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Optimizing breast cancer
ultrasound diagnosis:
a comparative study of
AI model performance
and image resolution
Yunqing Yin1†, Junkui Fang1†, Wei Zhang2* and Xinying Shen2*

1The Second Clinical Medical College, Jinan University, Shenzhen, China, 2Department of
Interventional Radiology, Shenzhen People’s Hospital, Shenzhen, China
Objectives: To determine the optimal combination of artificial intelligence (AI)

models and ultrasound (US) image resolutions for breast cancer diagnosis and

evaluate whether this combination surpasses the diagnostic accuracy of

senior radiologists.

Materials and methods: We systematically compared lightweight (MobileNet,

Xception) and dense neural networks (ResNet50, DenseNet121) using three

image resolutions (224 × 224, 320 × 320, 448 × 448 pixels). A retrospective

cohort of 4,998 patients was divided into training/validation (8:2 ratio, n = 3,578)

and independent testing sets (n = 1,410). Diagnostic performance was assessed

via AUC, sensitivity, specificity, and analysis speed, with direct comparisons

against senior radiologists.

Results: MobileNet with 224 × 224 input achieved the highest AUC (0.924, 95%

CI: 0.910–0.938) and accuracy (87.3%) outperforming senior US (AUC: 0.820,

accuracy: 79.1%) and mammography doctors (AUC: 0.819, accuracy: 83.6%) (p <

0.05). After excluding BI-RADS 4c and 5 nodules, the diagnostic efficacy of

MobileNet_224 is better than that of senior doctors (p < 0.05), can reduce 60.1%

false positives of US, and 46.6% of mammography. MobileNet_224 and

MobileNet_320 had the fastest analysis speed.

Conclusion:MobileNet_224 represents a novel, efficient AI framework for breast

cancer diagnosis demonstrating superior accuracy and speed compared to both

complex AI models and experienced clinicians. This work highlights the critical

role of optimizing model architecture and resolution to enhance diagnostic

workflows and reduce unnecessary biopsies.
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Introduction

Breast cancer (BC) has emerged as the most prevalent

malignancy worldwide and is a leading cause of death among

women (1, 2). Surpassing lung cancer, it now accounts for over

2.3 million new cases annually representing 30% of all female

cancers and 11.7% of all cancers. This malignancy increasingly

affects a younger demographic posing a serious threat to women’s

health (3).

Currently, clinical diagnosis of BC incorporates various

methods, including palpation, digital mammography (DM),

magnetic resonance imaging (MRI), and ultrasound (US).

Mammography, while widely used, often suffers from high rates

of false positives and negatives, particularly in women with dense

breast tissue, leading to missed diagnoses (4, 5). MRI is

recommended for high-risk BC patients, but its high cost, false-

positive rate, and time intensity limit its use to a supplementary role

in mammography. US, an important tool for BC screening, is not

constrained by mammary gland tissue types and has been shown to

increase BC detection rates by 17% while reducing unnecessary

biopsies (6, 7). However, US is limited by its reliance on the acoustic

impedance difference in tumor tissues making it challenging to

differentiate diagnoses, especially in cases of non-mass BC (8). The

operator-dependent nature of US also means that diagnostic

outcomes can vary significantly based on the experience of the

practitioner (9).

The Breast Imaging Reporting and Data System (BI-RADS) has

significantly improved the standardization and accuracy of breast

tumor diagnosis (10). However, BI-RADS classification relies on

visual recognition, which can miss subtle image features. Thus,

there is an urgent need for an objective method that minimizes

operator dependence and accurately reflects tumor characteristics

for BC screening and diagnosis (11).

