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Background: The main treatments for ovarian cancer are surgery, chemotherapy,

radiotherapy, and targeted therapy. Targeted therapy is a new treatment method

that has emerged in recent years and relies on specific molecular targets to treat

cancer. Succinic acid is a key intermediate product in the tricarboxylic acid cycle.

Research has shown that succinic acid has antioxidant properties and can alleviate

oxidative stress in cells and tissues. These findings indicate the potential application

of succinic acid in antioxidant therapy and the prevention of oxidative damage. This

study explored the potential targets and therapeutic mechanisms of succinic acid

in ovarian cancer.

Methods: Using bioinformatics and single-cell sequencing technology, the hub

genes related to succinic acid and ovarian cancer and the frequency and gene

expression patterns of different cell types in ovarian cancer patients and normal

individuals were analyzed.

Results: The frequency of immune cells, including B cells, CD4+ cells, CD8+ cells,

macrophages, and plasma cells, was significantly increased in ovarian cancer

patients, and the frequency of other cell types, such as endothelial cells, NK cells,

and pericytes/SMCs, was decreased. Further research revealed three key hub

genes: SPP1, SLPI, and CD9. The expression patterns of these genes in ovarian

cancer were closely related to different cell types. SPP1 was expressed mainly in

macrophages, SLPI was expressed in epithelial cells, and CD9 was expressed in

pericytes/SMCs and epithelial cells. SPP1, SLPI, and CD9 and their mechanisms of

action may be potential targets for the treatment of ovarian cancer with

succinic acid.

Conclusions: This study investigated the potential therapeutic targets and

mechanisms of succinic acid in ovarian cancer and the differences in immune

cell infiltration and gene expression patterns, providing important insights for

future tumor immunotherapy research.
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1 Introduction

Among all female reproductive cancers, ovarian cancer (OV) is

the most lethal malignancy. According to statistics from the World

Health Organization, in 2020, 314,000 cases of OV and 207,300

deaths occurred, resulting in a mortality rate of 66.02% (1). The

WHO estimates that by 2040, 445,700 cases and 313,600 deaths will

occur, increasing the mortality rate to 70.36% (2, 3). Among women

older than 40 years, OV is the second most common malignancy

after breast cancer, especially in developed countries (4, 5). Early-

stage OV often presents with no symptoms; thus, it is difficult to

detect (6). By the time symptoms appear, the cancer usually has

progressed to an advanced stage, making treatment more

challenging. The onset of OV is associated with various factors,

such as genetics, age, personal and family history, and reproductive

history. The risk of developing OV may also increase with the

presence of ovarian cysts and exposure to certain chemicals (7, 8).

Early-stage OV typically shows no symptoms, but advanced-stage

OV can present symptoms such as abdominal swelling or bloating,

abdominal or pelvic pain, indigestion, and fatigue (9). As cancer

spreads to other parts of the body, symptoms such as constipation,

urinary system issues, and breathing difficulties may also arise (10).

A diagnosis usually requires a combination of physical

examinations, ultrasounds, CT/MRI scans, blood tests,

biochemical marker tests, and biopsies. Early diagnosis and

treatment significantly increase the survival rates of OV patients (4).

However, most patients are diagnosed at an advanced stage

because of the nonspecific nature of early symptoms. The difficulty

of treating advanced OV contributes to a higher mortality rate (11).

Treatment options include surgery, radiotherapy, chemotherapy,

targeted therapy, and immunotherapy. The choice of treatment

depends on the type of cancer, the patient’s age and health

condition, the stage of the cancer, and other factors (12).

Chemotherapy, for example, treats OV by killing tumor cells, but

its side effects, such as nausea, vomiting, hair loss, anemia, and

mouth sores, are inevitable (13). Additionally, chemotherapy can

lead to immunosuppression, increasing the risk of infections and

affecting treatment outcomes (14).

In addition to traditional treatments, new targeted therapies are

underway to improve the treatment and prognosis of OV (15). Due

to the nonspecific symptoms, diagnosing OV is exceptionally

challenging, and most patients are diagnosed at a late stage (16).

