10 as

the division of each grid.

To ensure robustness, the final models were evaluated using an

independent test set that had not been used during training or

hyperparameter optimization. In total, 18 models were obtained -

three for each predictor group - comprising 6 NB classifiers, 6 SVM,

and 6 ANN. These results represent the average performance

metrics obtained across 50 simulations, where each simulation

used a distinct pair of training and testing datasets created

through the random subsampling process described earlier.

Table 3 presents a detailed comparison of NB, SVM, and ANN

results for each of the proposed models.
4 Discussion

4.1 Performance of the NB models

All NB models demonstrated accuracy, sensitivity, precision,

and AUC values above 60%. However, the specificity of these

models exceeded 60% only for predictor group 2, which includes

NETO2 and AR genes. This model also achieved the highest

accuracy, precision, and AUC, representing the best performance

among the NB classifiers for this data set.

When evaluating classifier performance, balancing multiple

metrics is crucial, particularly in binary classification problems.

Among the NB classifiers, 5 of the 6 predictor groups presented a

sensitivity of over 80%, but specificity remained under 50%, which is

suboptimal from a clinical perspective. Accuracy alone is not
FIGURE 2

Univariate feature ranking for classification using chi-square tests.
TABLE 2 Groups of predictors used in the optimized NB, SVM and
ANN models.

Group Predictors

1 Serum PSA, Gleason Score and Tumor Staging

2 Serum PSA, Gleason Score, Tumor Staging, NETO2 and AR

3 Serum PSA, Gleason Score, Tumor Staging, NETO2 and HPN

4 Serum PSA, Gleason Score, Tumor Staging, NETO2 and KLK3

5 Serum PSA, Gleason Score, Tumor Staging, NETO2, AR and HPN

6 Serum PSA, Gleason Score, Tumor Staging, NETO2, AR, HPN
and KLK3
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sufficient as the primary evaluation metric, since classification errors

carry different significance levels (28). For instance, false negative

cases in predicting PCa recurrence may lead to undiagnosed and

untreated disease, whereas false positive diagnoses could result in

unnecessary treatments and interventions, both of which have

significant clinical implications (43).
4.2 Performance of the SVM models

The SVM models demonstrated accuracy and precision higher

than 60% for all predictor groups. Sensitivity and AUC were also

higher than 70% for all combinations. Specificity was lower than

50% only for group 1, which did not include any genes as predictors.

In contrast, for the other combinations, specificity exceeded 50%,

surpassing 60% in predictor groups 3, 4, and 6, all of which featured

different combinations of genes. For example, comparing the

specificity of group 3 (68.50%) with group 1 (46%) reveals an

increase of 22.5%. Moreover, group 3 demonstrated the highest

specificity among all predictors, maintaining a sensitivity above

70%. Groups 4 and 6 also exhibited a strong balance among metrics,

with group 6 achieving the highest accuracy of all predictors. These

results indicate that incorporating a combination of genes as

predictors can significantly enhance the prediction of disease

recurrence in this model.
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4.3 Performance of the ANN models

When comparing the results obtained from ANN, a notable

similarity can be observed among the respective metrics for each

group, which was less evident in the previous models. All models

exhibited accuracy above 65%, with sensitivity and AUC exceeding

70%. The specificity and precision metrics were also over 60%, in

contrast to the specificity observed in NB and SVM models. Group

1 demonstrated the highest sensitivity and AUC, achieving the same

accuracy as groups 2 and 4, which included genes as predictors.

Furthermore, group 2 exhibited the highest specificity and precision

among the ANN models, with an increase of 4.5% and 1.42%,

respectively, compared to the group without genes.
4.4 Impact of molecular biomarkers on
model performance

In general, the ANN metrics were more consistent among the

various groups of predictors. In Group 3, which includes the

NETO2 and HPN genes, both SVM and ANN classifiers achieved

metrics exceeding 65%. The SVM model demonstrated strong

results in precision and specificity among all combinations tested,

without compromising sensitivity, reinforcing its robustness for

clinical applications. However, the relatively high standard
TABLE 3 Mean (± standard deviation) of the metrics (in %) across 50 different simulations of the models for each predictor group, with the highest
mean values highlighted in bold.