Advances in AI-driven breast cancer classification have

demonstrated significant potential in reducing diagnostic

variability and improving clinical workflows. Recent studies, such

as those employing convolutional neural network for ultrasound-

based classification (12–14), underscore the feasibility of AI in

standardizing diagnoses. Furthermore, ensemble machine learning

techniques (15, 16) demonstrate improved accuracy through model

aggregation. However, these works often lack systematic

comparisons across model architectures limiting insights into

optimal computational frameworks. While capsule networks (17)

show promise in capturing spatial hierarchies within tumor

morphology, their computational inefficiency hinders real-time

clinical deployment compared to lightweight CNNs. Lightweight

architectures, like MobileNet variants (18, 19) have emerged as

efficient alternatives in cancer classification, yet prior investigations

rarely explore resolution-specific trade-offs or benchmark against

both complex models [e.g., ShuffleNet (20), EfficientNet (21)] and

human expertise. Concurrently, multi-resolution approaches for

medical image segmentation (22, 23) highlight the importance of

scale optimization, though their focus remains isolated from end-

to-end diagnostic pipelines.
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Our study addresses these gaps by systematically comparing

lightweight and dense neural networks across resolutions to identify

the optimal AI–image combination for breast cancer detection,

while directly benchmarking diagnostic efficiency against senior

radiologists—thereby advancing clinical standards through

technically validated innovation.
Materials and methods

Study population

This retrospective study was conducted following approval

from the institutional review board of Shenzhen People’s

Hospital, with a waiver for informed consent due to its

retrospective nature. The Na-exclusion criteria for this study were

as follows:

Inclusion criteria: (1) Breast tumors were detected by US,

which were classified as 0, 3, 4a, 4b, 4c, or 5 according to BI-

RADS. (2) At least 3.0-mm breast tissue can be displayed around

the nodule. (3) No intervention or operation was performed on the

nodule to be evaluated before ultrasonic examination. (4) Patients

underwent surgery or biopsy within 1 week of ultrasonic data

collection and obtained pathological results.

Exclusion criteria: (1) BIRADS 1 and 2; (2) Have a history of

breast surgery or intervention; (3) Poor image quality; (4) The

clinical data of cases are incomplete, and the pathological results are

not tracked.

In this study, following the inclusion and exclusion criteria, a

cohort of 4,998 patients with breast tumors was established. These

patients were then randomly divided into the following three

groups: a training set, a test set, and an independent validation

set. The training and validation sets were allocated in an 8:2 ratio,

with the training set comprising 2,778 patients (774 with malignant

tumors) and the validation set including 800 patients (217 with

malignant tumors). The independent test set consisted of 1,410

patients of whom 579 had malignant tumors (Table 1). All patients

underwent biopsy or surgical procedures for pathological

diagnosis (Figure 1).
Human examination

The US and mammography diagnosis were made by two senior

doctors, with more than 10 years of experience in mammography

diagnosis, who made the classification diagnosis of benign and

malignant tumors under the condition of independent double blind,

and gave the BI-RADS classification of tumors. In case of

inconsistency, the third chief physician shall be invited for

arbitration (Supplementary Material). In a comparison of diagnostic

performance, BI-RADS classifications 3 and 4A are defined as benign

lesions, and 4B, 4C, and 5 are defined as malignant lesions. Diagnostic

results from ultrasound doctors and mammography doctors are based

on the doctor’s experience.
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AI model construction

Model selection was guided by (1) computational efficiency for

clinical deployment, (2) prior evidence in medical imaging, and (3)

architectural diversity to benchmark lightweight against dense networks.

MobileNet and Xception were prioritized for their parameter efficiency
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and validated performance in resource-constrained tasks. DenseNet121

and ResNet50 served as benchmarks for hierarchical feature extraction.

These models employ architectural innovations like depthwise

separable convolutions to minimize computational burden while

retaining diagnostic accuracy. Conversely, dense models, like

DenseNet121 and ResNet50—known for their complex hierarchical
FIGURE 1

Flow chart and results of this study. The optimal model: MobileNet_224, senior ultrasound doctors, senior mammography doctors. MobileNet_224,
MobileNet with 224 × 224-pixel image input; US_BI-RADS, senior ultrasound doctors’ diagnostic results; DM_BI-RADS, senior mammography
doctors’ diagnostic results.
TABLE 1 Patient information in this study.