Over 70% of OV patients are diagnosed only when the disease has

progressed to stages III or IV, which is one of the main reasons for

the high mortality rate. However, this high mortality rate is not

inevitable; an early diagnosis of OV can reduce the mortality rate by

10% to 30%. Therefore, the discovery of new diagnostic biomarkers

is crucial for the treatment of OV (17). Succinic acid is an organic

acid that plays various important physiological roles in the body,

mainly involving energy metabolism and other biochemical

processes. Abnormal energy metabolism is a common

characteristic of cancer cells, which require considerable energy

for growth and reproduction. Under anaerobic conditions,

glycolysis becomes the main energy production pathway (18). OV

cells express high levels of glucose transport proteins and enzymes
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on their cell membranes, allowing for increased glucose intake and

energy production through glycolysis (19). With sufficient oxygen,

cancer cells can utilize food energy through the tricarboxylic acid

(TCA) cycle. Studies have shown that the expression of TCA cycle

enzymes involved in ATP synthesis pathways is higher in OV cells

than in normal ovarian cells, indicating a greater reliance on oxygen

and oxidation processes for ATP production (20). Succinic acid

plays a key role in the TCA cycle, which is an important metabolic

pathway in cells that breaks down glucose, fats, and amino acids

into energy. Its role in energy production and its effects on certain

metabolic diseases, such as hereditary succinic aciduria, are

significant (21). Research indicates that succinic acid has

antioxidant properties, helping clear free radicals from the body

and alleviating oxidative stress in cells and tissues (22). These

findings suggest potential applications of succinic acid in

antioxidant therapy and the prevention of oxidative damage (23).

Succinic acid may also impact the immune system by regulating

immune responses and suppressing inflammation (24). This study

explored the potential targets and treatment mechanisms of

succinic acid in OV (25). Single-cell RNA sequencing (scRNA-

seq) is a technology that isolates individual cells from tissues or

bodily fluids and performs a high-throughput sequencing analysis

of their genetic material at the transcriptome level. Traditional

sequencing technologies usually analyze entire cell populations,

obtaining information on average gene expression or dominant

cell groups (26, 27). In contrast, scRNA-seq has significant

advantages in studies of tissues with small sample sizes and

complex cellular compositions, as it can describe the

characteristics of individual cells at the transcriptome level, better

reflecting the cellular heterogeneity of tissues (28, 29). Using

bioinformatics and single-cell sequencing technology, this study

analyzed the hub genes related to succinic acid and OV, as well as

the frequency and gene expression patterns of different cell types in

OV patients and normal individuals (30).
2 Materials and methods

2.1 Data sources and WGCNA

The gene expression matrix utilized in this study was primarily

sourced from publicly available datasets, including standardized

RNA-seq data from The Cancer Genome Atlas (TCGA) and

Genotype-Tissue Expression (GTEx) ovarian cancer (OV)

cohorts, which were integrated from the UCSC Xena database. A

total of 415 samples, encompassing both tumor and normal tissue

specimens, were included in the analysis. Following gene name

conversion, the intersections of 1542 RNA-binding protein-

encoding gene names obtained from the literature and those

downloaded from UCSC were determined, yielding a final matrix

of 1479 RNA-binding protein sample gene expression profiles.

Weighted Gene Co-expression Network Analysis (WGCNA) was

employed for gene coexpression analysis, with an R square cut-off

parameter set at 0.85 to identify genes with high correlation.
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2.2 Differential expression analysis in OV

The gene expression matrix, which included 429 TCGA OV

samples and 88 normal samples, was analyzed using the limma R

package to identify differentially expressed genes (DEGs) in the OV

matrix. A chromosome position analysis of DEGs in OV was

subsequently conducted through an online website (http://

gepia2.cancer-pku.cn/), and relevant genes were searched using

the keyword “succinic acid” in the GEO dataset (https://

www.genecards.org, GeneCards-SA). A Venn diagram was created

on the Hiplot website to identify SA-DEGs. For further analysis of

these genes, GO and KEGG enrichment analyses were performed

using the DAVID database (https://david.ncifcrf.gov). Finally, the

expression matrix of 62 genes was extracted from the OV matrix,

and a Pearson correlation coefficient plot was generated to assess

the correlations among SA-related DEGs in OV.
2.3 Hub gene screening and validation

