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Argentina

*CORRESPONDENCE

Cheng Xiang

chengxiang@zju.edu.cn

RECEIVED 28 November 2024

ACCEPTED 20 May 2025
PUBLISHED 04 June 2025

CITATION

Liu X, Zhu Q-l, He Z-y, Shu J-d and
Xiang C (2025) Identification of risk
factors for high-risk dedifferentiation
in papillary thyroid carcinoma and
construction of discriminative model.
Front. Oncol. 15:1535966.
doi: 10.3389/fonc.2025.1535966

COPYRIGHT

© 2025 Liu, Zhu, He, Shu and Xiang. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 04 June 2025

DOI 10.3389/fonc.2025.1535966
Identification of risk factors for
high-risk dedifferentiation in
papillary thyroid carcinoma
and construction of
discriminative model
Xiang Liu1, Qiao-li Zhu1, Zi-yi He1, Jing-de Shu1

and Cheng Xiang2*

1Department of Breast and Thyroid Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical
University, Quzhou People’s Hospital, Quzhou, Zhejiang, China, 2Department of Thyroid Surgery, The
Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
Objective: We initially found that the thyroid differentiation score (TDS) was

associated with the prognosis of papillary thyroid carcinoma (PTC) patients.

Therefore, this study aimed to investigate the influencing factors and construct

a discriminative model of high-risk dedifferentiation, and to explore the

possible mechanisms.

Methods: Data were sourced from the TCGA database. The influences of the

TDS, tumormutation burden, and immune score on the progression-free interval

(PFI) were assessed by the Kaplan-Meier method and multivariable Cox

regression. Then, logistic regression analyses were utilized to explore the

factors of dedifferentiation and a nomogram model was conducted.

Additionally, differentially expressed genes (DEGs) were identified using RNA

sequencing data, while their regulatory pathways were determined by the Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, the differential

expression of key genes of major pathways was explored.

Results: This study included 391 PTC patients. After analyzing the influences of

the three indicators on survival, only TDS showed an association with PFI.

Multivariable logistic analysis revealed that the disease duration and PTC

subtypes influenced dedifferentiation. The nomogram model based on these

two variables showed improved discriminative capability. The study identified 17

overlapping DEGs associated with the dedifferentiation and three primary

enrichment pathways, with complement and coagulation cascade pathways

being the most significant (P<0.001). The central gene was CD55, which

showed high expression in high-risk dedifferentiated and tall cell PTC, and the

expression level increased as the disease progressed.
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Conclusion: This research may contribute to promising identifying high-risk

dedifferentiated PTC and also provide a potential therapeutic target.
KEYWORDS

thyroid differentiation score, papillary thyroid carcinoma, dedifferentiation,
differentially expressed genes, CD55
1 Introduction

Thyroid cancer (THCA) is the most prevalent endocrine system

malignancy, with 821,000 new cases worldwide in 2022, accounting

for 4.1% of all new cancer cases globally and ranking 7th among

malignant tumors (1, 2). Papillary thyroid carcinoma (PTC) is the

most common subtype of THCA, accounting for approximately

80%-90% of all cases (3). PTC originates from follicular epithelium

(4). It includes more than ten subtypes, such as classical/usual PTC,

infiltrating follicular PTC, tall cell PTC (TCPTC), and columnar cell

PTC (5). PTC is highly differentiated and prone to regional lymph

node metastasis at an early stage, with low local infiltration and

recurrence rate, resulting in a better prognosis. The 5-year survival

rates of PTC range from 83% to 98%, while well-differentiated

classic PTC has a 10-year survival rate of up to 97% (6, 7). However,

some PTC subtypes may undergo dedifferentiation, making the

tumor cells more aggressive and losing iodide uptake capacity, then

leading to increased disease progression and mortality (8–10).

Compared to identifying dedifferentiation through histopathology

alone, the thyroid differentiation score (TDS) integrates the mRNA

expression levels of 16 genes associated with thyroid metabolism

and function, providing a more consistent method for identifying

dedifferentiation (11, 12).

With the advancements in immuno-oncology, immune checkpoint

inhibitor (ICI) therapies have revolutionized cancer treatment.

However, these groundbreaking therapies also have side effects (13).

Tumor mutation burden (TMB), as an emerging biomarker, is

considered to be a promising predictor of response to ICI therapy

(14). Research has demonstrated that elevated TMB is associated with

the response to ICI in several types of tumors. For example, in non-

small cell lung cancer, high TMB is linked to significantly improved

progression-free interval (PFI) in patients receiving combined

Nivolumab and Ipilimumab treatment (15). Similarly, increased

TMB is associated with improved survival rates in head and neck

cancer and bladder cancer patients undergoing ICI therapy (16).