Characteristics
Training set Validation set Testing set

Benign Malignant Benign Malignant Benign Malignant

Patients 2,004 774 583 217 831 579

Tumor size (mm) 22.88 ± 9.88 23.17 ± 9.89 22.44 ± 10.07

Age (year)

<40 372 106 131 30 154 68

40–49 619 157 203 50 315 135

50–59 602 182 171 52 279 100

60–69 557 150 179 48 338 143

≥70 628 179 116 37 324 133
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structures (e.g., residual blocks in ResNet50, dense connectivity in

DenseNet121)—were included to evaluate their ability to capture

nuanced tumor features in ultrasound images. By comparing these

fundamentally distinct architectures, we aimed to identify the optimal

balance between computational efficiency and diagnostic precision for

breast cancer detection. By comparing these models, we aimed to assess

which architecture is more effective for the task of diagnosing BC from

US images.

We employed the following three different image resolutions: 224 ×

224, 320 × 320, and 448 × 448 pixels (illustrated in Figure 2). This

variation in resolution was intended to examine the impact of image

quality on the diagnostic accuracy of the AI models. Higher-resolution

images typically provide more detailed information but also require

more computational resources to process. Conversely, lower-resolution

images are faster to process but may lack some detailed information.

Understanding the trade-off between resolution and diagnostic accuracy

is crucial for the practical application of AI in medical imaging,

particularly in settings where computational resources are limited.
Training protocol

Models were implemented in TensorFlow 2.5.0, trained on an

NVIDIA RTX 3090 GPU, and evaluated on an edge-computing device

(Jetson AGX Xavier) to simulate clinical deployment. Images were

standardized to 224 × 224, 320 ×3 20, or 448 × 448 pixels. Training

employed AdamW optimization (lr = 1e−4) with cosine annealing, and

cross-entropy loss weighted for class imbalance (SupplementaryMaterial).

To ensure the integrity and non-overlapping nature of our data,

we carefully allocated images from the same patient exclusively to

one dataset—either the training set or the validation set. This

approach was critical to prevent data leakage and ensure that the

models were tested on completely unseen data, thereby providing a

reliable assessment of their generalizability.

The independent testing set was crucial for evaluating the real-world

applicability of the AI models. It consisted of the following three main

components: 1) Comparative Evaluation: We assessed the diagnostic

effectiveness between different AI models to identify the optimal model

and image resolution combination. 2) Comparison with Senior Doctors:

The optimal AI model’s diagnostic efficacy was compared with that of

experienced senior US and mammography doctors. This comparison

aimed to benchmark the AI models against the current gold standard in

clinical practice. 3) Exclusion of Certain Tumor Types: We specifically

excluded BI-RADS 4c and 5 tumors to focus on challenging cases where

AI models could potentially offer the most significant benefit. This step

was crucial to understand the potential of AI in improving diagnostic

specificity and reducing false positives.
Statistical analysis

Continuous variable data are expressed as mean ± standard

deviation. Categorical variable data are expressed as a percentage.

The paired-sample t-test was used to compare the differences within

the group. R 3.6.3 was used for the statistical analysis. Diagnostic
Frontiers in Oncology 04
performance was evaluated using receiver operating characteristic

(ROC) curves generated in R 3.6.3 (pROC package). The area under

the curve (AUC), reflecting overall discriminative ability, was calculated

via the non-parametric DeLongmethod, with 95% confidence intervals

(95% CI) derived from 2,000 stratified bootstrap replicates to account

for variability. Sensitivity, specificity, and accuracy were computed

from confusion matrices. Statistical significance of AUC differences

between models and radiologists was assessed via DeLong’s test

(p < 0.05).
Code availability

The updated code repository and Jupyter notebook was hosted

on GitHub—https://github.com/wukaiyeah/ultrasound_breast_

malignant_classification.git.
Results

Diagnostic performance of AI models vs.
radiologists

MobileNet_224 demonstrated superior diagnostic accuracy

compared to both other AI models and senior radiologists. In the

independent testing set, MobileNet_224 achieved an AUC of 0.924

(95% CI: 0.910–0.938) significantly outperforming senior ultrasound

radiologists (AUC: 0.820, p < 0.001) and mammography specialists

(AUC: 0.819, p < 0.001). Its accuracy (87.3%) surpassed radiologists’

performance by 8.2% (ultrasound) and 3.7% (mammography). Dense

networks, such as DenseNet121_448, showed lower efficacy (AUC:

0.890; accuracy: 82.8%) highlighting the advantage of lightweight

architectures (Tables 2, 3, Figures 2, 3).

