
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Mika Jekabsons,
University of Mississippi, United States

REVIEWED BY

Liang Zhao,
Johns Hopkins Medicine, United States
Bharath Kumar Gajjela,
Icahn School of Medicine at Mount Sinai,
United States
Masa Zdralevic,
University of Montenegro, Montenegro

*CORRESPONDENCE

Yunhui Zhang

yunhuizhang3188@126.com

†These authors share first authorship

RECEIVED 27 November 2024
ACCEPTED 17 February 2025

PUBLISHED 11 March 2025

CITATION

Sun D, Du Y, Li R and Zhang Y (2025)
Metabolomics for early-stage lung
adenocarcinoma: diagnostic
biomarker screening.
Front. Oncol. 15:1535525.
doi: 10.3389/fonc.2025.1535525

COPYRIGHT

© 2025 Sun, Du, Li and Zhang. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 11 March 2025

DOI 10.3389/fonc.2025.1535525
Metabolomics for early-stage
lung adenocarcinoma: diagnostic
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1Faculty of Life Science and Technology, Kunming University of Science and Technology,
Kunming, China, 2Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of
Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology,
Kunming, China
Objective: This study aimed to identify specific metabolic markers in the blood

that can diagnose early-stage lung adenocarcinoma.

Methods: An untargeted metabolomics study was performed, and the

participants were divided into four groups: early-stage lung adenocarcinoma

group (E-LUAD; n = 21), healthy control group (HC, n = 17), non-cancerous lung

disease group (NCC; n = 17), and advanced lung adenocarcinoma group (A-

LUAD; n = 25). Plasma metabolite levels that differed in the E-LUAD group

compared to the other three groups were identified via liquid chromatography–

mass spectrometry (LC–MS). Principal component analysis (PCA) and partial least

squares discriminant analysis (PLS-DA) were performed at metaX for statistical

analysis. A Venn diagram was constructed to identify overlapping differential

metabolites of the class comparisons. The data were randomly divided into a

training set and a validation set. Based on the overlapping differential metabolites,

the diagnostic model was constructed. The discrimination of the model was

evaluated using the area under the curve (AUC).

Results: A total of 527metabolites were tentatively identified in positive ionmode

and 286 metabolites in negative ion mode. Compared with the HC group, 121

differential metabolites were identified. Compared with the NCC group, 67

differential metabolites were identified. Compared with the A-LUAD group, 54

differential metabolites were identified. The Venn diagram showed that

29 metabolites can distinguish E-LUAD from HC and NCC and that four

metabolites can distinguish E-LUAD from HC, NCC, and A-LUAD. The feature

metabolites were selected to establish the diagnostic model for E-LUAD. The

AUC value of the training set was 0.918, and it was 0.983 in the validation set.

Conclusion: Blood metabolomics has potential diagnostic value for E-LUAD.

More medical studies are needed to verify whether the metabolic markers

identified in the current research can be applied in clinical practice.
KEYWORDS

early-stage lung adenocarcinoma, metabolomics, biomarker, diagnostic model, liquid
chromatography-mass spectrometry
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Introduction

Lung cancer, due to its insidious nature, remains a leading cause

of cancer-related deaths worldwide. Adenocarcinoma is now the

main histologic type of lung cancer, accounting for almost one-half

of all cases (1). Lung adenocarcinoma (LUAD) leads to the majority

of deaths attributable to lung cancer. Nowadays, the main technical

means for lung cancer screening is low-dose computed tomography

(LDCT). However, the high rate of false positives and misdiagnosis

reduces the effectiveness of LDCT (2). It has been proved that early

diagnosis can improve the survival rate of lung cancer patients. In

addition, LDCT still has potential carcinogenic risks due to radiation

exposure. Identifying sensitive and specific early diagnostic

biomarkers for lung cancer is currently an urgent issue that needs

to be addressed. The development of metabolomics provides strong

technical support for screening diagnostic biomarkers.

In recent decades, metabolomics has become an important tool

for discovering diagnostic biomarkers of lung cancer, and an

increasing number of omics studies have identified many

potential biomarkers for lung cancer (3). However, these studies

still have certain limitations. First, many studies lack a non-

cancerous lung disease group, which raises the possibility that one

or more identified biomarkers may be diagnostic of lung pathology

without necessarily being specific to lung cancer. Compared to

those in healthy individuals, up- or downregulated metabolites in

lung cancer patients could be a consequence of secondary changes

in lung function that could also occur in benign lung diseases, in

which case the biomarkers would not be lung cancer-specific.

Second, few studies have focused on the diagnosis of early-stage

lung cancer, which is the most technically challenging (4).

In this untargeted metabolomics study, we divided participants

into four groups: early-stage lung adenocarcinoma group (E-

LUAD), healthy control group (HC), non-cancerous lung disease

group (NCC), and advanced lung adenocarcinoma group (A-

LUAD). We compared the E-LUAD group with the other three

groups, analyzed differential metabolites, and explored diagnostic

metabolic biomarkers specific to E-LUAD.
Participants and methods

Participants

The blood samples were collected from the First People’s

Hospital of Yunnan Province from January to June 2023. The

diagnosis of all patients was confirmed. Lung adenocarcinoma

was diagnosed through histopathology. All patients with lung

adenocarcinoma underwent contrast-enhanced computed
Abbreviations: AUC, the area under the curve; CV, coefficient of variation; FC,

fold change; KEGG, Kyoto Encyclopedia of Genes and Genomes; LC–MS, liquid

chromatography–mass spectrometry; LDCT, low-dose computed tomography;