The expression levels of the 62 significantly DEGs were

combined with clinical information for the survival analysis. In

this experiment, the survival and survminer packages in R were

used to construct single-gene survival curves. Three genes (SPP1,

SLPI, and CD9) were significantly associated with the survival time

of OV patients (P=0.049) based on the screening criterion of P<0.05

and were used for prognostic modelling. After stratifying OV

patients using the ssGSEA algorithm, the expression of SPP1,

SLPI, and CD9 was validated for the survival analysis using the

Kaplan-Meier plotter database with the GSE40595 dataset from the

GEO database.
2.4 Pancancer analysis and predictive
model construction

The hub genes were subjected to a single-gene pancancer

analysis using various immune cell infiltration algorithms. TCGA

multicancer (33 types) immune infiltration score was determined

using a variety of algorithms, including TIMER, TIDE,

CIBERSORT, CIBERSORT-ABS, QUANTISEQ, XCELL, MCP-

COUNTER, and EPIC. The performance of different diagnostic

tests was evaluated by constructing receiver operating characteristic

(ROC) curves and calculating the areas under the curves (AUCs). A

line graph model incorporating important predictive factors from

the logistic regression and Cox analyses was established to predict

the prognosis of OV patients.
2.5 scRNA-seq analysis

We utilized the GSE184880 dataset to conduct an in-depth

analysis of the cellular composition of OV patients and normal

individuals using single-cell RNA sequencing technology. The
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“Seurat 5.0”, “patchwork”, “tidyverse”, and “harmony” packages

were used to analyze the hub genes associated with succinic acid and

OV, as well as the frequencies of different cell types and their gene

expression patterns in OV patients and normal individuals.
2.6 Western blot analysis of proteins

Western blot analysis was widely applied to determine the

expression levels of genes at the protein level in this study.

Protein samples (20 mg per lane) were separated by sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

with a separation gel concentration of 12% and a stacking gel

concentration of 5% and then transferred onto polyvinylidene

fluoride (PVDF) membranes. The PVDF membranes were

subsequently blocked with a blocking solution (a 5% nonfat milk

mixture prepared in a 1× TBS solution containing 0.05% Tween-20)

for 2 hours, followed by an overnight incubation with primary

antibodies at 4°C. The primary antibodies used in this study were

rabbit anti-SPP1, SLPI (1:1000, K005805P, Solarbio) and rabbit

anti-GAPDH (1:10000, D110016, Sangon Biotech) antibodies. The

membranes were then incubated with the secondary antibody

horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG

(dilution ratio 1:1000, A0208, Beyotime) at room temperature for

1–2 hours. After the membranes were washed three times with the

TBST solution, the bands were visualized using an enhanced

chemiluminescence (ECL) hypersensitive luminescent liquid kit

(P1000-100, Applygen) and detected with a chemiluminescence

detection system (FluorChem HD2, ProteinSimple). The optical

density of each band was analyzed using ImageJ 1.53 software (W.

Rasband, Research Services Branch, NIMH), and the protein level

in each sample was normalized to the optical density of the GAPDH

band in each experiment.
2.7 Immunohistochemical staining of
human OV tissue sections for CD68, SPP1,
and SLPI

Well-preserved OV sections from Liaoning Cancer Hospital

were selected for immunohistochemical staining. Sections (2–3 mm
thick) of paraffin-embedded OV tissue were deparaffinized and

rehydrated via sequential immersion in xylene, isopropanol,

absolute ethanol, 95% ethanol, and 75% ethanol. The tissue

sections were subsequently boiled in a 0.01 M sodium citrate

solution (pH=6.0) for antigen retrieval. After washes with TBS

solution, the exposed tissues were blocked for 2 hours with

immunofluorescence staining blocking solution (P0102,

Beyotime). The sections were then incubated overnight at 4°C in

a humidified chamber with rabbit anti-SPP1 and SLPI antibodies

(dilution ratio 1:100, K005805P, Solarbio). After three washes with

TBS solution and two washes with buffer of 5 minutes each, the

primary antibody enhancer was added. The samples were incubated

at room temperature for 20 minutes, followed by two washes with
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buffer for 5 minutes each. The HRP polymer (enzyme-labelled

secondary antibody) was added, and the samples were incubated at

room temperature for 30 minutes (note that the HRP polymer is

light sensitive and should be stored in an opaque vial to avoid

unnecessary light exposure). After three washes with buffer solution

for 5 minutes each, 1–2 drops of DAB Plus Chromogen (or AEC

Plus Chromogen) were added to 1 ml of DAB Plus Substrate (or

AEC Plus Substrate) and mixed well. The mixture was applied to the

sections and incubated for 3–15 minutes (the specific time depends

on the desired staining intensity). The sections were thoroughly

rinsed with tap water, counterstained, dehydrated, cleared, and

placed on a coverslip.
2.8 Dual immunofluorescence staining for
CD68, SPP1, and SLPI in human OV
tissue sections

