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Transcriptome sequencing
revealed that lymph node
metastasis of papillary thyroid
microcarcinoma is associated
with high THBS4 expression
and PDGFRA+ cancer-
associated fibroblasts
LeYin Hu1, Yi Lin2, JingYu Zheng1, Li Wan1, Rui Zhao3,
Yi Ma2 and JianMin Li1*

1Department of Pathology, Wenzhou Medical University First Affiliated Hospital, Wenzhou,
Zhejiang, China, 2Department of Pathology, Sanmen People’s Hospital, Taizhou, Zhejiang, China,
3Department of Gastroenterology, Wenzhou Medical University First Affiliated Hospital, Wenzhou,
Zhejiang, China
Background: Cervical lymph node metastasis is a major factor influencing

recurrence after surgery for papillary thyroid cancer. Molecular markers that

can predict the presence of lymph node metastasis and assess the

aggressiveness of papillary thyroid microcarcinoma (PTMC) remain poorly

understood. The research question addressed whether specific genes, such as

thrombospondin-4 (THBS4), could serve as predictive biomarkers for guiding

surgical strategies, particularly in cases where current imaging modalities fail to

detect LNM in the central region, and the decision for prophylactic central neck

dissection remains controversial.

Methods: Transcriptome sequencing was employed to screen for differentially

expressed genes and perform enrichment analysis. The study defined two groups

of PTMC patients: LNM(n=50) and NLNM(n=50). 10 samples from each group

were used for transcriptome sequencing. The expression of THBS4 was

evaluated in both groups. Additionally, the correlation between THBS4

expression and cancer-associated fibroblasts (CAFs), specifically the PDGFRA+

inflammatory CAFs, was investigated to understand the stromal regulatory

protein’s role in PTMC aggressiveness.

Results: The analysis of sequencing data revealed that THBS4 expression was

significantly higher in LNM PTMC compared to the NLNM group (Fold Change >

1.6 and P < 0.05). LNM PTMCs were also associated with a higher presence of

PDGFRA+ inflammatory CAFs (P < 0.05), while no significant difference in the

quantity of SMA+ myofibroblastic CAFs was observed between the two groups

(P>0.05). Immunohistochemical analysis demonstrated increased THBS4(P <

0.01) and PDGFRA(P < 0.001) expression in LNM groups, while SMA staining

showed no significant intergroup differences(P>0.05).
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Conclusion: This study’s findings indicate that THBS4 could be a potential

biomarker for predicting the risk of lymph node metastasis in papillary thyroid

microcarcinoma, thus potentially guiding more personalized surgical

interventions. Further validation in larger patient cohorts and the interactions

between THBS4 and CAFs are necessary.
KEYWORDS

papillary thyroidmicrocarcinoma, tumor immunemicroenvironment, thrombospondin-
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1 Introduction

Thyroid cancer (TC) is the most prevalent endocrine

malignancy and has seen a striking rise in global incidence rates

(1). Within TC, differentiated thyroid cancer (DTC) constitutes the

majority of cases, with papillary thyroid cancer (PTC) being the

most frequent subtype (2). Papillary thyroid carcinoma is prone to

cervical lymph node metastasis, and extensive cervical lymph node

metastasis also occur in papillary thyroid microcarcinoma (PTMC,

traditionally defined as PTCs ≤ 1.0 cm in size), especially in some

high-risk histologic subtypes (3). Rationally standardized cervical

lymph node dissection is the primary treatment modality for these

patients. However, Current imaging techniques, such as ultrasound,

lack the sensitivity to reliably detect LNM, particularly in zone VI or

in small lymph nodes (4, 5). This limitation hinders clinicians’

ability to effectively identify metastatic lymph nodes. The need for

prophylactic lymph node dissection, especially central neck

dissection (CND), in these patients in whom no lymph node

metastasis is detected at preoperative examination is still

controversial in various guidelines (6–9). The benefits of

preventive CND remain unclear. Therefore, effective identification

of cervical lymph node metastasis is an urgent issue to be explored.