The tumor immune microenvironment (TIME) plays a crucial

role in cancer progression and influences treatment outcomes and

prognosis (17). In TIME, the key cluster cells that are most likely to

influence clinical outcomes of THCA may be immune cells (18).

Currently, immune scores can be obtained using multiple computer

algorithms such as Cibersort, Timer, and ImmuCellAI, which can

assess immune cell infiltration by RNA-seq expression data (19–21).
02
PTC immune infiltrating cells such as dendritic cells, biased M2

phenotype tumor-associated macrophages, and mast cells are

associated with tumor differentiation or anti-tumor immune

responses (22–24). Several studies have investigated the

relationship between known differentially expressed genes (DEGs)

in PTC, TIME, and prognosis (25–27). However, these studies did

not include currently unproven immune-related genes or

prognostic genes that were not differentially expressed in the

analysis. In addition, models that incorporate multiple genes limit

the feasibility of their clinical application. To address these

limitations, this study employed the ESTIMATE algorithm to

calculate immune scores for PTC cases.

Dedifferentiation, gene mutation, and immune microenvironment

significantly impact the biological behavior and clinical prognosis of

PTC. In this study, we initially explored the effects of these three

markers on PFI in PTC patients, revealing that only TDS influenced

prognosis. Subsequently, the influencing factors and mechanisms were

explored for TDS to guide intervention strategies.
2 Materials and methods

2.1 Data acquisition and preprocessing

The transcriptome data and clinical information data of the

PTC patients were from the Cancer Genome Atlas (TCGA) genome

database (https://portal.gdc.cancer.gov/). PTC samples in the

TCGA database were collected and sequenced primarily between

2010 and 2015. We obtained 507 PTC patients’ data, and 391 of

them with complete TDS, TMB, and immune scores data were

analyzed. Perl version 5.24.3 software was utilized to transform

original RNA sequencing data into an RNA expression matrix.
2.2 Calculation of immune score, TDS, and
TMB in PTC patients

ESTIMATE, a computerized algorithm, can infer the level of

stromal and immune cell infiltration in tumor tissue based on

expression profiles (28). The immune score of the immune

microenvironment in PTC patients was calculated by the

ESTIMATE algorithm.
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TDS encompasses the expression levels of 16 thyroid metabolic

and functional mRNAs (12). The log2 normalized RSEM values

were first centered on the median of each sample to derive the log2
(fold-change) (FC), and then the TDS of each tumor tissue was

obtained by summing the 16 genes of each sample. The calculation

formula was as follows: TDS = log2 (FC) average of 16 genes (29,

30). The genes involved were DIO1, DIO2, DUOX1, DUOX2,

FOXE1, GLIS3, NKX2-1, PAX8, SLC26A4, SLC5A5, SLC5A8, TG,

THRA, THRB, TPO, and TSHR.

TMB was defined as the number of somatic, coding, base

substitution, and insertion-deletion variants per megabase (Mb)

of the examined target genomic region (14). The formula was

calculated as follows: sample TMB = number of mutations/exon

region size (31). The TMB distribution for patients was directly

acquired from the TCGA database.
2.3 Key indicators identification

We first explored the influence of immune score, TDS, and

TMB on the survival outcome of PTC patients by Kaplan-Meier

(KM) method and log-rank test. Due to the long overall survival and

tumor-specific survival of PTC patients, this study collected limited

mortality data. PFI was used as the survival indicator. PFI is defined

as the time interval between the date of diagnosis of the disease and

the occurrence of a new tumor event, including disease progression,

local recurrence, distant metastasis, the new primary tumor, or

death from a tumor (32). In the KM analysis, all the patients were

divided into high and low groups according to the optimal cut-off

value and median of TDS, TMB, and immune scores. The optimal

cut-off value is the minimum P-value cut-off for univariable Cox

analysis when PFI is the primary endpoint and is obtained from the

R software package “survminer”. We then performed a Cox

regression analysis to assess their association with PFI. The factor

of PFI was regarded as the key indicator.
2.4 Definition of high/low-risk
dedifferentiation

In this study, only TDS showed an association with PFI, thus

becoming the research topic in the subsequent analysis. The 391

PTC patients were grouped by the optimal cut-off value (-0.303) of

the TDS score. The low-differentiation score group (TDS≤-0.303)

was defined as high-risk dedifferentiation, while the high-

differentiation score group (TDS>-0.303) was designated as low-

risk dedifferentiation. We then compared the baseline data between

high and low-risk dedifferentiation groups.
2.5 Collected baseline variables

Relevant variables collected in this study were related to:

demographic characteristics (age, sex, race), tumor-related clinical

variables (disease duration, tumor size, TNM stage, PTC subtypes,
Frontiers in Oncology 03
stage, site, and focus type of primary lesions, lymph node

preoperative assessment diagnostic imaging type, medical history

of the thyroid gland disorder, radiation therapy and response to

therapy, postoperative tumor residue after resection) and follow-up

(follow-up after radiation treatment, PTC status after

initial treatment).