LUAD, lung adenocarcinomas; NEG, negative ion mode; PCA, principal

component analysis; PLS-DA, partial least squares discriminant analysis; POS,

positive ion mode; QC, quality control; VIP, variable importance in the projection.
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tomography (CT) scans of the brain, chest, and abdomen, with

female patients also receiving contrast-enhanced CT scans of the

pelvis. All lung adenocarcinoma patients underwent single-photon

emission computed tomography (SPECT) bone imaging. The TNM

staging of lung cancer was determined according to the 8th edition

of the TNM classification issued by the International Association

for the Study of Lung Cancer (IASLC). Patients with stage TNM I

and stage TNM II underwent video-assisted thoracoscopic surgery

(VATS), with postoperative histopathology confirming

adenocarcinoma. Patients with stage TNM III and stage TNM IV

underwent tissue biopsy (with the exception of five cases who

underwent medical thoracoscopic pleural biopsy, the rest

underwent transbronchial lung biopsy and endobronchial

ultrasound-guided transbronchial needle aspiration), with

histopathology confirming adenocarcinoma. Pulmonary

cryptococcosis , pulmonary sclerosing pneumocytoma,

hamartoma, organizing pneumonia, and chronic suppurative

inflammation were all diagnosed through surgical lung biopsy.

Pulmonary aspergillosis was diagnosed through tissue samples

obtained via transbronchial lung biopsy. The remaining non-

cancerous lung diseases were diagnosed clinically. Stage TNM I

and stage TNM II were set as early-stage lung cancer, and stage

TNM III and stage TNM IV as advanced-stage lung cancer.
Sample collection and preparation

The blood samples of all patients were taken before treatment,

invasive medical tests, and surgical intervention. To avoid the effects

of food, all of the samples were taken in the morning before

breakfast (fasting for at least 8 hours). EDTA anticoagulation

tubes were used to collect blood. The collected blood was

immediately sent to the laboratory and centrifuged at 4°C and

3,000 g for 10 min. The separated plasma was stored in a −80°

C refrigerator.

The samples (100 mL plasma) were resuspended with 400 mL
prechilled 80% methanol. The mixtures were incubated on ice for 5

min and then centrifuged at 4°C and 15,000 g for 20 min. The

supernatant was collected and diluted with liquid chromatography–

mass spectrometry (LC–MS)-grade water to a methanol

concentration of 53%. The samples were centrifuged at 4°C and

15,000 g for 20 min. Finally, the supernatant was injected into the

LC–MS system analysis. A quality control (QC) sample used for all

LC–MS runs was prepared by combining equal volumes of diluted

plasma from each participant.
Instrumental test

An Orbitrap Q Exactive™ HF-X mass spectrometer (Thermo

Fisher, Bremen, Germany) coupled with a Vanquish UHPLC

system (Thermo Fisher, Germany) was used to perform LC–MS

analyses. The mass spectrometer was operated in positive and

negative polarity modes. The m/z acquisition range was 100–

1,500. Samples were injected onto a Hypersil Gold column (100 ×
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2.1 mm, 1.9 mm) using a 12-min linear gradient at a flow rate of 0.2

mL/min. The eluents for the positive polarity mode were eluent A

(0.1% formic acid (FA) in water) and eluent B (methanol). The

eluents for the negative polarity mode were eluent A (5 mM

ammonium acetate, pH 9.0) and eluent B (methanol). The solvent

gradient was set as follows: 2% B, 1.5 min; 2%–85% B, 3 min; 85%–

100% B, 10 min; 100%–2% B, 10.1 min; and 2% B, 12 min. The

parameter settings for the mass spectrometer were as follows: MS/

MS secondary scanning, data-dependent scans; aux gas heater

temperature, 350°C; spray voltage, 3.5 kV; aux gas flow rate, 10 L/

min; S-lens radio frequency (RF) level, 60; sheath gas flow rate, 35

psi; and capillary temperature, 320°C.
Data processing and
metabolite identification

To perform peak picking, peak alignment, and quantitation for

each metabolite, Compound Discoverer 3.3 (CD3.3; Thermo

Fisher) was used to process the raw data files generated by LC–

MS. The main parameters were set as follows: signal intensity

tolerance, 30%; peak area was corrected with the first QC; actual

mass tolerance, 5 ppm; and minimum intensity.

Peak intensities were normalized to the total spectral intensity,

and then the molecular formula with the normalized data was

predicted. To obtain accurate qualitative and relative quantitative

results, the peaks were matched with the mzVault, mzCloud

(https://www.mzcloud.org/), and MassList database.

Statistical analyses were performed using the software R (R

version R-3.4.3), CentOS (CentOS release 6.6), and Python (Python

2.7.6 version). Data that were not normally distributed were

standardized using the following equation to obtain relative

peak areas:

rPA = rQV
QVs=QVqc :rPA is the relative peak area. rQV is the sample

raw quantitation value, which refers to the result obtained using the

CD3.3 software to perform peak integration and calculate the area

under the curve for the mass spectrometry peaks corresponding to each

metabolite. QVs is the sum of sample metabolite quantitation value.

QVqc is the sum of the QC1 sample metabolite quantitation value.

Only the compounds whose coefficient of variation (CV) of

relative peak areas in QC samples was less than or equal to 30%

were retained, and the metabolite identification and relative

quantification results were finally obtained.
Construction and verification of the
diagnostic model

E-LUAD was compared with the other three groups to identify

significantly different plasma metabolite levels. A Venn diagram

was constructed to identify overlapping differential metabolites of

the class comparisons. The data were randomly divided into a

training set and a validation set. The overlapping differential

metabolites were subjected to logistic regression analysis; then,
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the diagnostic model was constructed. The receiver operating

characteristic (ROC) curve was plotted to evaluate the diagnostic

performance of the model. The area under the ROC curve (AUC)

was used to evaluate diagnostic accuracy: high accuracy (0.9 < AUC

< 1) and moderate accuracy (0.7 < AUC ≤ 0.9). An AUC metabolite

score meant the diagnostic accuracy for E-LUAD.
Statistical analysis

The metabolites were annotated using the Human Metabolome

Database (HMDB) database (https://hmdb.ca/metabolites), Kyoto

Encyclopedia of Genes and Genomes (KEGG) database (https://

www.genome.jp/kegg/pathway.html), and LIPIDMaps database

(http://www.lipidmaps.org/). The metabolites with variable

importance in the projection (VIP) score >1.0, fold change (FC) >

1.5 or FC < 0.667, and p-value < 0.05 were considered to be

differential metabolites. Partial least squares discriminant analysis

(PLS-DA) and principal component analysis (PCA) were

performed at metaX. The goodness of fit for the PLS-DA models

was evaluated using three quantitative parameters: R2X, R2Y, and

Q2. Univariate analysis (t-test) was applied to calculate the statistical

significance (p-value).