Due to the strong correlations among SPP1, SLPI, and

macrophages revealed by our OV bioinformatics analysis, we
Frontiers in Oncology 04
conducted dual immunofluorescence staining targeting CD68 (a

macrophage surface marker), SPP1, and SLPI to determine the

cellular localization of SPP1 and SLPI in OV tissues. First, 2–3 mm
thick paraffin-embedded OV tissue sections were deparaffinized and

rehydrated by sequential immersion in xylene, isopropanol,

absolute ethanol, 95% ethanol, and 75% ethanol. The tissue

sections were subsequently boiled in a 0.01 M sodium citrate

solution (pH=6.0) for antigen retrieval. After washes with TBS

solution, the exposed tissues were blocked for 2 hours with

immunofluorescence staining blocking solution (P0102,

Beyotime). The sections were then incubated overnight at 4°C in

a humidified chamber with rabbit anti-SPP1 and SLPI antibodies

(dilution ratio 1:100, K005805P, Solarbio). After three washes with

TBS, the sections were incubated with Cy3-conjugated goat anti-

rabbit IgG (dilution ratio 1:400, GB21303, Servicebio) in the dark at

room temperature for 2 hours. The tissue sections were

subsequently washed three times with a freshly prepared TBS

solution and incubated with a rabbit anti-CD68 antibody

(dilution ratio of 1:200, abs120102, Absin) overnight at 4°C in a

humidified chamber. After three washes with TBS solution, the
A

B C

E F

FIGURE 1

WGCNA. (A) Distribution of the expression profiles for all samples. (B) Relationships between the scale-free fit index and various soft-thresholding
powers. (C) Relationships between average connectivity and various soft-thresholding powers. (D) Module-trait association graph. (E) Module
characteristic graph. (F) Gene dendrogram of the blue module.
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tissue sections were incubated with goat anti-rabbit IgG-Alexa

Fluor 488 (dilution ratio 1:400, abs20025, absin) in the dark at

room temperature for 2 hours. Finally, the tissue sections were

washed three times with TBS solution and stained with DAPI-

containing antifade mounting medium (P0131, Beyotime) in the

dark for 10 minutes. Fluorescence images of different fields were

observed and captured using an inverted fluorescence

microscope (Nikon).
2.9 Statistical analysis

1All the data were analyzed using SPSS 25.0 software (IBM

Corp) and GraphPad Prism 8.0.1 software (GraphPad Software).

Parametric tests (Student’s t test for two unpaired independent

samples) or nonparametric Mann-Whitney U tests were used to

analyze differences between groups, depending on the distribution

of the variables. One-way ANOVA with the Brown–Forsythe test

were used for comparisons between three or more groups. For the

bioinformatics analysis in this study, correlations between different

variables were obtained through Pearson’s correlation analysis. A P

value <0.05 was considered to indicate statistical significance.

Moreover, all the experiments in this study were repeated three

times to ensure the reproducibility of the results.
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3 Results

3.1 Selection of coexpressed genes

The distributions of the expression profiles of all the samples

obtained via WGCNA are shown in Figure 1A. We chose a soft

threshold of 12 (based on the scale-free topology criterion R2 =

0.85) to construct a scale-free network. The adjacency matrix was

transformed into a TOM matrix (Figures 1B, C) to display the

similarity between nodes by considering weighted correlations. We

subsequently created module–gene trait correlation plots

(Figure 1D) and module–feature correlation plots (Figure 1E)

using a correlation matrix generated by Pearson’s correlation

coefficients and identified six modules through average

hierarchical clustering and dynamic tree cutting. The blue module

strongly correlated with OV (Figure 1F); therefore, the intersection

of this module with the DEGs in OV was further analyzed.
3.2 Differential expression analysis of OV

A volcano plot of the DEGs in OV obtained using the limma R

package is shown in Figure 2A. After identifying the DEGs, we

analyzed their chromosomal positions (Figure 2B). We further
1764
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FIGURE 2

(A) Volcano plot of DEGs in OV. (B) Chromosomal positions of DEGs in OV. (C) Intersecting genes among DEGs in OV, blue module genes, and SA-
related genes from GeneCards.
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selected the genes by intersecting OV DEGs, blue module genes, and

SA-related genes from GeneCards and identified 62 SA-related OV

DEGs (Figure 2C). These 62 genes were subjected to GO and KEGG

enrichment analyses. The results of the GO enrichment analysis

indicated that these genes were enriched mainly in mitochondrial

electron transport, ubiquinol to cytochrome c, telomeric regions, and

cytochrome c oxidase activity. The KEGG enrichment analysis revealed

that these genes were involved primarily in the TCA cycle (Figure 3A).