The disease duration was defined as the time interval between

initial diagnosis and completion of the TCGA program. Tumors

with ≥99% of follicular structures were considered to be follicular

variant PTC, and those with tall cells content ≥50% were defined as

TCPTC. It has been noted that stage 1 and 2 tumors remain

confined to the thyroid gland and have not yet spread to the

central compartment of the lymph nodes; in stages 3 and 4, the

cancer spreads to the lymph nodes, including other organs (33).

Therefore, we combined stage 1 and 2 samples as early-stage

samples and stage 3 and 4 samples as advanced-stage samples.

Preoperative lymph node imaging was categorized as ultrasound-

only or other. The other included computed tomography (CT)-

only, magnetic resonance imaging (MRI)-only, or combinations.

Response to radiotherapy was classified as complete response or

other, with other conditions including partial response, stable

disease, and radiographic progressive disease. Residual tumors

after resection were categorized as absent or present. Complete

resection of the tumor was defined as no tumor residue, resection

with residue under a microscope and residue visible to the naked

eye was classified as having residue. In the follow-up results, the

status of PTC after initial treatment included both no imaging

evidence of disease and disease persistence. Disease persistence

included persistent locoregional disease and persistent distant

metastases. In spite some samples had missing data, which are

clinically valuable and worth analyzing, they were retained for

baseline and/or subsequent analyses.
2.6 Influencing factors and model
construction of high-risk dedifferentiation

After baseline comparison, we conducted a logistic regression

analysis to explore the key factors and established a nomogram

model for predicting the high-risk dedifferentiation. The

performance of the nomogram model was then evaluated by

several analyses. The detailed information is shown in the

following Statistical analysis section.
2.7 Potential mechanism exploration
associated with dedifferentiation

The RNA-seq expression data of PTC patients were normalized

using the log2 (X+1) method. Supplementary Table S1 displays the

normalized data of 16 TDS-related genes and CD55. The “Limma”

package in R software was used to detect the differentially expressed

genes (DEGs) between the high-risk dedifferentiation group and the

low-risk differentiation group (DEG1), as well as high and low

nomogram score groups (DEG2), based on the threshold of
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adjusted P-value < 0.05 and |log2 (FC)| > 1. Gene expression

volcano plots were created with Graphpad Prism 8. Overlapping

genes between DEG1 and DEG2 were identified using Venn

diagrams (bioinformatics.psb.ugent.be/webtools/Venn/). Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis was performed to determine the pathways associated

with the overlapping genes and identify genes in major pathways.

Finally, the expression levels of key genes involved in the major

pathways were analyzed for differences between PTC subtypes and

dedifferentiation risk groups, and the correlation between gene

expression level and disease duration was also assessed.
2.8 Statistical analysis

Continuous variables with non-normal distribution were

characterized by medians and quartiles (P25, P75), and the

differences between high and low-risk dedifferentiation groups

were compared using the Wilcoxon-Mann-Whitney test.

Categorical variables were presented as frequencies (n) and

proportions (%) and then compared by the Chi-square test/Fisher

exact test. Variables that were statistically different from baseline

comparisons were included in logistic regression analyses to explore

the factors influencing high-risk dedifferentiation in PTC patients.

Collinearity analysis was performed due to the joint confirmation of

tumor staging by T, N, and M staging indicators, and the potential

for interactions among other indicators. Collinearity was

considered present when the variance inflation factor (VIF)

exceeded 10.

Based on the results of multivariable logistic regression, a model

for high-risk dedifferentiation was constructed using the nomogram

method. Receiver operating characteristic analysis (ROC) was used

to evaluate the performance of the key factors in predicting high-

risk dedifferentiation using “pROC” packages, while decision curve

analysis (DCA) based on “rmda” packages was used to assess the net

clinical benefit of the model. In addition, based on the “dplyr” and

“Hmisc” packages in the R software, integrated discrimination

improvement (IDI) analysis and net reclassification improvement

(NRI) analysis were conducted to explore the improvement in the

performance of the models compared to the individual influences.