For clustering heatmaps, z-scores of the intensity areas of

differential metabolites were used to normalize the data. The

functions of metabolites and metabolic pathways were studied

using the KEGG database. When the ratio was satisfied by x/n >

y/N, the metabolic pathway was considered enriched (x, the number

of differential metabolites associated with a specific metabolic

pathway; y, the total number of all metabolites associated with a

specific metabolic pathway; and n, the number of differential

metabolites annotated by KEGG). The metabolic pathway whose

p < 0.05 was considered statistically significantly enriched.

GraphPad Prism 8.0 was used for the statistical analysis of baseline

data from the four groups of participants. The Kruskal–Wallis statistic

was used for the comparison of non-normally distributed data. The

chi-square test was used for the statistical analysis of counting data. p-

Value less than 0.05 was considered statistically significant.
Results

Comparison of general characteristics

The study included four groups: E-LUAD (n = 21), HC (n = 17),

NCC (n = 17), and A-LUAD (n = 25).

The NCC group included eight cases of pulmonary infectious

diseases (five cases of bacterial pneumonia, one case of active

pulmonary tuberculosis, one case of invasive pulmonary

aspergillosis, and one case of pulmonary cryptococcosis), three

cases of pulmonary sclerosing pneumocytoma, two cases of

hamartoma, one case of chronic suppurative inflammation, one

case of chronic obstructive pulmonary disease, one case of organic

pneumonia, and one case of bronchiectasis.
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There were no significant differences in age, smoking status,

tumor history, or comorbidity among the four groups (p > 0.05); see

Table 1 for details.
Potential biomarker identification

A total of 527 metabolites were tentatively identified in positive

ion mode (Supplementary Table 1) and 286 metabolites in negative

ion mode (Supplementary Table 2).
Quality control

Based on the relative quantification values of metabolites,

Pearson’s correlation coefficient between QC samples was

calculated. All R2 values were greater than 0.98 in positive ion

mode, and all R2 values were greater than or equal to 0.99 in

negative ion mode (Supplementary Figure 1).

We performed PCA on the peaks extracted from all experimental

and QC samples. The PCA score plots (Figures 1A, B) demonstrated
Frontiers in Oncology 04
good clustering of pooled QC samples, indicating good stability of the

experimental method and high data quality.
KEGG pathway annotation of metabolites

The KEGG pathway analysis showed that the identified

metabolites were involved in metabolic pathways including

cellular processes, environmental information processing, genetic

information processing, human diseases, metabolism, and organic

systems. The main biological metabolic pathway involved was

metabolism in positive/negative ion mode (Figures 2A, B).
Comparison of the E-LUAD and HC

Compared with the HC group, 82 metabolites were upregulated

and eight metabolites were downregulated in the E-LUAD group in

positive ion mode (Supplementary Table 3). In negative ion mode,

30 metabolites were upregulated and one metabolite was

downregulated in the E-LUAD group (Supplementary Table 4).
TABLE 1 Baseline characteristics of participants.

N (%) E-LUAD HC NCC A-LUAD p-Value

No. 21 17 17 25

Age 0.3914

Age (IQR) 60.00 (50.00, 68.00) 56.00 (47.50, 61.50) 55.00 (46.00, 61.00) 59.00 (50.00, 68.00)

Range 39–83 39–69 32–78 33–76

Sex

Male 8 (38.10) 5 (29.41) 7 (41.18) 11 (44) 0.8107

Female 13 (61.90) 12 (70.59) 10 (58.82) 14 (56)

Smoking status 0.9395

Never 13 (61.90) 12 (70.59) 12 (70.59) 16 (64)

Former 2 (9.52) 2 (11.76) 1 (5.88) 4 (16)

Current 6 (28.57) 3 (17.65) 4 (23.53) 5 (20)

Tumor history 0.3033

Yes 3 (14.29) 0 1 (5.88) 4 (16)

No 18 (85.71) 17 (100) 16 (94.12) 21 (84)

Comorbidity 0.1794

Yes 5 (23.81) 0 2 (11.76) 3 (12)

No 16 (76.19) 17 (100) 15 (88.24) 22 (88)

Cancer stage

I 15 (71.43)

II 6 (28.57)

III 6 (24)

IV 19 (76)
E-LUAD, early-stage lung adenocarcinoma; HC, healthy control; NCC, non-cancerous lung disease; A-LUAD, advanced lung adenocarcinoma; IQR, interquartile range.
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The PLS-DAmodel showed that the samples in the E-LUAD and

HC groups were distributed in different quadrants (Figures 3A, D),

indicating significant metabolic differences between the two groups.

The permutation test demonstrated that the PLS-DA model was not

overfitting: in positive and negative modes, the Q2 regression line had

a negative intercept, and all blue Q2 points were below the original

blue Q2 point (Figures 3B, E). The volcano plot of the overall

characteristics of the metabolite peaks is shown in Figures 3C, F.