Figure 3B displays the correlations among SA-related DEGs in OV.
3.3 Hub gene selection

3.3.1 Survival analysis
We conducted a survival analysis of the 62 common genes

mentioned earlier, and the data indicated that the survival outcomes
Frontiers in Oncology 06
associated with the genes SPP1, SLPI, and CD9 were relatively poor

(Figures 3C, D). OV patients with high levels of SPP1, SLPI, and

CD9 had significantly shorter survival times. We subsequently

performed a joint survival analysis of the SPP1–SLPI–CD9 three-

gene set (Figure 3E). Patients with high expression levels of these

three genes experienced significantly shorter overall survival than

patients with low expression levels (HR = 1.6, p = 0.0087, n = 106).

Therefore, considering the results of the survival analysis, we

identified SPP1, SLPI, and CD9 as three genes that may play

important roles in the prognosis of OV.

3.3.2 Comparison of the expression levels of key
genes between OV samples and normal samples

The three genes screened in the previous section were compared.

The results revealed that the expression levels of these three genes were

significantly higher in OV samples than in normal samples (Figure 3G).
A B

C D E F

G

FIGURE 3

(A) Functional enrichment analysis of SA-related DEGs in OV. (B) Correlation analysis of SA-related DEGs in OV. (C) Survival analysis for SPP1.
(D) Survival analysis for SLPI. (E) Survival analysis for CD9+ T cells. (F) Combined survival analysis of the SPP1–SLPI–CD9 gene set. (G) Comparison of
the expression levels of key genes between normal and OV samples.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1535504
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2025.1535504
3.3.3 Distribution of hub genes in OV immune
subtypes and OV molecular subtypes

We systematically observed the distribution of the expression of

hub genes in the immune subtypes and molecular subtypes of OV to

explore the relationships between the immune characteristics of OV

and tumor subtypes (Figure 4). First, we conducted detailed

observations of the distributions of the expression of the SPP1,

SLPI, and CD9 genes in the immune subtypes of OV (Figures 4A, B,

C). The results revealed the potential immunoregulatory roles of the

hub genes in different OV subtypes. We then extensively observed

the distributions of the expression of the SPP1, SLPI, and CD9 genes

in the molecular subtypes of OV (Figures 4D, E, F). These molecular
Frontiers in Oncology 07
subtypes include the proliferative, mesenchymal, immunoreactive,

and differentiated subtypes. The significant differences between

different subtypes suggest that hub genes play distinct biological

roles in different molecular subtypes of OV. The diversity of hub

genes involved in the pathobiology of OV, as well as their various

contributions to tumor development and the treatment response in

each subtype, are highlighted.

3.4 Verification of hub genes

Using the GSE40595 dataset from the GEO database, the

expression of SPP1, SLPI, and CD9 was analyzed (Figure 4G).
G

H

A B C

D E F

FIGURE 4

(A) Distribution of SPP1 expression in different OV immune subtypes. (B) Distribution of SLPI expression in different OV immune subtypes. (C) Distribution
of CD9 expression in different OV immune subtypes. (D) Distribution of SPP1 expression in different OV molecular subtypes. (E) Distribution of SLPI
expression in different OV molecular subtypes. (F) Distribution of CD9 expression in different OV molecular subtypes. (G) Expression levels of SPP1, SLPI,
and CD9 across different groups. (H) Survival analysis of patients using the Kaplan-Meier plotter database. (*: P < 0.05, The results are significant at the
0.05 level; **: P < 0.01, The result is significant at the 0.01 level; ***: P < 0.001, The result is significant at the 0.001 level; ****: P < 0.0001).
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The results clearly showed a significant difference in the expression

levels of these three key hub genes between OV tissues and normal

tissues. Furthermore, we validated the survival analysis of patients

stratified by SPP1, SLPI, and CD9 expression using the Kaplan-

Meier plotter database (Figure 4H). The prognosis was worse for the

group with high expression of the hub genes.
3.5 Differential expression of the hub genes
across cancers