Nonetheless, a subset of PTMCs presents with adverse pathologic

features and aggressive clinical behaviors, including lymph node

metastasis, distant metastasis, and structural recurrence following

surgery (10–13). In severe instances, these tumors can be fatal, with

progression to high-grade carcinoma often observed in metastatic

lymph nodes (14, 15).

To address these diagnostic challenges, molecular diagnostic

techniques are increasingly used to complement radiographic

examinations. Although BRAFV600E is the most common

mutation in papillary thyroid cancer, its role as a reliable risk

factor for lymph node metastasis is yet to be determined (16, 17).

Hence, there is a pressing need to identify new molecular markers

that can predict the likelihood of lymph node metastasis.

Advances in high-throughput sequencing technology have

facilitated the discovery of molecular markers for PTMCs. Despite

recent advances (18–21), the genomic differences between PTMC

with and without lymph node metastasis remain underexplored. In

this study, we employed transcriptome sequencing to investigate the
02
genomic characteristics of PTMC, identifying genomic features that

diverge from previous reports. After performing further screening

we found that thrombospondin-4 (THBS4) and its corresponding

proteins were associated with whether PTMC developed lymph

node metastasis or not. AS an extracellular matrix protein, THBS4

is usually considered to play a key role in tissue growth and

remodeling under physiological conditions (22–24). In the

context of tumor biology, THBS4 may contribute to tumor

growth, proliferation, and migration, thereby promoting

aggressive tumor behavior (25–27). Notably, THBS4 expression in

some tumors is not directly secreted by tumor cells but rather by

cancer-associated fibroblasts (CAF) (27–29). For this reason, we

further explored the correlation between THBS4 and CAF in

PTMC. Our results suggest THBS4 may serve as a molecular

marker for predicting lymph node metastasis in PTMC.
2 Materials and methods

2.1 Biospecimen collection, pathological
assessment, and public data processing

This retrospective study was approved by local ethical

committees (The First Hospital of Wenzhou Medical University),

and written informed consents were obtained from all patients.

FFPE tissue samples (stored within six months) and corresponding

haematoxylin-eosin stained slides from 100 PTMC patients were

obtained from the Department of Pathology, First Affiliated

Hospital, Wenzhou Medical University, and 20 of these were used

for RNA sequencing. We performed simple random sampling using

R (v4.0.3) with the command set.seed(); selected_LNM<-sample

(1:50, size=10, replace=FALSE), selected_NLNM<- sample(51:100,

size=10, replace=FALSE).Two pathologists independently

performed histopathological review of the tumor sections. TNM

stage of the disease was defined by pathologists according to the 8th

AJCC/UICC staging system. All enrolled patients with thyroid

carcinoma met the following inclusion criteria (1): Primary

tumor;(2) Maximum tumor diameter ≤1 cm;(3) Histologically

confirmed papillary thyroid carcinoma;(4) At least central neck

dissection performed during surgery;(5) Surgical excision of
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suspicious regional lymph nodes identified during preoperative

evaluation;(6) Absence of distant metastasis (M0). RNA-

sequencing counts, and clinical data of 48 PTC and normal

thyroid tissue were acquired from The Cancer Genome Atlas

Program (https://portal.gdc.cancer.gov/projects/TCGA-THCA).

Use ComBat and ComBat_seq from the SVA package to correct

for batch effects.
2.2 Nucleic acid extraction and library
construction

Total RNA from FFPE samples was extracted using miRNeasy

FFPE kit (QIAGEN). Ribosomal RNA was depleted using KAPA

Stranded RNA-seq Kit with RiboErase (HMR) (KAPA Biosystems).