Restricted cubic spline (RCS) analysis via “rms” packages was

utilized to explore the association of nomogram score and

dedifferentiation. These analyses were performed using R software

(version 4.4.1), with statistical significance set at P < 0.05.
3 Results

3.1 The influence of three biomarkers on
PFI

The influence of three tumor biomarkers including TDS, TMB,

and immune scores on PFI was analyzed in 391 PTC patients. All

patients were divided into high and low-score groups according to

the optimal cut-off value and median of TDS, TMB, and immune
Frontiers in Oncology 04
scores. For the TDS score, the high-differentiated group had a better

prognosis compared to the low-differentiated group (P<0.05)

(Figures 1A, B). Regarding TMB, groups with high mutation

burden showed worse prognosis compared to the low mutation

burden group (P<0.001) (Figures 1C, D). Immune score showed no

significant influence on prognosis (P>0.05) (Figures 1E, F). The

results of multivariable Cox regression analysis revealed that on

both continuous and dichotomous TDS, TMB, and immune scores

categorized by the optimal cut-off value, only TDS remained an

influencing factor of PFI after adjusted age, sex, and race (Table 1).

Due to the association between TDS and PFI, therefore the

differentiation status of PTC patients became the topic of our

next analysis.
3.2 Baseline characteristics of high/low-
risk dedifferentiation groups

Table 2 demonstrates the differences in baseline data between

the high/low-risk dedifferentiation groups. The median age of 391

PTC patients was 46.000 (34.000,58.000). The majority were non-

Hispanic (90.064%), with a lower proportion in the high-risk group

compared to the low-risk group (86.250% vs. 94.079%, P=0.021).

Among the continuous variables, disease duration, tumor length,

tumor width, number of examined lymph nodes, and number of

positive lymph nodes were higher in the high-risk group than the

low-risk group (all P<0.05). Among the categorical variables,

28.302% of patients in the high-risk group had a medical history

of thyroid gland disorder, lower than the low-risk group (44.643%)

(P=0.006). The percentage of patients with classic/usual PTC was

higher in the high-risk group than in the low-risk group (82.065%

vs 60.099%) (P<0.001). T3 stage, T4 stage, N1 stage, advanced stage,

follow-up after radiation treatment, and residual tumor were more

prevalent in the high-risk group than in the low-risk group

(all P<0.05).
3.3 The influencing factors of high-risk
dedifferentiation

Collinearity analysis of the 13 significantly different variables

revealed no collinearity (all VIF<10) (Supplementary Table S2). The

13 variables were included in the logistic regression analysis.

The results of univariable logistic regression showed that except

for the number of examined lymph nodes, the other 12 variables

were related to dedifferentiation (all P<0.05). Further multivariable

logistic analysis containing all variables showed that only disease

duration and PTC subtypes were influential factors for high-risk

dedifferentiated PTC. Follicular variant PTC was a protective factor

for high-risk dedifferentiation (OR=0.207, 95%CI: 0.035-0.872) and

tall cell PTC was a risk factor for it (OR=8.035, 95%CI: 1.389-72.04).

Longer disease duration increased the likelihood of dedifferentiation

(OR=1.192, 95%CI: 1.018-1.427) (all P<0.05) (Table 3). Further

analysis revealed that TCPTC had the lowest TDS, and TDS

decreased with increasing disease duration (Figures 2A, B).
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3.4 Nomogram model construction and
performance evaluation

Based on the multivariable logistic regression results, the

nomogram model was constructed based on disease duration and

PTC subtypes. Meanwhile, the calibration curve of the nomogram
Frontiers in Oncology 05
model was plotted, demonstrating good calibration (Figures 3A, B).

The performance of disease duration and PTC subtypes as well as

the nomogram model in predicting high-risk dedifferentiation was

further evaluated by ROC analysis (Table 4, Figure 3C). Results

indicated that PTC subtypes had the highest specificity (0.821),

while the nomogram model exhibited the highest AUC (0.740),
FIGURE 1

Kaplan-Meier survival curves for PFI across various biomarkers. Patients were grouped by (A) optimal cut-off value of TDS; (B) median TDS;
(C) optimal cut-off value of TMB; (D) median TMB; (E) optimal cut-off value of immune scores; (F) median immune scores. HR was derived from the
results of the univariable Cox regression analysis.
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sensitivity (0.957), Youden index (0.328), and accuracy (0.524). The

Delong test revealed that the AUC value of the nomogram model

was significantly higher than the AUC values for disease duration

alone and PTC subtypes alone (all P<0.001). DCA confirmed that

the nomogrammodel could provide a net clinical benefit, with a risk

interval of 0.40-0.76 (Figure 3D). IDI analysis showed that the

performance of the nomogram model was improved by 15.3%

compared to single disease duration (IDI=0.153, 95%CI: 0.118-

0.188, P<0.001) and 18.8% improvement compared to PTC

subtypes (IDI=0.188, 95%CI: 0.149-0.228, P<0.001). NRI analysis

suggested that nomogram model discriminative performance

improved by 25.8% and 5.7% compared to PTC subtypes

(NRI=0.258, 95%CI: 0.180-0.337) and disease duration

(NRI=0.057, 95%CI: -0.039-0.169), respectively. These results

indicated that the constructed nomogram model possessed good

discriminative capability.
3.5 Potential mechanism associated with
dedifferentiation

We next explored the potential mechanism associated with the

PTC dedifferentiation. RCS analysis initially indicated a linear positive

relationship between nomogram score and dedifferentiation risk (P for
TABLE 1 Results of multivariable Cox analysis of the influences of TDS,
TMB and immune scores on PFI in PTC patients.