The metabolic pathways are visually displayed in Supplementary

Figures 2, 3. The details of metabolic pathways are presented in

Supplementary Table 9. The KEGG pathway enrichment analysis of

differential metabolites showed six metabolic pathways with a p-value

< 0.05 in positive ion mode, including steroid hormone biosynthesis,

ovarian steroidogenesis, aldosterone synthesis and secretion, cortisol

synthesis and secretion, Cushing’s syndrome, and the prolactin

signaling pathway.
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Plotting the ROC curves of these metabolites, the AUC values of

the differential metabolites are shown in Table 2; Supplementary

Tables 3, 4. Most metabolites had a moderate discrimination ability.
Comparison of the E-LUAD and NCC

Compared with the NCC group, there were 33 differentially

expressed metabolites (25 upregulated and eight downregulated) in

the E-LUAD group in positive ion mode (Supplementary Table 5).

In negative ion mode, 33 metabolites were upregulated

and one metabolite was downregulated in the E-LUAD group

(Supplementary Table 6).

Significant metabolic differences between the two groups were

displayed in the PLS-DA model (Figures 4A, D). The metabolites of

the two groups were distributed in different quadrants. The
FIGURE 2

The KEGG pathway annotation of the identified metabolites. (A) The positive ion mode. (B) The negative ion mode. KEGG, Kyoto Encyclopedia of
Genes and Genomes.
FIGURE 1

The PCA score plots of all identified metabolites and QC samples. (A) The positive ion mode. (B) The negative ion mode. PCA, principal component
analysis; QC, quality control.
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permutation test demonstrated that the PLS-DA model was not

overfitting (Figures 4B, E). The volcano plot visually displayed

differential metabolites between the two groups (Figures 4C, F).

The metabolic pathways are visual ly displayed in

Supplementary Figures 4, Supplementary Tables 5. The details of

metabolic pathways are presented in Supplementary Table 9. The

KEGG pathway enrichment analysis of differential metabolites

showed five metabolic pathways (aldosterone synthesis and

secretion, cortisol synthesis and secretion, porphyrin and

chlorophyll metabolism, steroid hormone biosynthesis, and

Cushing’s syndrome) with a p-value < 0.05 in positive ion mode

and one metabolic pathway (biosynthesis of unsaturated fatty acids)

in negative ion mode.
Frontiers in Oncology 06
Most differential metabolites had moderate discrimination

ability (Table 3). Detailed information on these metabolites can

be found in Supplementary Tables 5, 6.
Comparison of the E-LUAD and A-LUAD

Compared with the A-LUAD group, we identified nine

metabolites with upregulated expression and 31 metabolites with

downregulated expression in the E-LUAD group in positive ion

mode (Supplementary Table 7). In negative ion mode, 13

metabolites were upregulated and one metabolite was

downregulated in the E-LUAD group (Supplementary Table 8).

The samples distributed in different quadrants in the PLS-DA

model indicated the significant metabolic differences between the E-

LUAD and A-LUAD (Figures 5A, D). The permutation test

demonstrated that the PLS-DA model was not overfitting

(Figures 5B, E). The volcano plot visually displayed the overall

characteristics of the metabolites (Figures 5C, F).

The metabolic pathways are visually displayed in Supplementary

Figures 6, 7. The details of metabolic pathways are presented in

Supplementary Table 9. The KEGG pathway enrichment analysis of

differential metabolites showed only one metabolic pathway (bile

secretion) with a p-value < 0.05 in positive ion mode.
TABLE 2 The AUCs of the differential metabolites (E-LUAD vs. HC).

positive ion mode negative ion mode

AUC Metabolites, n (%) AUC Metabolites, n (%)

<0.7 1 (1.11) <0.7 5 (16.13)

0.7–0.9 84 (93.33) 0.7–0.9 25 (80.65)

>0.9 5 (5.56) >0.9 1 (3.23)
AUC, area under the curve; E-LUAD, early-stage lung adenocarcinoma; HC, healthy control.
FIGURE 3

(A) The PLS-DA model in positive ion mode. (B) The permutation test in positive ion mode. (C) The volcano plot in positive ion mode. (D) The PLS-
DA model in negative ion mode. (E) The permutation test in negative ion mode. (F) The volcano plot in negative ion mode. PLS-DA, partial least
squares discriminant analysis.
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The AUCs of 87.5% (35/40) of the metabolites were greater than

0.70 in positive ion mode, but only one (2.5%) metabolite had an

AUC greater than 0.9 (Table 4; Supplementary Table 7). The AUCs

of 71.43% (10/14) of the metabolites were greater than 0.70 in

negative ion mode; however, none of the metabolites had an AUC

greater than 0.9 (Table 4; Supplementary Table 8).
Specific biomarker identification

The heatmap based on the differentially expressed metabolites

provided intuitive visualizations of the trends in metabolites

between the four groups in positive/negative ion mode
Frontiers in Oncology 07
(Supplementary Figures 8, 9). As can be seen intuitively from the

heatmap, different metabolites increased or decreased in samples of

the four groups.

The Venn diagram visualized the overlapping results between

the differentially regulated metabolites found at E-LUAD vs. HC, E-

LUAD vs. NCC, and E-LUAD vs. A-LUAD comparisons (Figure 6).

In positive ion mode, 16 metabolites were commonly

differentially regulated between E-LUAD vs. HC and E-LUAD vs.

NCC comparisons, indicating that 16 metabolites can

simultaneously distinguish E-LUAD from HC and NCC; 81.25%

of these 16 metabolites had AUCs between 0.7 and 0.9, and 12.5%

had AUCs greater than 0.9. In negative ion mode, the Venn diagram

visualized 13 overlapping differential metabolites between E-LUAD

vs. HC and E-LUAD vs. NCC comparisons, indicating that 13

metabolites can simultaneously distinguish E-LUAD from HC and

NCC; 76.92% of these 13 metabolites had AUCs between 0.7 and

0.9, and 7.69% had AUCs greater than 0.9.