Library preparations were performed with KAPA Stranded RNA-

seq Library Preparation Kit (Roche). Library concentration was

determined by KAPA Library Quantification Kit (KAPA

Biosystems), and library quality was accessed by Agilent High

Sensitivity DNA kit on Bioanalyzer 2100 (Agilent Technologies),

which was then sequenced on Illumina Novaseq6000 NGS

platforms (Illumina).
2.3 Gene expression analysis and sequent
analysis

Base calling was performed on bcl2fastq v2.16.0.10 (Illumina,

Inc.) to generate sequence reads in FASTQ format (Illumina 1.8+

encoding). Quality control (QC) was performed with Trimmomatic

(version 0.33) (30). STAR (version 2.5.3a) (31) is used for

transcriptome mapping followed by isoform and gene level

quantification performed by RSEM (version 1.3.0) (32).

Differential expression analysis was conducted by R packages

DESeq2 (version 1.16.1) (33) and edgeR (version 3.18.1) (34).

Differentially expressed genes of cohort were selected by Fold

Change > 1.6 and P value < 0.05. Data from one of the samples

was removed as an outlier. Differentially expressed genes of TCGA

dataset were selected by Fold Change > 2 and P value < 0.05.

Corresponding volcano plots and heatmaps were generated by in-

house R scripts. GO and KEGG enrichment analysis were

performed by ClusterProfiler (version 3.6.4) (35). Gene set

enrichment analyses (GSEA) were performed using the GSEA

software. The NMF package was used to perform an NMF

clustering. K-M survival curves coupled with Logrank test were

performed using the R packages “survival” (v.3.4–0) and

“survminer” (v.0.4.9). The relative abundance of immune cell

populations was then calculated using the R package

“immunedeconv” (v.2.0.4) (36), which allows the community to

perform integrated deconvolution using seven approaches

including xCell (37) (Detailed data are provided in the

Supplementary Material). Receiver operating characteristics

(ROC) analysis was performed using the R package pROC

(version 1.17.0.1) to obtain AUC.
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2.4 Survival analysis

We downloaded the harmonized and standardized pan-cancer

dataset from the UCSC (https://xenabrowser.net/) database and the

previously published TCGA prognostic study in Cell (38).

Prognostic dataset from UCSC (https://xenabrowser.net/

datapages/), and TARGET follow-up data from UCSC (https://

xenabrowser.net/datapages/) As a supplement, samples with

expression level of 0 were filtered and samples with follow-up

shorter than 30 days were excluded, and a log2(x+0.001)

transformation was performed for each expression value to

exclude cancers with less than 10 samples in a single cancer type.

We calculated the optimal cut-off value of ENSG00000113296

(THBS4) using the R package maxstat, and set the minimum

number of group samples to be greater than 25% and the

maximum number of group samples to be less than 75% to

finally obtain the optimal cut-off value, based on which the

patients were divided into high and low groups, and further

analyzed the prognostic difference between the two groups using

the survfit function of the R package survival, and the significance of

the prognostic difference between the samples of different groups

was assessed using the logrank test method. The prognostic

differences between the two groups were further analyzed using

the survfit function of the R package survival, and the significance of

the prognostic differences between the samples of different groups

was assessed using the logrank test method.
2.5 Immunohistochemistry staining and
quantification

Immunohistochemistry was performed. Briefly, sections were

dewaxed and rehydrated. Antigen retrieval was performed by

pretreating the slides in citrate buffer (pH 6.0; Thrombospondin 4)

in a pressure cooker for 1 minute or EDTA (pH 8.0; PDGFRA and

SMA) boiling for 20 minutes at 95°C. The slides were incubated with

PBS containing 3% hydrogen peroxide for 10 min and subsequently

incubate in the primary antibody (dilution ratios 1:150,

Thrombospondin 4 antibody, catalog number orb1289935, biorbyt;