The interpretability analysis (Figure 4) demonstratesMobileNet_224’s

alignment with radiological diagnostic criteria. For benign lesions (A),

SHAP values identified smoothmargins and homogeneous echotexture as

primary contributors to classification, while Grad-CAM heatmaps (C)

confirmed focused attention on lesion boundaries. In malignant cases (B),

SHAP attributed high malignancy probability to spiculated margins and

heterogeneous internal echoes corroborated by Grad-CAM’s emphasis on

irregular tumor peripheries (D).
Impact of image resolution on model
performance

Lower-resolution inputs (224 × 224 pixels) consistently

outperformed higher resolutions (320 × 320, 448 × 448) across all

models. MobileNet_224 achieved the highest AUC (0.924) at 224 × 224,

while its performance declined at 448 × 448 (AUC: 0.909). Similarly,

Xception_224 (AUC: 0.918) surpassed Xception_448 (AUC: 0.909),

despite the latter utilizing more detailed imaging data. This suggests

that lower resolutions prioritize clinically decisive features over

extraneous textures optimizing both accuracy and computational

efficiency (Table 2).
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Reduction of false positives and clinical
implications

MobileNet_224 significantly reduced false-positive diagnoses

compared to radiologists: False positives decreased from 286 to

114 cases (60.1% reduction) for ultrasound, and false positives
Frontiers in Oncology 05
dropped from 204 to 109 cases (46.6% reduction) for

mammography. Notably, after excluding BI-RADS 4c/5 cases

(high malignancy likelihood), the model maintained superior

specificity (88.8% vs. radiologists ’ 65.6%, p < 0.001)

demonstrating its ability to resolve diagnostically challenging

lesions (Figures 5, 6).
FIGURE 2

Comparison of diagnostic efficacy between LW-CNNs in the testing set. AUC, area under the curve; 95% CI: 95% confidence interval. (a) Xception_224:
Xception with 224 × 224-pixel image input, (b)MobileNet_224, (c) Xception_320, (d)MobileNet_320, (e) Xception_448, (f)MobileNet_448.
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TABLE 3 Results of MobileNet_224 and ultrasound/mammography in testing set.

Modality AUC (95% CI) Cut-off Sensitivity (%) Specificity (%) Accuracy (%) p-Value

Model
0.924
(0.910–0.938)

0.555 85.1 88.8 87.3 NA

Ultrasound
0.820
(0.803–0.837)

NA 98.4 65.6 79.1 0.000

Mammography
0.819
(0.799–0.838)

NA 79.7 85.1 83.6 0.000

Model
0.886
(0.854–0.917)

0.467 78.9 86.3 85.2

0.000

US_BI-RADS
0.820
(0.803–0.837)

NA 98.4 65.6 79.1

Model
0.915
(0.892–0.937)

0.467 84.1 86.7 86.2

0.000

DM_BI-RADS
0.745
(0.714–0.777)

NA 73.9 75.2 74.9
F
rontiers in Oncology
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AUC, area under the curve; AUC, area under the curve; 95% CI, 95% confidence interval; MobileNet_224, MobileNet with 224 × 224-pixel image input; US_BI-RADS, senior ultrasound doctors'
diagnostic results; DM_BI-RADS, senior mammography doctors' diagnostic results; p, p-value of MobileNet_ 224 compared with other models; NA, not applicable.
TABLE 2 Comparison of the efficacy of AI model in the independent testing set.