In positive ion mode, only one metabolite was commonly

differentially regulated between E-LUAD vs. HC, E-LUAD vs. NCC,

and E-LUAD vs. A-LUAD comparisons, indicating that only one

metabolite can simultaneously distinguish E-LUAD from HC, NCC,

and E-LUAD. In negative ionmode, the Venn diagram visualized three

overlapping differential metabolites, indicating that only three

metabolites were specific diagnostic markers for E-LUAD.
FIGURE 4

(A) The PLS-DA model in positive ion mode. (B) The permutation test in positive ion mode. (C) The volcano plot in positive ion mode. (D) The PLS-
DA model in negative ion mode. (E) The permutation test in negative ion mode. (F) The volcano plot in negative ion mode. PLS-DA, partial least
squares discriminant analysis.
TABLE 3 The AUCs of the differential metabolites (E-LUAD vs. NCC).

positive ion mode negative ion mode

AUC Metabolites, n (%) AUC Metabolites, n (%)

<0.7 3 (9.09) <0.7 1 (2.94)

0.7–0.9 28 (84.85) 0.7–0.9 30 (88.24)

>0.9 2 (6.06) >0.9 3 (8.82)
AUC, area under the curve; E-LUAD, early-stage lung adenocarcinoma; NCC, non-cancerous
lung disease.
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Compared with the other three groups, the box plot showed that

the four metabolites were significantly upregulated in the E-LUAD

group (Figure 7, colored green).

The AUCs of the four metabolites are shown in Table 5. The

AUC of one ROC curve was less than 0.70 (0.690), and the AUCs of

the remaining ROC curves were all greater than 0.70. The detailed

information on these four metabolites is presented in Table 6.
Diagnostic model construction for E-LUAD

The data were randomly divided into a training set and a

validation set in a 7:3 ratio. The Venn diagram showed that four
Frontiers in Oncology 08
metabolites can distinguish E-LUAD from HC, NCC, and E-LUAD.

Logis t ic regress ion analys i s showed that except for

taurodeoxycholic acid (sodium salt), the p-values of the other

three metabolites were all less than 0.05. The three identified

metabolites, namely, 12-epileukotriene B4, LPE O-18:0, and 2-[2-

(3,4-dichlorophenyl)acetyl]-N-propylhydrazine-1-carbothioamide,

were used as diagnostic feature biomarkers for predicting E-LUAD

and constructing a diagnostic model.

The ROC curve was used to evaluate the diagnostic

performance of the model. The AUC value of the training set was

0.918 (Figure 8A), and it was 0.983 in the validation set (Figure 8B),

indicating that the diagnostic model exhibited a good predictive

value for E-LUAD.
Discussion

Various types of metabolomic samples are available for the

diagnosis of lung cancer. The first choice for screening early lung

cancer is a non-invasive examination. The concentration of urine

varies greatly throughout the day, and the preservation of breath

samples is difficult. We believe that blood is more suitable as an early

diagnostic sample for lung cancer. Blood metabolomics has been

widely applied in the study of disease biomarkers, and it is one of the
FIGURE 5

(A) The PLS-DA model in positive ion mode. (B) The permutation test in positive ion mode. (C) The volcano plot in positive ion mode. (D) The PLS-
DA model in negative ion mode. (E) The permutation test in negative ion mode. (F) The volcano plot in negative ion mode. PLS-DA, partial least
squares discriminant analysis.
TABLE 4 The AUCs of the differential metabolites (E-LUAD vs. A-LUAD).

Positive ion mode Negative ion mode

AUC Metabolites, n (%) AUC Metabolites, n (%)

<0.7 5 (12.5) <0.7 4 (28.57)

0.7–0.9 34 (85) 0.7–0.9 10 (71.43)

>0.9 1 (2.5) >0.9 0 (0)
AUC, area under the curve; E-LUAD, early-stage lung adenocarcinoma; A-LUAD, advanced
lung adenocarcinoma.
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FIGURE 6

Venn diagram of the three comparisons. (A) The positive ion mode. (B) The negative ion mode.
FIGURE 7

The box plot of the commonly differentially regulated metabolites between E-LUAD vs. HC, E-LUAD vs. NCC, and E-LUAD vs. A-LUAD comparisons.
E-LUAD, early-stage lung adenocarcinoma; HC, healthy control; NCC, non-cancerous lung disease; A-LUAD, advanced lung adenocarcinoma.
Frontiers in Oncology frontiersin.org09

https://doi.org/10.3389/fonc.2025.1535525
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2025.1535525
most common sample types in metabolomics research (5). In our

study, we collected plasma for an untargeted metabolomics study.

The levels of many metabolites in the human plasmametabolome

are influenced by many factors such as sex, age, smoking, the

composition of their diet, gut microbiome, an individual’s genetics,

collection tube, and underlying diseases (6–8). Given that

metabolomics is influenced by many factors, controlling non-

experimental factors is crucial for the stability and accuracy of

experimental results. In theory, all diseases may have their own

unique metabolomic features, and any diseases that patients suffer

from may cause varying degrees of changes in blood metabolomics.

At present, most studies on lung cancer metabolomics only use

healthy individuals as the control group (9–18). The lack of benign

lung diseases in the control group may result in differential

metabolites screened in the study not being specific markers for

lung cancer, as these metabolites may also exhibit similar changes in

benign diseases compared to healthy controls. The control group of a

few studies included healthy individuals and non-cancerous lung

diseases (19, 20). For early-stage lung cancer, we believe that these

studies also have some shortcomings. Themarkers screened using this

method can only indicate that they are markers for lung cancer but

may not necessarily be markers for early-stage lung cancer. Due to the

lack of comparison between early-stage and advanced lung cancer,

these metabolic markers may have similar changes in early-stage and

advanced lung cancer, making it difficult to distinguish between them.