dilution ratios 1:50, PDGFRA antibody, catalog number ZA-0377,

ZSGB-BIO; dilution ratios 1:200, SMA antibody, catalog number

ZM-0003, ZSGB-BIO) at 40°C for 1 hour. The slides were then

probed with horseradish peroxidase conjugated secondary antibody

for 20 mins at 40°C, followed by reaction with diaminobenzidine and

counterstaining with Mayer’s hematoxylin. Immunohistochemistry

sections were digitally scanned using a whole slide image scanner. FIJI

software was utilized for the quantitative assessment of average

density within the region of interest.
2.6 Statistical analysis

All analyses were performed using R software v4.0.3 (https://

cran.r-project.org/). T test was used to compare the distributions of

continuous variable. Then chi-square test was performed to compare
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the composition differences of categorical variable. Correlation was

obtained with Spearman correlation test. Unless otherwise noted, a p-

value < 0.05 was considered statistically significant.
3 Result

3.1 Research process and clinicopathologic
features

The process of this study is shown in Figure 1. We defined

PTMC as two groups; those with pathologically confirmed at least

one regional lymph node metastasis, which we termed the LNM

group, and those without, termed the NLNM group. There were no

significant differences in baseline characteristics between the two

groups (Table 1).
3.2 Differential gene expression analysis
between LNM and NLNM PTMC

Transcriptome sequencing revealed 61 differentially expressed

genes (DEGs) between the two groups. 55 of these were long non-

coding RNAs and 6 were messenger RNAs (Figure 2A,

Supplementary Table S2). Subsequently, Gene Set Enrichment
Frontiers in Oncology 04
Analysis (GSEA) was conducted on all expressed genes, revealing

significant enrichment in 13 pathways. Notably, these pathways

encompass focal adhesion, the PI3K-Akt signaling pathway,

proteoglycans in cancer, and regulation of the actin cytoskeleton

(Figure 2B). ROC analysis showed good differentiation of the two

tumor groups by expression level of GP6 and THBS4 (Figure 3). To

further screen for genes of interest, we obtained RNA sequencing data

and clinical information from the TCGA-THCA dataset for PTC,

selecting 48 cases each of tumor samples and normal thyroid samples.

Using the normal thyroid tissue transcriptome from TCGA as a

control, we identified DEGs between tumor and normal tissues

separately. Our cohort data revealed 7348 DEGs and TCGA 4458

DEGs. Among the 3105 overlapping genes, 1746 were simultaneously

upregulated and 1078 were simultaneously downregulated in both

cohorts (Figures 2C, D). These DEGs were then subjected to Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis (Figures 4A, B), which highlighted significant effects

on extracellular matrix organization and ligand-receptor interactions,

including extracellular matrix (ECM)-receptor interaction. Non-

negative Matrix Factorization (NMF) clustering grouped the 20

samples into three clusters, with clusters 1 exhibiting a higher

proportion of LNM tumors (Figure 2D). Next, we performed an

enrichment analysis of cluster 1 and showed that pathways such as

PI3K-Akt signaling pathway and ECM-receptor interaction were up-

regulated (Figure 4C). We analyzed the impact of THBS4 on the
FIGURE 1

The flowchart of this study. PTC, papillary thyroid carcinoma; LNM. lymph node metastasis; NLNM, non-lymph node metastasis; THBS4,
thrombospondin-4; CAF, cancer-associated fibroblasts; iCAF inflammatory CAF.
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prognosis of patients with THCA and several other tumors using the

TCGA database. Kaplan-Meier survival analyses showed that the

higher THBS4 expression group typically had worse overall survival

(Figure 5). These results suggest that tumor impact on the

mesenchyme may significantly influence the probability of

biological behavior of tumors including lymph node metastasis. We

therefore selected THBS4, a gene involved in PI3K-Akt signaling

pathway and associated with mesenchymal components, for further

exploration. Additionally, we compared the abundance of immune

cells in the microenvironment of both groups using seven common

algorithms. In our cohort, the two groups did not differ significantly

in the composition of the immune microenvironment, with only

differences observed in the abundance of NK cells (Figure 6).
3.3 THBS4 is highly expressed in LNM
PTMC