Modality AUC (95% CI) Cut-off Sensitivity (%) Specificity (%) Accuracy (%) p-Value

Xception_224
0.918
(0.903–0.932)

0.483 84.6 85.4 85.1 0.230

Xception_320
0.903
(0.887–0.919)

0.290 83.6 82.8 83.1 0.003

Xception_448
0.909
(0.893–0.925)

0.518 82.2 86.5 84.8 0.013

MobileNet_224
0.924
(0.910–0.938)

0.555 85.1 88.8 87.3 NA

MobileNet_320
0.891
(0.874–0.909)

0.209 84.1 80.4 81.9 0.000

MobileNet_448
0.909
(0.894–0.924)

0.670 83.2 83.0 83.1 0.033

ResNet50_224
0.801
(0.778–0.825)

0.214 74.8 71.5 72.8 0.000

ResNet50_320
0.867
(0.848–0.886)

0.466 80.1 78.1 78.9 0.000

ResNet50_448
0.862
(0.843–0.881)

0.319 80.8 76.5 78.3 0.000

DenseNet121_224
0.862
(0.843–0.881)

0.406 80.3 84.0 82.5 0.000

DenseNet121_320
0.870
(0.851–0.890)

0.462 77.9 83.5 81.2 0.000

DenseNet121_448
0.890
(0.872–0.907)

0.460 81.9 83.4 82.8 0.000
AUC, area under the curve, 95% CI, 95% confidence interval; MobileNet_224, MobileNet with 224 × 224-pixel image input, others the same; p, p-value of MobileNet_ 224 compared with other
models; NA, not applicable.
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FIGURE 3

Comparison of diagnostic efficacy between DNNs in the testing set. AUC, area under the curve; 95% CI, 95% confidence interval. (a) ResNet50_224:
ResNet50 with 224 × 224-pixel image input, (b) DenseNet121_224, (c) ResNet50_320, (d) DenseNet121_320, (e) ResNet50_448,
(f) DenseNet121_448.
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FIGURE 4

Interpretability analysis of MobileNet_224 predictions for benign and malignant breast lesions. (A) Benign lesion: prediction probability (0.999 for
benign, 0.001 for malignant) with SHAP values highlighting key image regions contributing to the benign classification. (B) Malignant lesion:
prediction probability (0.999 for malignant, 0.001 for benign) with SHAP values emphasizing tumor margin irregularity and microcalcifications.
(C, D) Grad-CAM heatmaps for the benign (C) and malignant (D) lesions illustrating the model’s focus on clinically relevant anatomical features
(e.g., smooth margins in benign vs. spiculated regions in malignant).
Frontiers in Oncology frontiersin.org08
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Computational efficiency

MobileNet_224 exhibited the fastest inference speed (0.02 s per

image), 3.8× faster than DenseNet121_448 (0.076 s) and 500× faster

than manual radiologist review (~10 s per case). This efficiency did

not compromise accuracy reinforcing its suitability for real-time

clinical workflows (Table 4).
Discussion

AI has demonstrated remarkable versatility across diverse

domains, from anemia detection using palm and conjunctiva

images (24–26) to macroeconomic forecasting via time-series

models (27). In healthcare, lightweight convolutional neural

networks (CNNs) are increasingly applied to resource-constrained

tasks, such as MobileNet for diabetic retinopathy screening (28) and

Xception for COVID-19 detection (29). Our study extends this

paradigm to breast cancer ultrasound diagnosis, where optimizing

existing architectures—rather than developing novel models—

proves critical for clinical translation.

This study selects four models: Xception, MobileNet,

DensNet121, and ResNet50, and 224 × 224-, 320 × 320-, and

448 × 448-pixel image input to explore the accuracy of breast

tumors with US images. The results show that MobileNet_224 is

superior to the other 11 models and the combination of input

images, with an AUC of 0.924 and an accuracy of 87.3%, which are

superior to those of senior US and mammography doctors (AUC:

0.820 and 0.819; accuracy: 79.1% and 83.6%).

The application of AI in medical images mainly uses convolutional

neural network (CNN) to extract useful information from images.