Our research identified numerous lung cancer metabolic markers that

align with previous studies, such as upregulated hexanoylcarnitine,
Frontiers in Oncology 10
cortisol, cholic acid, lithocholic acid, tetradecanedioic acid, and

lysophosphatidic acid (LPA) 18:2 (4, 10, 21). However, there is

significant heterogeneity in metabolomics research. Many

metabolites, such as choline, xanthine, hypoxanthine, linoleic acid,

stearic acid, oleic acid, citrulline, arginine, tryptophan, and ornithine,

have been reported as upregulated in lung cancer in some studies,

while other studies have shown the opposite trend (4). The reasons for

these discrepancies between different studies are unclear and may be

due to subject selection criteria or patient heterogeneity. Similar

inconsistencies exist between our study and previous research. For

example, lysophosphatidylcholine (LPC) 18:0 was downregulated in

our study but upregulated in another study (10).

In our study, participants were divided into four groups: E-

LUAD, HC, NCC, and A-LUAD. The E-LUAD group was

compared with the other three groups to analyze differential

metabolites. Then, a Venn diagram was constructed to identify

overlapping results between the differentially regulated metabolites

found at E-LUAD vs. HC, E-LUAD vs. NCC, and E-LUAD vs. A-

LUAD comparisons. From the Venn diagram, 29 differentially

regulated metabolites were identified between E-LUAD and the

two non-cancerous control groups, indicating that the 29

metabolite markers can distinguish E-LUAD from healthy

individuals and non-cancerous lung diseases. Four differentially

regulated metabolites were identified between E-LUAD and the

other three groups, indicating that these metabolites can

additionally distinguish early stage from advanced lung

adenocarcinoma. A diagnostic model was constructed for E-

LUAD using the identified metabolites, and the ROC curve

showed that the model exhibited a good predictive value (AUC >

0.9). In addition, in our study, 121 differential metabolites were

identified by comparing E-LUAD with HC, while only 67

differential metabolites were identified by comparing E-LUAD

with NCC. Compared with A-LUAD, the lowest number (only

54) of differential metabolites was identified, indicating that the

difficulty of distinguishing E-LUAD from HC, NCC, and A-LUAD

is gradually increasing.

In our study, 2-[2-(3,4-dichlorophenyl)acetyl]-N-propylhydrazine-

1-carbothioamide has potential diagnostic value for E-LUAD.

According to the Chemical Entities of Biological Interest (ChEBI)

database, the species of this metabolite is Homo sapiens. Its biological

function is unclear. This metabolite can be found in peripheral blood

mononuclear cells. It is a dichlorobenzene, which may be a potential

carcinogen. Therefore, it is possible that this metabolite is derived from
TABLE 5 The AUCs of the commonly differentially
regulated metabolites.

Metabolites
E-LUAD
vs. HC

E-LUAD
vs. NCC

E-LUAD
vs.

A-LUAD

Taurodeoxycholic acid
(sodium salt)

0.725 0.754 0.690

12-Epileukotriene B4 0.978 0.992 0.792

Lysophosphatidylethanolamine
O-18:0

0.818 0.832 0.777

2-[2-(3,4-dichlorophenyl)
acetyl]-N-propylhydrazine-

1-carbothioamide
0.754 0.899 0.790
E-LUAD, early-stage lung adenocarcinoma; HC, healthy control; NCC, non-cancerous lung
disease; A-LUAD, advanced lung adenocarcinoma.
TABLE 6 Detailed information on metabolites.

Name Formula Molecular
weight

retention
time (RT)

m/z

Taurodeoxycholic acid (sodium salt) C26H45NO6S 499.29714 7.706 500.30441

12-Epileukotriene B4 C20H32O4 336.23033 7.347 335.22305

Lysophosphatidylethanolamine (LPE) O-18:0 C23H50NO6P 467.33798 10.91 466.33071

2-[2-(3,4-Dichlorophenyl)acetyl]-N-propylhydrazine-
1-carbothioamide

C12H15Cl2N3OS 355.00429 6.129 353.99701
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an exogenous source/manufacturer. As cancer progresses, the

concentration of this metabolite may decrease, which may be the

reason why it can distinguish between E-LUAD and A-LUAD.

12-Epileukotriene B4 is a non-enzymatically derived isomer of

leukotriene B4 (22). Leukotriene B4 was found to induce epithelial–

mesenchymal transition in human adenocarcinoma alveolar basal

epithelial A549 cells (23). It may play an important role in lung

cancer progression. Leukotriene B4 was upregulated in the lungs of

the mice with lung cancer (24). Compared to that in healthy

smoking/non-smoking controls, leukotriene B4 resulted higher in

breath condensate in lung cancer patients (25, 26). In our study,

leukotriene B4 was upregulated in the blood and has potential

diagnostic value for early lung cancer.

As a breakdown product of phosphatidylethanolamine (PE),

lysophosphatidylethanolamine (LPE) is present in the cells of all

organisms. Mass spectrometry-based studies have demonstrated

that LPE serves as a prognostic marker in cancer (27). Lei et al. (28)

performed metabolomics analysis in 131 patients with their lung

tissue pairs. Compared with paired distal non-cancerous tissues,

LPE 16:0 significantly increased in lung carcinoma tissues.

Noreldeen et al. (29) observed that the levels of serum LPE

increased in the non-smoking female patients with non-small cell

lung cancer, compared with the healthy controls. Serum LPE (20:4)

can serve as a biomarker for distinguishing female patients with

non-small cell lung cancer from healthy controls. Our study

demonstrated that plasma LPE O-18:0 can distinguish E-LUAD

from HC, NCC, and A-LUAD.