THBS4, one of the genes we identified, is involved in the focal

adhesion and PI3K-Akt signaling pathways and is highly expressed

in the LNM group. According to recent studies, the origin of THBS4

varies in different tumors, either from tumor cells or mesenchymal
Frontiers in Oncology 05
stromal cells, suggesting heterogeneity of THBS4 expression among

tumors (29, 39). Immunohistochemical analysis of THBS4

expression in LNM and NLNM PTMC tissues revealed more

positive staining in the tumor cytoplasm of the former, while

fibroblasts in the tumor mesenchyme were barely stained

(Figures 7A, B).
3.4 Increased abundance of PDGFRA+CAFs
in LNM PTMC

In some studies, THBS4 regulates tumor biological behavior by

affecting CAF (27), whereas a similar process has not been

intensively investigated in papillary thyroid carcinoma. CAF is

usually the most abundant mesenchymal cell component and may

play a number of important biological functions in papillary thyroid

carcinoma. Through single-cell sequencing, several studies have

identified more functional subsets of CAF in various tumors (40–

42). As with papillary thyroid carcinoma, CAFs have been broadly

categorized into myofibroblastic CAFs (myoCAFs) and

inflammatory subset (iCAFs) (43, 44). So, we next assessed the

abundance of both CAFs in our cohort.

We assessed the abundance of both CAF subsets in our cohort,

using marker gene expression averages derived from single-cell

sequencing, as in previous studies (45) (Supplementary Table S1).

We found that myoCAF scores did not differ between the two

groups, whereas iCAF scores were higher in the LNM tumors,

suggesting an increased presence of iCAFs in these cases

(Figure 8A). Considering that there is no exclusive marker for

either subset, after referring to previous studies (44), we used SMA

and PDGFRA to label myoCAF and iCAF, respectively, and

immunohistochemical staining showed an abundant presence of

myoCAFs in both groups, while iCAFs were relatively scarce and

primarily located at the infiltrating leading edge of the tumor in

LNM PTMC (Figure 8B). Also, A significant positive correlation

was observed between THBS4 expression and iCAF scores

(Supplementary Figure S1. R=0.738, p<0.001, Spearman

rank correlation).
4 Discussion

In our study, we investigated the genomic disparities between

PTMC with and without LNM, yielding new insights through

transcriptome sequencing. Though the six mRNAs (TRABD2B,

GP6, THBS4, ESM1, HOXC6, EMX2) lack direct experimental

evidence of interaction in our study, emerging literature suggests

their potential convergence in metastatic progression. THBS4 and

ESM1may cooperatively modulate TGF-b bioavailability—a known

EMT inducer—and endothelial activation (23, 46). EMX2 has been

implicated in epithelial plasticity regulation via epigenetically

silenced (47, 48). As a platelet-specific collagen receptor, GP6 is

known to mediate platelet adhesion and activation, which may

indirectly influence tumor progression through platelet-tumor

microenvironment crosstalk (49). Intriguingly, HOXC6 might
TABLE 1 Patients’ clinicopathologic features.

Variable
NLNM
(n=50)

LNM
(n=50)

P-
value

Age(n) 0.288

≥55 years 19 14

<55 years 31 36

Gender(n) 0.317

Male 27 22

Female 23 28

Maximum diameter of
nodule (mm)

0.640 ± 0.176 0.680 ± 0.173
0.256

T stage(n) 1.000

T1a 50 50

Minimal
Extrathyroid Extension

0.110

No 47 42

Yes 3 8

BRAF mutation(n) 0.487*

Yes 44 47

No 6 3

Subtype(n) 0.827

Classic 27 26

Infiltrative follicular 18 17

Tall cell 5 7
Statistical analysis was performed using chi-square test or Fisher’s exact test* for categorical
variable and t test for continuous variable
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participate in stromal reprogramming (50) and stem cell identity

maintenance (51). While this hypothetical framework requires

experimental validation, the genes’ collective enrichment in

“extracellular matrix organization” and “ECM-receptor

interaction” implies a plausible biological synergy warranting

further investigation.