We conducted a comprehensive evaluation of the expression of

the hub genes in a diverse range of cancer samples covered by The

Cancer Genome Atlas (TCGA) (Figures 5A, B, C). The analysis

revealed that high levels of SPP1 expression were widespread across

the 22 cancer types studied. High SLPI expression was detected in

10 cancer types, and low SLPI expression was detected in 10 cancer

types. High CD9 expression was detected in 12 cancer types, and

significantly low CD9 expression was detected in only 1 cancer type.
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We further explored the correlation between tumor mutation

burden (TMB) and hub gene expression (Figures 5D, E, F), the

relationship between tumor stemness-related RNA scores and hub

gene expression (Figures 5G, H, I), and the association between

tumor stemness-related RNA scores and hub gene expression to

validate the aforementioned observations (Figures 5J, K, L).

Figure 6A shows that the number of tumor types with high

expression of the hub genes exhibited significant positive

correlations in all three validation analyses (Figures 6B, C).
3.6 ROC diagnosis

We evaluated the performance of different diagnostic tests by

constructing ROC curves and calculating the AUCs. We performed

a time-dependent ROC curve analysis for the OV diagnosis and for

different periods to analyze the relationships between gene

expression levels and mortality rates (Figure 7). Over time, the

AUC of the hub genes approached 1, indicating that the diagnostic
0.
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FIGURE 5

(A–C) Differential expression of hub genes across various cancers. (D–F) The correlation between the tumor mutational burden (TMB) and the
expression of hub genes. (G–I) The correlation between RNA stemness (RNAs) and hub gene expression. (J–L) The correlation between DNA
stemness (DNAss) and hub gene expression.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1535504
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2025.1535504
accuracy increased over time, and the correlation between hub gene

expression and mortality rates became stronger over time.
3.7 Nomograms and prognostic analysis

We established a line chart model including important predictive

factors in logistic regression and Cox analyses to predict the

prognosis of patients with OV (Figure 8). The nomogram–logistic

regression model is shown in Figure 9. For example, if all three hub

genes are expressed, with an SPP1 expression level of 6 and a score of

28 points, an SLPI expression level of 6 and a score of 38 points, and a

CD9 expression level of 5 and a score of 20 points, the total score is 86

points. This score indicates a greater than 95% probability of having

OV. The nomogram–Cox regression model, as shown in Figure 9,

predicts that when all three hub genes are expressed, with an SPP1

expression level of 800 points, an SLPI expression level of 12000

points, a score of 40 points, and a CD9 expression level of 100 points,

the total score is 124 points. The patient survival rate is approximately

83.7% at 1 year, 59.3% at 3 years, and 45.4% at 5 years. The prediction
Frontiers in Oncology 09
of the 1-, 3-, and 5-year survival rates using the nomogram indicated

that patient survival rates gradually decreased over time (Figure 10).
3.8 scRNA-seq

Through single-cell sequencing, we detected significant

differences in the frequencies of various cell types between OV

patients and normal individuals (Figure 6). Specifically, in OV

patients, the frequencies of B cells, CD4+ cells, CD8+ cells, cells in

the cell cycle, epithelial cells, macrophages, and plasma cells were

significantly increased, and the frequencies of endothelial cells, NK

cells, and pericytes/SMCs did not noticeably increase. Notably,

since our normal samples were obtained from the ovarian tissue

of elderly individuals, which exhibited a certain degree of fibrosis,

fibroblasts and myofibroblasts were more frequently present. After

considering this characteristic, we chose not to consider these two

cell types further in our analysis.

In Figures 11, 12, the dot size indicates the proportion of cells

expressing the given gene in each cell type, and the intensity of the
FIGURE 6

Differences in various cell types between OV individuals and normal individuals. (A) Frequency of occurrence. (B) Proportion of cells grouped based
on differences in the average expression levels within groups. (C) Violin plots of selected marker genes for multiple cell subpopulations.
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FIGURE 7

ROC curve analysis. Diagnosis of OV and time-dependent ROC at different time periods to analyze the characteristics between gene expression and
mortality rate. (A) Diagnostic ROC for hub gene identification ROC. (B) 0.3 year time-dependent ROC for feature analysis between gene expression and
mortality rate. (C) 0.5 year time-dependent ROC for feature analysis between gene expression and mortality rate. (D) 1-year time-dependent ROC for
feature analysis between gene expression and mortality rate. (E) 3-year time-dependent ROC for feature analysis between gene expression and mortality
rate. (F) 5-year dependence on ROC for feature analysis between gene expression and mortality rate. (G) 7-year time-dependent ROC for feature analysis
between gene expression and mortality rate. (H) 9-year time-dependent ROC for feature analysis between gene expression and mortality rate.
A