Tang et al. (3) reported that taurodeoxycholic acid 3-sulfate was

positively associated with lung cancer risk. The association of

taurodeoxycholic acid 3-sulfate with lung cancer was the

strongest among cases diagnosed within 3 years of follow-up. It is

a potential screening biomarker for lung cancer. Although not as

good as the other three metabolites, taurodeoxycholic acid (sodium

salt) still has a certain differential diagnostic value in our study.
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In recent years, an increasing amount of metabolites has been

detected, but many metabolites have not been reflected in a better

understanding of metabolic pathways. Most of the metabolic pathway

differences were in hormone biosynthesis pathways in our study,

particularly steroid hormones. Steroid hormones are involved in the

biology of lung cancer, but to what extent they contribute to lung

cancer is unclear (30). The lung contains receptors for both estrogen

and progesterone. Several studies indicated the possible involvement

of sex steroids in both the development and progression of lung

cancer (31). Bile secretion was a different metabolic pathway for

early- vs. late-stage lung cancer in our study. Long et al. (32) reported

that total bile acids had the potential to distinguish between advanced

and early-stage lung cancer. Some of the studies have characterized

the role of bile acids in cancer development and progression (33).

However, details remain unclear on how bile acid metabolism is

regulated in lung cancer.

Our research also has shortcomings. First, the sample size was

small. Second, we did not conduct targeted metabolomics

validation. With the improvement of detection instrument

performance, if conditions permit, large-scale metabolomics

studies can be conducted in the future to minimize the influence

of non-experimental factors. It is promising to screen out metabolic

biomarkers specific for early-stage lung cancer that are applicable to

clinical practice. Nonetheless, differential metabolites are not equal

to disease biomarkers; the application of metabolomics in clinical

practice still has a long way to go.

The future direction of metabolomics research is to identify

reliable biomarkers that can help in distinguishing between lung

cancer and non-cancerous lung diseases, and various lung cancer

types and stages. Targeted metabolomics studies will be necessary to

verify the reliability of findings from non-targeted metabolomics.

Metabolomics signatures must first be validated on larger cohorts,

followed by the implementation of quantitatively robust methods

for the metabolites of interest. Finally, prospective clinical trials
FIGURE 8

ROC curve for evaluating and validating the diagnostic model’s performance. (A) ROC curve of the training set. (B) ROC curve of the validation set.
ROC, receiver operating characteristic.
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must be conducted to validate the reliability and adaptability of the

biomarkers. With technological advancement and the decrease in

testing costs, metabolomics may be able to replace more costly and

invasive diagnostic procedures and provide easy and cost-effective

methods for first-line diagnosis.
Conclusions

Blood metabolomics has potential diagnostic value for E-

LUAD. More medical studies are needed to verify whether the

metabolic markers identified in current research can be applied in

clinical practice.
Data availability statement

The datasets presented in this study are deposited in online

repositories. The names of the repositories and accession numbers

can be found below: https://data.mendeley.com/datasets/

cv6x58scpw/1; https://data.mendeley.com/datasets/zk2k6tnknt/1;

https://data.mendeley.com/datasets/pg4z7jwwr7/1.
Ethics statement

The studies involving humans were approved by The Ethics

Committee of the First People’s Hospital of Yunnan Province. The

studies were conducted in accordance with the local legislation and

institutional requirements. Written informed consent for

participation in this study was provided by the participants’ legal

guardians/next of kin.
Author contributions

DS: Writing – original draft. YD: Writing – original draft. RL:

Writing – original draft. YZ: Writing – review & editing.
Frontiers in Oncology 12
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Basic Research Special Project of Yunnan

Province–Key Project (202201AY070001-224) and the Open

Project of Yunnan Provincial Respiratory Disease Clinical

Medical Center (2023YJZX-HX10).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1535525/

full#supplementary-material
References
1. Kuhn E, Morbini P, Cancellieri A, Damiani S, Cavazza A, Comin CE.
Adenocarcinoma classification: patterns and prognosis. Pathologica. (2018) 110:5–11.

2. Heuvelmans MA, Groen HJ, Oudkerk M. Early lung cancer detection by low-dose
CT screening: therapeutic implications. Expert Rev Respir Med. (2017) 11:89–100.
doi: 10.1080/17476348.2017.1276445

3. Tang Z, Liang D, Deubler EL, Sarnat JA, Chow SS, Diver WR, et al. Lung cancer
metabolomics: a pooled analysis in the Cancer Prevention Studies. BMC Med. (2024)
22:262. doi: 10.1186/s12916-024-03473-1

4. Shi W, Cheng Y, Zhu H, Zhao L. Metabolomics and lipidomics in non-small cell
lung cancer. Clin Chim Acta. (2024) 555:117823. doi: 10.1016/j.cca.2024.117823

5. Liang S, Cao X, Wang Y, Leng P, Wen X, Xie G, et al. Metabolomics analysis and
diagnosis of lung cancer: insights from diverse sample types. Int J Med Sci. (2024)
21:234–52. doi: 10.7150/ijms.85704

6. Gu F, Derkach A, Freedman ND, Landi MT, Albanes D, Weinstein SJ, et al.
Cigarette smoking behaviour and blood metabolomics. Int J Epidemiol. (2016)
45:1421–32. doi: 10.1093/ije/dyv330
7. Chen L, Zhernakova DV, Kurilshikov A, Andreu-Sánchez S, Wang D, Augustijn
HE, et al. Influence of the microbiome, diet and genetics on inter-individual variation
in the human plasma metabolome. Nat Med. (2022) 28:2333–43. doi: 10.1038/s41591-
022-02014-8

8. Goldberg E, Ievari-Shariati S, Kidane B, Kim J, Banerji S, Qing G, et al. Comparative
metabolomics studies of blood collected in streck and heparin tubes from lung cancer
patients. PloS One. (2021) 16:e0249648. doi: 10.1371/journal.pone.0249648