From the DEGs identified in our discovery cohort, THBS4

emerged as the prime candidate for three synergistic reasons (1): Its

expression exhibited superior diagnostic accuracy in distinguishing

LNM from NLNM tumors (AUC=0.9), outperforming other

candidates; (2) Functional triangulation through GSEA, TCGA

cohort validation, and NMF clustering convergently implicated

PI3K-Akt signaling and ECM remodeling – pathways directly

modulated by THBS4; (3) Pan-cancer survival analysis revealed

that THBS4 overexpression universally predicted poor prognosis,

suggesting its conserved role in metastatic progression. We

therefore propose THBS4 as a promising marker gene for

predicting lymph node metastasis and for guiding surgical

strategies, yet the precise mechanisms by which it influences

PTMC behavior remain unclear. We hypothesized that THBS4

may alter the composition of CAF subsets in the PTMC

mesenchyme, and our findings support the notion of increased

iCAF presence in LNM group. These discoveries enhance our

comprehension of PTMC.

Previous studies have provided some characterization of PTMC

transcriptome features. Fan Yang et al. identified nine core genes that
Frontiers in Oncology 06
may be used to predict the development of PTMC (18). A group of

genes, including collagen type I alpha 1 (COL1A1), fibronectin 1

(FN1), laminin subunit gamma 2 (LAMC2), periostin (POSTN),

transforming growth factor beta induced (TGFBI), are involved in

extracellular mesenchymal organization and affect tumor behavior,

akin to our findings. However, the impact of these genes on lymph

node metastasis was not investigated. Other studies compared the

transcriptome characteristics of patients with or without lateral

lymph node metastasis. Consistent with our study, the differences

in genetic characteristics between the two groups were relatively

modest (19). Dilmi Perera et al. identified several DEGs, but they do

not share a common molecular pathway or a single gene expression

profile, making it difficult to explain the underlying physiological

processes that the occurrence of LNM (20). The role of epithelial-

mesenchymal transition and cancer stem cell-like properties in

extensive lymph node spread of PTMC has been noted, as have the

associations of lncRNA and circRNA with LNM (52–54). Overall,

these studies have primarily focused on tumor parenchymal cells in

search of markers predicting adverse behavior. A recent large sample

study categorized PTMC into PTMC-proliferation (PTMC-Pro) and

PTMC-inflammatory (PTMC-Inf) types based on their respective

marker genes (55). PTMC- Inf was related with activated immune cell

signaling and interferon-g response and had a lower 5-year PFS rate

than PTMC-pro. In contrast to our study, there were more differences

in immune cell abundance between PTMC-Pro and PTMC-Inf. This

suggests that in addition to clinical features, PTMC are heterogeneous
FIGURE 2

(A) Heatmap of differentially expressed genes encoding messenger RNAs. (B) The Gene Set Enrichment Analysis (GSEA) of all DEGs. (C) DEGs in the
two cohorts and (D) NMF clustering of differentially expressed genes.
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in immune microenvironment, potentially leading to early-stage

extensive lymph node metastasis. Our study, therefore, centered on

tumor-microenvironment interactions, particularly the roles of

THBS4 and CAFs.

Thrombospondin-4 (THBS-4) is a member of the

thrombospondin protein family, which consists of five highly

homologous members. In human tissues, THBS4 is abundantly

expressed in cardiovascular, skeletal muscle, tendon and nerve

tissues, with roles in cardiovascular and skeletal muscle being the

most extensively studied. In the healthy heart, THBS4 prevents

interstitial ECM deposition and cardiac hypertrophy (56, 57). And

in skeletal muscle, THBS4 is important for proper motor unit

assembly and function, and both muscle and tendon require THBS4

for attachment (58). In vitro, experiments have confirmed that THBS4

inhibits collagen synthesis in human fibroblasts and endothelial cells.