Variables HR 95%CI P-value

COX model 1

Age 1.018 0.997-1.039 0.093

Gender 0.770 0.372-1.594 0.481

Race 0.644 0.190-2.183 0.480

TDS as continuous variable 0.691 0.506-0.945 0.021

TMB as continuous variable 1.285 0.875-1.888 0.201

Immune score as continuous variable 1.000 1.000-1.000 0.179

COX model 2

Age 1.012 0.989,1.035 0.314

Gender 0.763 0.370,1.573 0.463

Race 0.636 0.191,2.117 0.461

TDS as dichotomized variable 2.480 1.186,5.185 0.016

TMB as dichotomized variable 1.615 0.779,3.344 0.197

Immune score as dichotomized variable 0.533 0.264,1.076 0.079
HR, Hazard ratio; CI, Confidence interval; TDS, Thyroid differentiation score; TMB, Tumor
mutation burden.
TABLE 2 The baseline information of participants grouped by the risk of dedifferentiation.

Variables
Total

(n=391)
Low risk
(n=205)

High risk
(n=186)

P-value

Age, years 391(100.000) 46.000(34.000,58.000) 47.000(34.000,58.000) 0.904

Tumor depth, cm 319(81.586) 1.500(1.000,2.000) 1.600(1.000,2.500) 0.240

Tumor length, cm 369(94.373) 2.400(1.500,3.500) 2.800(1.800,4.000) 0.016

Tumor width, cm 334(85.422) 1.900(1.200,2.700) 2.200(1.500,3.000) 0.015

Number of examined lymph nodes 297(75.959) 4.000(2.000,10.000) 7.000(3.000,17.000) 0.014

Number of positive lymph nodes 294(75.192) 0.000(0.000,3.000) 2.000(0.000,6.000) <0.001

I-131 doses, mCi 184(47.059) 100.000(75.200,125.000) 101.000(94.600,150.000) 0.268

Disease duration, years 390(99.744) 1.000(1.000,3.000) 2.000(1.000,5.000) <0.001

Gender, n(%) 0.715

Male 100(25.575) 54(26.341) 46(24.731)

Female 291(74.425) 151(73.659) 140(75.269)

Race, n(%) 0.021

Non-Hispanic 281(90.064) 143(94.079) 138(86.250)

Hispanic 31(9.936) 9(5.921) 22(13.750)

PTC subtypes, n(%) <0.001

Classical/usual 273(70.543) 122(60.099) 151(82.065)

Follicular 85(21.964) 76(37.438) 9(4.891)

Tall cell 29(7.494) 5(2.463) 24(13.043)

Stage, n(%) 0.002

(Continued)
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TABLE 2 Continued

Variables
Total

(n=391)
Low risk
(n=205)

High risk
(n=186)

P-value

Early 268(68.895) 155(75.980) 113(61.081)

Advanced 121(31.105) 49(24.020) 72(38.919)

T stage, n(%) <0.001

T1 114(29.306) 73(35.784) 41(22.162)

T2 131(33.676) 78(38.235) 53(28.649)

T3 129(33.162) 52(25.490) 77(41.622)

T4 15(3.856) 1(0.490) 14(7.568)

N stage, n(%) <0.001

N0 186(47.570) 119(58.049) 67(36.022)

N1 205(52.430) 86(41.951) 119(63.978)

M stage, n(%) 0.358

M0 217(55.641) 109(53.431) 108(58.065)

M1 173(44.359) 95(46.569) 78(41.935)

PTC status after initial treatment, n(%) 0.083

Tumor free 233(91.016) 135(93.750) 98(87.500)

Persistent 23(8.984) 9(6.250) 14(12.500)

Follow-up after radiation treatment,
n(%) 0.010

No 136(39.306) 84(45.652) 52(32.099)

Yes 210(60.694) 100(54.348) 110(67.901)

Lymph node preoperative assessment diagnostic imaging type, n(%) 0.830

Ultrasound 225(78.947) 116(79.452) 109(78.417)

Other 60(21.053) 30(20.548) 30(21.583)

Medical history of thyroid gland disorder, n(%) 0.006

Normal 207(63.303) 93(55.357) 114(71.698)

Nodular hyperplasia 57(17.431) 38(22.619) 19(11.950)