B

FIGURE 8

Construction of Nomogram Logistic Regression Model for Core Genes. (A) Nomogram-logistic regression model. (B) Nomogram–Cox regression model.
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FIGURE 9

Dual immunofluorescence staining and localization of the hub proteins in OV tissues. (A) Colocalization of SPP1 according to CD68
immunofluorescence double staining. (B) Colocalization of SLPI according to CD68 immunofluorescence double staining.
A B C

FIGURE 10

Predicting patient survival rates at 1, 3, and 5 years using nomograms. (A) Calibration curve of the nomogram for predicting the 1-year survival rate.
(B) Calibration curve of the nomogram for predicting the 3-year survival rate. (C) Calibration curve of the nomogram for predicting the 5-year
survival rate.
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color indicates the expression level in the expressing cells based on

quantile counts. We present dot plots and violin plots of genes,

including hub genes, to display the expression patterns of different

genes in various cell types. Specifically, CD9 is expressed

predominantly in pericytes/SMCs and epithelial cells, SPP1 is

significantly expressed in macrophages, and SLPI is enriched

mainly in epithelial cells. The distinct expression patterns of these

genes provide important clues about their functions and potential

biological roles in different cell types.
3.9 Expression levels of hub proteins in OV
and normal cells

The above analyses indicate that succinic acid might act on

three key genes in OV, namely, SPP1, SLPI, and CD9. CD9

expression levels are associated with the invasiveness and

prognosis of tumors in cancer research. Therefore, our

experiments validated the previously unreported high expression

of SPP1 and SLPI in OV, as shown in Figure 13A.
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3.10 Immunohistochemical staining for the
hub proteins in OV tissues

The levels of hub gene-encoded protein immunopositivity were

significantly increased in the OV midmembrane. As shown in

Figure 13B, in OV tissues, the inflammatory response mainly

occurred in the tumor midmembrane and outer membrane, and

the inflammatory response occurred mainly through the activation

of various inflammatory cells, such as T cells, B cells, macrophages,

and neutrophils.
3.11 Double immunofluorescence staining
and localization of the hub proteins in
OV tissues

We further verified the associations between the hub genes and

macrophages by performing dual immunofluorescence staining

analysis to examine the colocalization of the hub proteins and the

macrophage surface marker protein CD68 in the OV mesothelium
FIGURE 11

Single-cell RNA Sequencing. (A) Cells color-coded by cluster. (B) Cells color-coded according to their origin. (C) Dot plots of the genes expressed in
each cell type.
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(Figure 9). The results initially revealed the significant infiltration of

macrophages into the OV mesothelium. Furthermore, in the OV

outer membrane, the hub genes and CD68 were often coexpressed

in the same cells, suggesting that further research into the role of

hub genes in regu la t ing macrophage funct ions has

potential significance.
4 Discussion

This study investigated three key genes in ovarian cancer (OV),

namely, SPP1, SLPI, and CD9. Studies have examined these genes in

OV, and SPP1 plays various biological roles in the human body. In

the skeletal system, it is involved in bone formation and

regeneration processes. SPP1 is critical for skeletal development,

mineralization, and bone remodeling (31). It acts as an extracellular

matrix protein, influencing cell adhesion, migration, and signaling

by binding to specific receptors on the cell surface (32, 33).

Additionally, SPP1 plays a vital regulatory role in the immune

system (34, 35). It is involved in inflammatory responses and the

activation of immune cells, recruiting immune cells to

inflammatory sites, enhancing inflammatory responses, and

regulating the activity of immune cells. SPP1 is also closely

associated with tumor development and metastasis. It has been

extensively studied in tumors because it regulates tumor cell

proliferation, migration, invasion, and metastatic capabilities.

High levels of SPP1 expression are correlated with tumor

aggressiveness and a poor prognosis. Overall, SPP1 is an

important extracellular matrix protein involved in biological

processes such as skeletal development, immune regulation, and

tumor progression. Research on the functions and mechanisms of
Frontiers in Oncology 13
action of SPP1 in related diseases could provide new targets and

methods for future treatment strategies. Secretory leukocyte

protease inhibitor (SLPI) is a protein produced by various cells

and is widely distributed in different tissues and body fluids (36). It

acts as a natural inhibitor of proteases belonging to the protease

inhibitor family. SLPI performs multiple biological functions in the

human body, the most important of which are related to the natural

immune system. CD9 has also been shown to participate in

inflammation and immune responses (37, 38).