All of these functions may be related to the regulation of ECM by

THBS4, and THBS4 deficiency results in cardiac interstitial ECM

deposition and skeletal muscle ECM deficiency.
Frontiers in Oncology 07
Recently, high expression of THBS4 was found in several

tumors. Interestingly, in most tumors, THBS4 promoted tumor

progression. Similar to our findings in PTMC, in hepatocellular

carcinoma, bladder cancer and prostate cancer, high expression of

THBS4 in tumor cells promoted tumor growth, proliferation and

invasion (25, 26, 59). In contrast, in colon cancer, the THBS4 gene is

methylated and silenced, while increased expression of THBS4 in

colon cancer colonies significantly inhibits tumor growth (60). The

role of THBS4 on tumors is not only complex, but also varies in its

origin in tumors. A typical example is gastric adenocarcinoma

where, in contrast to PTMC, THBS4 is derived from tumor-

associated fibroblasts in diffuse gastric adenocarcinoma, whereas

THBS4 expression is not detectable in tumor cells (28, 29, 61).

Another study in gallbladder cancer found that THBS4 is secreted

by a variety of cells, but its main source is also CAF (27); in addition

to CAF, the abundance of tumor-associated macrophages can also

be regulated by THBS4 and play a role in tumor invasiveness (62).

The specific regulatory mechanism of THBS4 in both normal and
FIGURE 3

Receiver operating characteristic (ROC) curves and the associated areas under curves (AUCs) of six gene for the PTMC cohort. (A) GP6,glycoprotein
VI platelet; (B) THBS4,thrombospondin 4; (C) TRABD2B,TraB domain containing 2B; (D) EMX2,empty spiracles homeobox 2 (E) ESM1,endothelial cell
specific molecule 1; (F) HOXC6,homeobox C6;
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tumor tissues is not well understood, among which transforming

growth factor b (TGF-b) signaling has been shown to be closely

related, and it has been reported that SMAD3 is involved in the

regulation of THBS4 by TGF-b (23).
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The tumor microenvironment (TME) is a concept that has

emerged in recent years and is defined as the surrounding

microenvironment in which tumor cells exist, including

peripheral blood vessels, immune cells, fibroblasts, myeloid-
FIGURE 5

(A–F) Kaplan-Meier survival analysis showing overall survival for TCGA-THCA, TCGA-GBMLGG, TCGA-LGG, TCGA-BLCA, TCGA-COAD and TCGA-
ALL-R.
FIGURE 4

(A) Gene Ontology (GO) and (B) KEGG analysis of DEGs in two cohorts. (C) Gene Ontology analysis of DEGs in cluster 1.
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derived inflammatory cells, a variety of signaling molecules, and

extracellular matrix (ECM). In current studies, CAF is typically one

of the most abundant components of the TME (63). Some studies

have shown that CAF is associated with LNM, upregulation of

immune checkpoints, enrichment of immune cells, and tumor-

associated macrophage polarization in PTCs (64). However, the

heterogeneity of CAF in TME was not well recognized in PTMC

until the widespread use of single-cell sequencing technology.

Previous studies of PTC have used only SMA-labeled CAF,

leaving the impact of CAF subsets on tumors poorly understood

(65). A recent multi-sample single-cell sequencing study revealed

distinct subsets of CAF in PTC (44). One subset is associated with

cell motility, contraction, and extracellular matrix, and the other

subset is associated with an abundance of immunomodulatory

molecules and chemokines. iCAF is often hypothesized to carry

out intercellular communication to influence the biological
Frontiers in Oncology 09
behavior of tumors, which may consequently undergo adverse

pathologic features (66–68). Another single-cell sequencing of a

single sample yielded similar results (43). In other tumors, CAF

isoforms exert immunomodulatory functions through the

expression of various cytokines, a typical molecule being

interleukin-6 (69, 70). However, the situation in PTC is

somewhat different. Weilin Pu et al. hypothesized through

bioinformatics analysis that myoCAF tends to exert mechanical

and chemical influences on tumor progression, whereas iCAF exerts

immunomodulatory functions by recruiting and crosstalking

various immune cells through chemokines such as CCL5,

CCL3L3 and other chemotactic factors in the TME (44).