CNN has the following two characteristics: (1) can effectively reduce

the dimension of images and (2) can effectively preserve features of

images. There are many models derived from this, which are mainly

divided into the following two categories: (1) dense neural network

(DNN) such as ResNet, DenseNet, and EfficientNet (30, 31); (2)
Frontiers in Oncology 09
lightweight revolutionary neural networks (LW-CNNs) (32) such as

MobileNet, Xception, and ShuffleNet. Large-scale network has a large

amount of computation, but the processing speed is slow. LW-CNNs

has designed a more efficient network computing method, which not

only reduces the number of network layers and parameters but also

preserves the performance. It can be used for fast reasoning of

embedded and mobile systems. It has a CNN structure with high

computational efficiency, adopts point-to-point grouping convolution

and channel shuffling, which greatly reduce the amount of

computation while maintaining accuracy, and maximize operation

speed and accuracy (33, 34). In this study, the diagnostic efficiency of

the two LW-CNNs is generally higher than that of the DNNs.

MobileNet (35) was based on a streamlined architecture, and a

lightweight deep neural network is constructed using longitudinally

separable convolution. Its core idea is that the deep separable

convolution replaces the standard convolution and reduces the

number of parameters (36, 37). In this study, MobileNet_224

shows the best diagnostic efficiency in different models and images.

Generally, image dimensionality reduction will not affect the

final result, such as a picture of 1,000 × 1,000 pixels was reduced to

200 × 200 pixels, which has no obvious impact on the computer

recognition results. Among MobileNet with different image

resolutions, MobileNet_224 is superior to MobileNet_320 (AUC:

0.891) and MobileNet_448 (AUC: 0.909). The results suggest that

MobileNet can still extract the information needed for diagnosis

after the image dimension is reduced, which is consistent with the

original intention of model design and other studies (38, 39).

A high-resolution image contains more information and larger

pixel matrix, but it takes up more memory. In the convolution

operation, the large size consumes more computing time than the

small size. This study found that the resolution has an impact on the

time consumption of the model, and the time consumption of high-

resolution model analysis increases, which is consistent with other

studies (40). On the contrary, small images consume less

computational resources, but may lose some information and may

produce misleading results. Therefore, deep learning needs to
FIGURE 5

Comparison of diagnostic efficacy between the optimal model and senior doctors in the testing set. MobileNet_224, MobileNet with 224 × 224-pixel
image input; AUC, area under the curve; 95% CI, 95% confidence interval. (A) The optimal model: MobileNet_224, (B) senior ultrasound doctors, (C) senior
mammography doctors.
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compromise the contradiction between computational efficiency and

recognition accuracy (41). The DNNs, such as DenseNet, ResNet50,

and EfficientNetB0, have dense connections between layers and are

more memory and time consuming (42). This study shows that
Frontiers in Oncology 10
DenseNet121_224 takes the longest time in analyzing a single

picture, which is 0.07 s, while MobileNet _224 takes less than 0.02 s.

According to BI-RADS classification, Class 0 is a lesion that cannot

be determined qualitatively, which has not been diagnosed but has been
FIGURE 6

Comparison of diagnostic efficacy between the optimal model and senior doctors after excluding BIRADS 4c and 5 nodules. MobileNet_224,
MobileNet with 224 × 224-pixel image input; AUC, area under the curve; 95% CI, 95% confidence interval. (A) MobileNet_224, (B) senior ultrasound
doctors, (C) MobileNet_224, (D) senior mammography doctors.
TABLE 4 The average time of analyzing a single ultrasound image with different AI models (s).

Modality 224* 320* 448* Mean ± SD p-Value

MobileNet 0.019 0.020 0.021 0.020 ± 0.001 0.0004

Xception 0.031 0.034 0.035 0.033 ± 0.002 0.001

DenseNet121 0.075 0.076 0.077 0.076 ± 0.001 0.0001

ResNet50 0.034 0.036 0.037 0.036 ± 0.001 0.0006
Asterisks (*) indicate the image resolution used for model input.
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suspected by doctors, and the possibility of malignancy of BI-RADS 3,