Lymphocytic thyroiditis 63(19.266) 37(22.024) 26(16.352)

Primary neoplasm focus type, n(%) 0.569

Unifocal 206(53.927) 104(52.525) 102(55.435)

Multifocal 176(46.073) 94(47.475) 82(44.565)

Primary site, n(%) 0.106

Left lobe 140(36.269) 68(33.333) 72(39.560)

Right lobe 166(43.005) 98(48.039) 68(37.363)

Bilateral and isthmus 80(20.725) 38(18.627) 42(23.077)

Radiation, n(%) 0.057

No 55(35.714) 31(43.662) 24(28.916)

Yes 99(64.286) 40(56.338) 59(71.084)

Radiation response, n(%) 0.511

Complete 120(85.106) 55(87.302) 65(83.333)

(Continued)
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TABLE 2 Continued

Variables
Total

(n=391)
Low risk
(n=205)

High risk
(n=186)

P-value

Other 21(14.894) 8(12.698) 13(16.667)

Residual tumor, n(%) 0.023

Absent 306(88.696) 169(92.350) 137(84.568)

Present 39(11.304) 14(7.650) 25(15.432)
F
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PTC, Papillary thyroid carcinoma.
TABLE 3 Results of logistic regression analysis of factors associating with high-risk of dedifferentiation.

Variables
Univariable analysis Multivariable analysis

OR(95%CI) OR(95%CI)

Tumor length 1.168(1.025-1.332)** 0.752(0.356-1.531)

Tumor width 1.230(1.023-1.477)** 2.131(0.828-5.920)

Number of examined lymph nodes 1.011(0.996-1.027) 0.976(0.932-1.020)

Number of positive lymph nodes 1.048(1.003-1.096)** 1.071(0.940-1.242)

Disease duration, years 1.136(1.065-1.212)*** 1.192(1.018-1.427)**

Race

Non- Hispanic Reference Reference

Hispanic 2.533(1.127-5.694)** 2.398(0.614-11.466)

PTC subtypes

Classical/usual Reference Reference

Follicular 0.096(0.046-0.199)*** 0.207(0.035-0.872)**

Tall cell 3.878(1.437-10.464)** 8.035(1.389-72.04)**

T stage

T1 Reference Reference

T2 1.210(0.721-2.030) 0.592(0.162-2.027)

T3 2.636(1.568-4.433)*** 1.511(0.368-6.093)

T4 24.927(3.163-196.456)** 3.94(0.182-146.565)

N stage

N0 Reference Reference

N1 2.458(1.634-3.696)*** 2.199(0.749-6.585)

Stage

Early Reference Reference

Advanced 2.016(1.303-3.119)** 0.381(0.099-1.309)

Follow-up after radiation treatment

No Reference Reference

Yes 1.777(1.145-2.757)** 0.948(0.346-2.534)

Medical history of thyroid gland disorder

Normal Reference Reference

Nodular hyperplasia 0.408(0.221-0.754)** 1.556(0.394-6.212)

Lymphocytic thyroiditis 0.573(0.324-1.015) 0.819(0.283-2.355)

(Continued)
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overall<0.001, P for nonlinear=0.841), suggesting the involvement of

common biomarkers between them (Figure 4A). Therefore, we then

explored the DEGs between high and low-risk dedifferentiation groups,

as well as between high and low-nomogram score groups who were

divided by their optimal cut-off value. According to the criteria of |log2
FC)|>1 and adjusted P-value<0.05 (Figures 4B, C), there were 290

DEGs obtained in the different dedifferentiation groups

(Supplementary Table S3) and 32 DEGs obtained in the different

nomogram score groups (Supplementary Table S4), with 17

overlapping genes between the two groups (Supplementary Table S5;

Figure 4D). Among the 17 overlapping genes, we found 11 up-

regulated genes and 6 down-regulated genes. KEGG enrichment

analysis revealed three significant pathways: complement and

coagulation cascades, proteoglycans in cancer, and aldosterone-

regulated sodium reabsorption (all P<0.05) (Figure 5A). Among

these, the complement and the coagulation cascades pathway were

the main pathway, with CD55 identified as a key factor (Figure 5B).

We further analyzed the expression level of CD55 between

groups with different PTC subtypes, disease duration, and

dedifferentiation (Figures 6A–C). The results showed significant

upregulation of CD55 expression in the high-risk dedifferentiation

group. Tall cell PTC exhibited higher CD55 expression levels
Frontiers in Oncology 09
compared to follicular PTC. Additionally, CD55 expression levels

demonstrated an increasing trend with prolonged disease duration.
4 Discussion

Clinical treatment response and prognosis in PTC patients can

be evaluated using dedifferentiation, TMB, and immune scores. Our

research utilized high-throughput sequencing data from the TCGA

database to calculate TDS, TMB, and immune scores for PTC tumor

samples. The influences of the three tumor biomarkers on PFI in

PTC patients were further examined. Multivariable Cox analysis

revealed that only TDS was an influence factor of PFI, highlighting

the crucial role of cellular differentiation levels in patient prognosis.