An analysis of the distributions of hub gene expression in OV

immune subtypes and OV molecular subtypes revealed that the

expression of the hub genes differed significantly (39). Specifically,

significant differences existed between the proliferative subtype and

the mesenchymal, immunoreactive, and differentiated subtypes;

between the mesenchymal subtype and the differentiated subtype;

and between the immunoreactive and differentiated subtypes (21).

These results suggest that the hub genes play different biological roles

in various OV molecular subtypes. The significant differences in hub

expression levels across subtypes may reflect the diverse roles of these

genes in the pathological biology of OV and their different

contributions to tumor development and treatment responses

across subtypes. The single-cell sequencing analysis revealed that

CD9 was highly expressed primarily in pericytes/SMCs and epithelial

cells, SPP1 was significantly expressed in macrophages, and SLPI was

enriched mainly in epithelial cells. Hub genes, which play important

roles in inflammatory responses and immune reactions, may be

involved in the infiltration of immune cells. When body tissues are

damaged or infected, immune cells migrate from the blood through

the vessel wall to the damaged tissue, combating and eliminating

potential pathogens or abnormal cells through signal transduction

and chemotactic factors. Studies have shown that the density of
FIGURE 12

Dot and violin plots of hub genes expressed in different cell types. (A) The expression patterns of genes (including central genes) in diferent cell types
were demonstrated through bubble plots. (B) The violin plot illustrates the expression patterns of genes (including central genes) in different cell types.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1535504
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2025.1535504
immune cell infiltration in OV tumors is significantly lower than that

in noncancerous tissues (40). This reduction in density could result

from cancer cells inhibiting the chemotaxis and infiltration of

immune cells. According to our immunohistochemistry results, the

hub genes were significantly positively expressed in the membranes of

OVs, and inflammatory responses mostly occurred in the tumor

mesothelium and outer membrane, primarily through the activation

of various inflammatory cells, such as T cells, B cells, macrophages,

and neutrophils . Subsequent experiments using dual

immunofluorescence staining confirmed the colocalization of hub

proteins and the macrophage surface marker protein CD68 in the OV

mesothelium. These results first indicated significant macrophage

infiltration in the OV mesothelium (37, 41).

Furthermore, the hub genes and CD68 are often coexpressed in

the same cells in the OV outer membrane, suggesting that further

research into the role of the hub genes in regulating macrophage

functions is potentially important (15). This study thoroughly

explored the potential therapeutic targets and mechanisms of

succinic acid and OV, as well as differences in immune cell

infiltration and gene expression patterns, providing important

clues for future tumor immunotherapy research and revealing
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new directions for pathological biology research on OV (32).

These results provide potential new strategies for diagnosing and

treating tumors, with the aim of improving the patient prognosis

and survival rates (38). The study comprehensively investigates the

roles of SPP1, SLPI, and CD9 in ovarian cancer, providing insights

into their functions in skeletal development, immune regulation,

and tumor progression. It highlights the significant differences in

gene expression across molecular and immune subtypes, revealing

their diverse contributions to tumor biology. The study also

explores the co-localization of hub genes with immune cells,

suggesting their involvement in immune cell infiltration. These

findings offer valuable clues for developing new diagnostic and

therapeutic strategies for ovarian cancer. While the study provides

valuable insights, it may lack in-depth functional validation through

in vivo experiments. The mechanisms by which these genes regulate

immune cell infiltration and tumor progression are not fully

elucidated. Additionally, the study’s focus on gene expression and

co-localization may not fully capture the dynamic interactions

between hub genes and the tumor microenvironment. Further

research is needed to explore the detailed pathways and potential

therapeutic applications of these findings (42).
FIGURE 13

Localization of hub gene immunohistochemical staining in OV tissues. (A) Expression levels of the hub proteins in OV and normal cells. (B) Immunohistochemical
staining showing the localization of the hub genes in OV tissues.
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5 Conclusion

This study investigated the potential therapeutic targets and

mechanisms of succinic acid in ovarian cancer and the differences in

immune cell infiltration and gene expression patterns, providing

important insights for future tumor immunotherapy research.

These findings provide new directions for pathological biology

research on ovarian cancer and offer potential new strategies for

diagnosing and treating tumors to improve the patient prognosis

and survival rates.
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