9. Shang X, Zhang C, Kong R, Zhao C, Wang H. Construction of a diagnostic model
for small cell lung cancer combining metabolomics and integrated machine learning.
Oncologist. (2024) 29:e392–401. doi: 10.1093/oncolo/oyad261

10. Ni B, Kong X, Yan Y, Fu B, Zhou F, Xu S. Combined analysis of gut microbiome
and serum metabolomics reveals novel biomarkers in patients with early-stage non-
small cell lung cancer. Front Cell Infect Microbiol. (2023) 13:1091825. doi: 10.3389/
fcimb.2023.1091825

11. Li J, Liu K, Ji Z, Wang Y, Yin T, Long T, et al. Serum untargeted metabolomics
reveal metabolic alteration of non-small cell lung cancer and refine disease detection.
Cancer Sci. (2023) 114:680–9. doi: 10.1111/cas.v114.2
frontiersin.org

https://data.mendeley.com/datasets/cv6x58scpw/1
https://data.mendeley.com/datasets/cv6x58scpw/1
https://data.mendeley.com/datasets/zk2k6tnknt/1
https://data.mendeley.com/datasets/pg4z7jwwr7/1
https://www.frontiersin.org/articles/10.3389/fonc.2025.1535525/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1535525/full#supplementary-material
https://doi.org/10.1080/17476348.2017.1276445
https://doi.org/10.1186/s12916-024-03473-1
https://doi.org/10.1016/j.cca.2024.117823
https://doi.org/10.7150/ijms.85704
https://doi.org/10.1093/ije/dyv330
https://doi.org/10.1038/s41591-022-02014-8
https://doi.org/10.1038/s41591-022-02014-8
https://doi.org/10.1371/journal.pone.0249648
https://doi.org/10.1093/oncolo/oyad261
https://doi.org/10.3389/fcimb.2023.1091825
https://doi.org/10.3389/fcimb.2023.1091825
https://doi.org/10.1111/cas.v114.2
https://doi.org/10.3389/fonc.2025.1535525
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2025.1535525
12. Zheng J, Zheng Y, Li W, Zhi J, Huang X, Zhu W, et al. Combined metabolomics
with transcriptomics reveals potential plasma biomarkers correlated with non-small-
cell lung cancer proliferation through the Akt pathway. Clin Chim Acta. (2022) 530:66–
73. doi: 10.1016/j.cca.2022.02.018

13. Singh A, Prakash V, Gupta N, Kumar A, Kant R, Kumar D. Serum metabolic
disturbances in lung cancer investigated through an elaborative NMR-based serum
metabolomics approach. ACS Omega. (2022) 7:5510–20. doi: 10.1021/
acsomega.1c06941

14. Schult TA, Lauer MJ, Berker Y, Cardoso MR, Vandergrift LA, Habbel P, et al.
Screening human lung cancer with predictive models of serum magnetic resonance
spectroscopy metabolomics. Proc Natl Acad Sci U S A. (2021) 118:e2110633118.
doi: 10.1073/pnas.2110633118

15. Derveaux E, Thomeer M, Mesotten L, Reekmans G, Adriaensens P. Detection of
lung cancer via blood plasma and 1H-NMR metabolomics: validation by a semi-
targeted and quantitative approach using a protein-binding competitor. Metabolites.
(2021) 11:537. doi: 10.3390/metabo11080537

16. Zheng Y, He Z, Kong Y, Huang X, Zhu W, Liu Z, et al. Combined metabolomics
with transcriptomics reveals important serum biomarkers correlated with lung cancer
proliferation through a calcium signaling pathway. J Proteome Res. (2021) 20:3444–54.
doi: 10.1021/acs.jproteome.0c01019

17. Ruiying C, Zeyun L, Yongliang Y, Zijia Z, Ji Z, Xin T, et al. A comprehensive
analysis of metabolomics and transcriptomics in non-small cell lung cancer. PloS One.
(2020) 15:e0232272. doi: 10.1371/journal.pone.0232272

18. Yazdani H, Cheng LL, Christiani DC, Yazdani A. Bounded Fuzzy Possibilistic
Method Reveals Information about Lung Cancer through Analysis of Metabolomics.
IEEE/ACM Trans Comput Biol Bioinform. (2020) 17:526–35. doi: 10.1109/TCBB.8857

19. Yu M, Wen W, Wang Y, Shan X, Yi X, Zhu W, et al. Plasma metabolomics
reveals risk factors for lung adenocarcinoma. Front Oncol. (2024) 14:1277206.
doi: 10.3389/fonc.2024.1277206

20. Mu Y, Zhou Y, Wang Y, Li W, Zhou L, Lu X, et al. Serum metabolomics study of
nonsmoking female patients with non-small cell lung cancer using gas
chromatography-mass spectrometry. J Proteome Res. (2019) 18:2175–84.
doi: 10.1021/acs.jproteome.9b00069

21. Yin T, Liu K, Shen Y, Wang Y, Wang Q, Long T, et al. Alteration of serum bile
acids in non-small cell lung cancer identified by a validated LC-MS/MS method. J
Cancer Res Clin Oncol. (2023) 149:17285–96. doi: 10.1007/s00432-023-05434-2

22. Jian W, Edom RW, Xue X, Huang MQ, Fourie A, Weng N. Quantitation of
leukotriene B(4) in human sputum as a biomarker using UPLC-MS/MS. J Chromatogr
Frontiers in Oncology 13
B Analyt Technol BioMed Life Sci . (2013) 932:59–65. doi : 10.1016/
j.jchromb.2013.06.010

23. Torres MJ, Rıós JC, Valle A, Indo S, Gv KB, López-Moncada F, et al. Alpha-lipoic
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