Therefore, investigating the high-risk clinical features and

molecular mechanisms of high-risk dedifferentiated populations

could facilitate early detection, enabling appropriate therapeutic

interventions and potentially improving patient outcomes.

Multivariable logistic regression analysis of high-risk

dedifferentiation indicated that PTC subtypes and disease

duration were significant risk factors for dedifferentiation. The

nomogram model combining PTC subtypes and disease duration
TABLE 3 Continued

Variables
Univariable analysis Multivariable analysis

OR(95%CI) OR(95%CI)

Residual tumor

Absent Reference Reference

Present 2.203(1.103-4.400)** 2.158(0.403-14.145)
* : P<0.05,**; P<0.001,***.
OR, Odds ratio; CI, Confidence interval; PTC, Papillary thyroid carcinoma.
FIGURE 2

The levels of TDS in (A) different PTC subtypes and (B) disease duration.
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demonstrated good discriminative ability and can be clinically

beneficial. PTC exhibits various variant subtypes (34). The

American Thyroid Association classifies PTC subtypes such as tall

cell, diffuse sclerosing, and hobnail as intermediate risk based on

their aggressiveness, with TCPTC being the most common
Frontiers in Oncology 10
aggressive PTC subtype. These subtypes are less differentiated

than classic PTC (35–37). Our results also revealed that TCPTC

had the highest risk of dedifferentiation compared with classic/usual

PTC and follicular variant PTC. In KEGG pathway analysis, we

found that FN1 as a marker of epithelial-mesenchymal transition
FIGURE 3

The construction and evaluation of the nomogram model. (A) The nomogram model of high-risk dedifferentiation; (B) The calibration curve of the
nomogram model; (C) Comparison of ROC between the nomogram model and different variables; (D) The DCA of the nomogram model.
TABLE 4 The results of ROC analysis of factors associated with high-risk dedifferentiation.

Variables PTC subtypes Disease duration Nomogram Point

AUC 0.585(0.534-0.620) 0.618(0.572-0.667) 0.740(0.696-0.792)

Sensitivity 0.396(0.338-0.458) 0.538(0.239-0.606) 0.957(0.575-0.987)

Specificity 0.821(0.754-0.860) 0.663(0.617-0.927) 0.371(0.323-0.781)

Youden index 0.217(0.133-0.288) 0.201(0.149-0.286) 0.328(0.268-0.426)

Accuracy 0.476(0.410-0.535) 0.523(0.468-0.578) 0.524(0.480-0.574)

Best cutoff 2.000(2.000-2.000) 2.000(2.000-6.000) 37.338(14.361-64.719)

Delong test P<0.001 P<0.001 /
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(EMT) was involved in PTC dedifferentiation. EMT plays a key role

in PTC invasion and anaplastic transformation (38, 39). It has been

suggested that as the disease progresses, some PTCs may undergo

dedifferentiation, transforming into anaplastic thyroid cancer

(ATC) and poorly differentiated thyroid cancer, accompanied by

more aggressive pathological and clinical behaviors (8). A median

disease duration transforming PTC into ATC has been reported as 6

years (40). Furthermore, in terms of molecular classification, PTC

can be categorized into BRAF-like and RAS-like PTC (41). Different

oncogenic drivers may cause PTC to exhibit different degrees of

differentiation (or TDS) (42). TDS is a comprehensive indicator

related to the expression and function of genes involved in iodine
Frontiers in Oncology 11
metabolism (43). Low TDS may cause patients to develop

radioactive iodine resistance, leading to poor prognosis and high

mortality (44).

Further, our study identified 17 genes associated with PTC

dedifferentiation. Enrichment analysis of these DEGs revealed core

pathways and hub genes, potentially offering new insights into

dedifferentiation mechanisms. KEGG analysis demonstrated that

the PLAUR gene was involved in the proteoglycans in cancer.

Research has shown that the PLAUR gene plays a role in PTC

differentiation and HER2-positive breast cancer metastasis (45, 46).

Evidence suggests that the PLAUR gene activates the urokinase

fibrinogen activator receptor (uPAR). uPAR promotes the
FIGURE 4

The potential genes and pathways exploration associated with the dedifferentiation. Volcano plots show the differentially expressed genes (DEGs).
(A) The restricted cubic spline (RCS) analysis between nomogram point and dedifferentiation; (B) DGE1: DEGs between the high and low-risk
dedifferentiation samples; (C) DGE2: DEGs between the high and low nomogram point samples; (D) Venn diagram shows the overlapping DEGs in
DGE1 and DGE2.
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activation of fibrinogen, which breaks down the peri-tumor stroma

and basement membrane (e.g., fibronectin, proteoglycans), creating

conditions for tumor invasion and metastasis (47).