Models Accuracy Sensitivity Specificity Precision AUC

1

NB 66.00 (± 9.55) 87.00 (± 11) 45.00 (± 16.17) 61.86 (± 8.14) 68.05 (± 13.25)

SVM 67.75 (± 9.89) 89.50 (± 12.21) 46.00 (± 15.24) 62.80 (± 7.56) 74.27 (± 13.84)

ANN 68.25 (± 12.43) 78.75 (± 16.61) 57.75 (± 19.38) 66.15 (± 12.30) 73.55 (± 13.78)

2

NB 67.75 (± 12) 69.75 (± 16.38) 65.75 (± 18.70) 68.38 (± 13.56) 71.53 (± 14.10)

SVM 67.50 (± 10.79) 84.50 (± 13.96) 50.50 (± 19.72) 64.25 (± 10.26) 71.63 (± 14.19)

ANN 68.25 (± 13.47) 74.25 (± 15.24) 62.25 (± 19.64) 67.57 (± 13.57) 73.13 (± 14)

3

NB 65.63 (± 9.39) 85.75 (± 12.37) 45.50 (± 16.51) 61.78 (± 7.96) 66.11 (± 11.73)

SVM 69.88 (± 12.80) 71.25 (± 16.41) 68.50 (± 16.41) 70.06 (± 12.86) 73.22 (± 13.30)

ANN 68.13 (± 12.89) 75.25 (± 16.27) 61.00 (± 18.84) 66.88 (± 12.43) 73.25 (± 13.89)

4

NB 66.25 (± 10.34) 86.50 (± 12.84) 46.00 (± 16.64) 62.14 (± 8.75) 66.58 (± 12.25)

SVM 69.63 (± 12.69) 75.25 (± 17.77) 64.00 (± 17.97) 68.60 (± 12.54) 73.19 (± 14.55)

ANN 68.25 (± 13.17) 75.00 (± 15.97) 61.50 (± 18.36) 67.10 (± 12.94) 72.75 (± 14.27)

5

NB 65.25 (± 9.71) 85.75 (± 13.60) 44.75 (± 17.33) 61.52 (± 8.45) 64.58 (± 12.57)

SVM 68.38 (± 11.74) 82.50 (± 16.94) 54.25 (± 19.17) 65.33 (± 11.12) 73.13 (± 13.89)

ANN 67.38 (± 12.89) 77.75 (± 15.42) 57.00 (± 19.91) 65.58 (± 12.77) 72.22 (± 13.90)

6

NB 64.88 (± 9.18) 85.00 (± 13.60) 44.75 (± 16.19) 61.23 (± 7.87) 65.05 (± 12. 13)

SVM 70.00 (± 12.69) 76.25 (± 17.17) 63.75 (± 18.08) 68.76 (± 12.52) 72.94 (± 14.18)

ANN 66.00 (± 13.19) 75.25 (± 16.65) 56.75 (± 18.59) 64.28 (± 12.56) 71.19 (± 14.41)
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deviations observed, particularly for specificity and precision in

Group 3 (SVM: 68.50 ± 16.41 and 70.06 ± 16.82, respectively),

indicate variability across simulations. This variability suggests that

results could differ with another dataset. In Group 4, SVM and

ANNmodels again demonstrated strong performance in sensitivity,

specificity and precision. Nonetheless, the variability, as reflected in

the standard deviations (e.g., SVM specificity: 61.13 ± 12.27),

underscores the need for further optimization to ensure

consistent model behavior. These observations highlight the

importance of addressing variability by leveraging larger datasets

to ensure more robust and reliable model performance.

The inclusion of genes selected by the feature selection process

significantly enhanced the models performance, particularly in

terms of specificity and precision. Preoperative serum PSA levels,

tumor staging, and Gleason score, and also including the NETO2

gene, remained consistent for all six predictor groups, underscoring

their primal role in classification. From a clinical perspective,

assessing the expression of these genes could facilitate earlier

predictions of disease recurrence in advance of primary

treatment, offering considerable benefits with the management

and treatment planning for the patients. While the standard

deviations suggest a gap for improvement, these results highlight

the potential of integrating gene expression data to refine

predictions in future studies.

Recent studies have highlighted the role of the NETO2 gene in

many types of cancer, including prostate cancer (PCa) (44, 45),

demonstrating its potential in predicting recurrence. The gene HPN

has been associated with tumor invasion and metastasis (46, 47),

while the androgen receptor (AR) gene is crucial in promoting

metastatic cancer progression (48, 49). Additionally, the KLK3 gene

has been extensively studied for its role in PCa prognosis and

recurrence prediction (50, 51). While a standardized protocol to

predict cancer recurrence remains elusive, machine learning (ML)

tools, particularly supervised learning models, offer a valuable way

for advancing research in this area. These models are accessible,

easy to implement, and enable the exploration of variable

importance, integrating diverse clinical data to improve both

diagnosis and prognosis.

As studies continue to explore the significance of these

biomarkers, integrating gene expression with clinical data via

machine learning could facilitate earlier, more accurate predictions

of disease recurrence. The results from this study emphasize the

importance of incorporating NETO2, HPN, AR, and KLK3 as part of

a comprehensive model for prostate cancer prognosis, pointing

towards their potential to improve clinical outcomes.
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