4a, and 4b tumors is less than 2%, 2%–10%, and 10%–50%,

respectively. According to BI-RADS 3, follow-up is recommended,

and biopsy is recommended for 4a and 4b. If benign tumors can be

further screened by AI method, unnecessary puncture and injury can

be reduced. A study (43) reported that using the trained AI model to

identify benign and malignant breast tumors was higher than the

diagnostic level of doctors, the AUC of which were 0.87 (95% CI: 0.79–

0.95) and 0.51 (95% CI: 0.50–0.53), respectively. In this study, the AUC

of MobileNet_224 [0.886 (95% CI: 0.854–0.917)] is higher than that of

senior US doctors [0.820 (95% CI: 0.803–0.837]]. Compared with

senior mammography, the AUC of MobileNet_224 [0.915 (95% CI:

0.892–0.937)] is higher than that of senior mammography doctors

[0.745 (95% CI: 0.714–0.777)]. To further clarify the diagnostic

efficiency of AI technology, this study selected breast tumors that are

difficult to diagnose using US and mammography for analysis and

found that when the cut-off value of MobileNet_224 is 0.467, the

diagnostic accuracy is higher than that of senior doctors in US and

mammography. The model significantly reduced false positives in both

ultrasound (60.1% reduction) and mammography (46.6% reduction),

while improving specificity and overall accuracy (AUC increase: 6.6%

for ultrasound; accuracy increase: 6.1%). The application of

MobileNet_224 demonstrated significant improvements in diagnostic

performance. Specifically, the number of false positives in ultrasound

(US) imaging was reduced from 286 to 114 cases representing a 60.1%

reduction. For mammography, the model increased the AUC and

accuracy by 17% and 11.3%, respectively. Furthermore, the model

reduced false positives in mammography from 204 to 109 cases, a

decrease of 46.6%. These results highlight MobileNet_224’s capability

to diagnose early-stage breast cancer (BC), minimize false positives,

and reduce unnecessary biopsies. Contrary to the assumption that

higher image resolution universally improves diagnostic accuracy, our

findings reveal that MobileNet_224 achieves superior performance at a

224 × 224 resolution. This challenges the prevailing trend inmedical AI

toward computationally intensive high-resolution frameworks.

The use of AUC, sensitivity, and specificity is widely accepted in

oncology AI studies, while analysis speed addresses practical

deployment needs. By excluding BI-RADS 4c/5 cases (high

malignancy likelihood), we specifically tested the model’s ability

to resolve ambiguous diagnoses—a key clinical challenge.

Our study has several limitations. First, this study is a single-

center and retrospective study. In the future, a multi-center

prospective AI study should be carried out to confirm the

reliability of the screening model of this study. Second, this

study does not distinguish the types of US instruments and

equipment, but only analyzes the static US images. The

accuracy and reliability of AI technology for video data analysis

need to be studied further. Last, our study focused on evaluating

existing lightweight models for clinical deployment capability

rather than proposing novel architectures, which limits direct

comparisons with cutting-edge frameworks but prioritizes real-

world practicality. Future research could expand comparisons to

hybrid models, such as CNN-Transformer frameworks, to

evaluate their potential for multi-scale feature extraction in

breast cancer diagnosis.
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Conclusion

This study systematically evaluates the diagnostic performance of

lightweight AI models (MobileNet, Xception) versus dense networks

(ResNet50, DenseNet121) across ultrasound image resolutions (224 ×

224, 320 × 320, 448 × 448) for breast cancer detection. Using a

retrospective cohort of 4,998 patients, we demonstrate that

MobileNet_224, despite its computational simplicity, achieves superior

clinical utility as follows: 1) Speed–Accuracy Balance: MobileNet_224

processes images in 0.02 s—300× faster than manual review—while

maintaining 87.3% accuracy addressing critical workflow bottlenecks. 2)

False-Positive Reduction: The model reduces unnecessary biopsies by

60.1% in ultrasound and 46.6% in mammography directly impacting

patient outcomes and healthcare costs. 3) Resolution Optimization

Framework: Lower resolutions (224 × 224) suffice for accurate

diagnosis challenging the need for resource-intensive high-resolution

pipelines. These findings advocate for redefining clinical AI benchmarks

toward deployment capability rather than theoretical performance

offering a pragmatic framework for healthcare translation.
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