To our knowledge, no biological validation of the CAF subset in

PTMC has been performed. Here, we compared data from samples

from our center with previous studies, similar to iCAF with less

cellular abundance than myoCAF, only iCAF differed between
A
LNMNLNM B

400x

100x

FIGURE 7

(A) Representative image of the immunohistochemistry of THBS4. (B) Average optical density (AOD) of immunohistochemical staining image. **P < 0.01 by
Wilcoxon rank-sum test.
FIGURE 6

Differences in infiltrating immune cells between LNM and NLNM groups.
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LNM and NLNM PTMC, and the expression level of THBS4 was

positively correlated with the iCAF score. Based on previous studies

and our results, we speculate that tumor cells and CAF in PTMC

may be involved in bidirectional regulation through THBS4 and

TGF-b signaling pathways, which needs to be further confirmed in

in vitro and in vivo experiments. In addition, in the available bulk

RNA sequencing study, CAF did not show an effect on the

biological behavior of PTC, probably because iCAF accounted for

a small proportion of the total CAF (55).

Our study demonstrates the potential clinical utility of using

THBS4 and PDGFRA as biomarkers to predict PTMC lymph node

metastasis. Regrettably, there are several limitations to this study.

First, this is a single-center study, and the generalizability of its

results needs to be validated by a larger cohort. Second, we did not

analyze the prognosis of patients in this cohort because of the short

follow-up time. Thirdly, although no significant differences were

observed in baseline patient characteristics, certain selection biases

existed in the histological subtype selection of our cohort. This

limitation was primarily attributable to the exclusion of rare

histological subtypes from our study population, and secondly, to

the inherent propensity of certain subtypes to exhibit higher rates of

lymph node metastasis (3). Furthermore, in the AJCC 8th edition,

extrathyroid extension that is only visible microscopically does not
Frontiers in Oncology 10
increase the T stage because it does not affect the patient’s prognosis

(71). However, tumor invasion of the vasculature or nerves in the

soft tissue can sometimes be seen. Although it is unclear whether

this leads to enhanced metastatic potential, this pathological

categorization may nevertheless introduce potential confounding

factors. In addition, we did not distinguish the pattern of lymph

node metastases in detail, which may have introduced confounding

bias. Whether different metastatic patterns represent different

underlying mechanisms remains to be investigated in larger

samples and cohorts. Finally, we did not investigate the causal

relationship between THBS4 expression and iCAF abundance in

tumors. We were unable to provide evidence of a direct association

between THBS4 and iCAF. Further mechanistic studies are essential

to elucidate the exact interaction between THBS4 and iCAF and to

identify potential therapeutic targets.

In conclusion, our study integrated transcriptome sequencing

and TCGA RNA sequencing data and identified THBS4 as a

potential biomarker for predicting lymph node metastasis in

papillary thyroid microcarcinoma (PTMC). Our findings

suggest that THBS4 expression levels may influence the

composition of CAF subsets in the tumor microenvironment.

Despite these promising results, our study has limitations,

including its single-center design and the need for further
A
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FIGURE 8

(A) Marker gene scores for CAF subsets in the LNM and NLNM groups. p=0.0433 or p=0.0753 by Wilcoxon rank-sum test. (B) Representative image
of immunohistochemistry of PDGFRA and SMA, and corresponding average optical density (AOD). The dotted line shows the fibrous band between
the tumor and normal tissue *P < 0.05 or ***P < 0.001 by Wilcoxon rank-sum test. ns, no significance.
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studies on the interaction between THBS4 and iCAFs. Future

studies should validate these findings in larger cohorts and

explore the predictive value of THBS4 and PDGFRA as

biomarkers of PTMC lymph node metastasis.
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