Our analysis revealed that the most important pathways in the

KEGG enrichment analysis were the complement and coagulation

cascades. The complement system is crucial for eliminating foreign

microorganisms and regulating both innate and adaptive immunity

(48). Research has demonstrated that the coagulation and complement

cascade pathway has multiple positive and negative effects on the

incidence, progression, and prognosis of tumors, as well as influencing

tumor microenvironment components (49–51). Activation of the

complement pathway leads to the formation of membrane attack

complexes that induce cellular activity under target cell lysis or

shedding. Inappropriate complement activation or altered expression

of complement regulatory proteins inhibits the elimination of tumor

cells by immune cells, which is associated with a variety of tumors (52,

53) Coagulation begins after complement activation, subsequently

triggering platelet activity (54). Activated platelets can influence

immune cell function, leading to inflammation (55). The previous

study has confirmed thrombocytosis accompanying inflammation-

related colorectal cancer and highlighted the crucial role of

interleukin-6 (IL-6) in this process (56). Research has shown that IL-
Frontiers in Oncology 12
6, activin-A, and granulocyte colony-stimulating factor (G-CSF) in the

tumor microenvironment promote the dedifferentiation of

hepatocellular carcinoma cells as well as thyroid cancer cells (57, 58).

In the present study, CD55 was identified as a key gene in the

coagulation and complement cascade pathway. Known as a

complement decay accelerator, CD55 is involved in tumor

dedifferentiation, proliferation, invasion, and migration and its

upregulation may be associated with tumor progression (59–61).

Previous studies have shown that the complement system is

activated in PTC and regulated through CD46, CD55, and CD59

(62). CD55 protects thyroid cancer cells from complement-mediated

attack and promotes carcinogenesis by allowing tumor cells to escape

from cytolysis (63). The results of our analysis suggested that CD55

expression in patients was up-regulated with increasing disease

duration (or in TCPTC), potentially activating complement and

coagulation cascade pathway, thus promoting cancer cell

dedifferentiation. Based on these results we propose the following

clinical recommendations: first, CD55 can be used as a potential

prognostic marker for identifying patients at high risk of

dedifferentiat ion, and it is recommended that CD55

immunohistochemical evaluation can be added to postoperative

pathology testing and follow-up monitoring should be intensified
FIGURE 5

Visualization of KEGG enrichment analysis of 17 overlapping DEGs differential pathways. (A) Bubble diagram; (B) Chord diagram.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1535966
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2025.1535966
(e.g., by shortening the interval between follow-ups or by increasing the

number of imaging studies) for patients at high risk. Second, more

aggressive treatment strategies should be considered for patients with

high CD55 expression, such as expanding the extent of surgery or

consideration of adjuvant therapies targeting CD55-related pathways

(e.g., complement signaling or EMT pathway). In addition, future

studies should further validate the predictive value ofCD55 and explore

its molecular mechanisms to develop possible targeted interventions,

such as immunotherapy combined with complement-modulating

therapies. Ultimately, the clinical application of CD55 needs to be

optimized through multicenter prospective studies to optimize

detection criteria and integrate other molecular markers to improve

the accuracy of risk stratification.

The innovation of this study is to combine clinical and genetic

data to achieve individualized prognostic assessment of PTC

patients, providing a more accurate tool for clinical practice and

facilitating personalized treatment and management of PTC

patients. Nevertheless, there are some limitations of this study: (1)

No external validation was performed; (2) There were no clear
Frontiers in Oncology 13
boundaries for TDS subgroups. In this study, TDS was grouped by

the optimal cut-off value, while some studies were grouped by

median or 0 (43, 64). Therefore, future research should investigate

optimal TDS grouping thresholds; (3) Data were only obtained

from the TGCA database, which limited the extrapolation of results

due to the influences of region and ethnicity.
5 Conclusion

In terms of clinical features, our findings revealed that disease

duration and PTC subtypes were risk factors for high-risk

dedifferentiation. At the molecular level, we identified 17 DEGs

linked to high-risk dedifferentiation, potentially playing crucial

roles in regulating PTC dedifferentiation. The complement

coagulation cascade pathway may play a dominant role in PTC

dedifferentiation, and the CD55 could be the critical gene for PTC

dedifferentiation, but further studies are needed to validate the

results of these findings.
FIGURE 6

The expression levels of CD55 in different variables. (A) PTC subtypes; (B) Dedifferentiation; (C) Disease duration.
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