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Introduction: Hepatocellular carcinoma (HCC) is recognized as the prime and

lethal form of liver cancer caused by the hepatitis B virus (HBV) and hepatitis C

virus (HCV) globally. Lactate is an end product of glycolysis that influences

epigenetic expression through histone lactylation. While MKI67 and RACGAP1

play crucial roles in HBV- and HCV-related HCC. However, the role of

lactylation-related genes (LRGs) effects in this context remains unclear. This

study innovatively explored the role of LRGs in HBV/HCV-associated HCC,

identifying novel biomarkers for diagnosis and prognosis.

Methods: The present study used various online databases for analysis, and the

findings were validated via immunohistochemical (IHC) analysis of HCC patient

samples (n=60).

Results: We identified six signature LRGs (ALB, G6PD, HMGA1, MKI67, RACGAP1,

and RFC4) possess prognostic potential, correlation with immune infiltration,

and lactylation-related pathways, providing novel insights into tumor

microenvironment (TME) of HCC. Moreover, MKI67 and RACGAP1 were

significantly associated with HBV- and HCV-related HCC. IHC confirmed these

findings, with high expression of MKI67 and RACGAP1 was significantly linked

with HBV/HCV-associated HCC compared to non-viral HCC. The expression is

also significantly associated with key clinical variables.

Conclusion: Our results suggest that MKI67 and RACGAP1 could serve as

promising biomarkers for detecting and predicting HCC caused by HBV/HCV

via lactylation, opening a new direction for immune-targeted therapies.
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Introduction

Hepatocellular carcinoma (HCC) is the most common lethal

form of liver cancer worldwide, accounting for 80% of liver cancers,

and is the third leading cause of cancer-related deaths (1, 2). HCC

typically affects individuals aged 30–50 years and is associated with

various risk factors, such as hepatitis B or hepatitis C, alcohol abuse,

smoking, obesity, and type 2 diabetes (1, 3). Notably, 80% of liver

cancers are linked to viral infections (4). Despite multiple treatment

options for HCC, such as surgery, transplantation, radiation, and

chemotherapy, the 5-year survival rate is less than 20% (5).

Therefore, it is crucial to find new biomarkers to support in

diagnosis, improve survival, and monitor the reoccurrence of liver

cancer. Investigating genes for HBV/HCV-related HCC via

lactylation could enhance our understanding of the virus’s

contribution to HCC development and potential therapeutic targets.

While the ability of HBV and HCV to affect liver cancer is well

documented (6), the precise mechanisms by which these viruses

contribute to HCC progression remain unclear. HBV infection

leads to numerous health problems and fatalities associated with

liver diseases such as HCC, cirrhosis, and liver decompensation (7).

Recent estimates revealed that one in three liver cancer deaths are

linked to HBV (8, 9). Chronic HBV infection is a prominent cause

of death from liver cirrhosis and HCC, with approximately 0.82

million deaths annually (10). Despite widespread HBV vaccination,

approximately 296 million cases were reported in 2019, and 1.5

million new infections are reported each year (11).

Numerous studies have shown that HCV infects approximately

17 million people annually, with approximately 71 million

infections to date (12). If HCV is left untreated, it can lead to

chronic viral infection, and approximately 20% of these patients

develop liver cirrhosis. Once cirrhosis develops, 1–4% of patients

progress to develop liver cancer each year (13). Additionally, 33% of

people with HCV who do not have cirrhosis will also develop liver

cancer within 30 years (14).

It is commonly believed that eradicating a viral infection can

prevent the progression of virus-related cancer. Direct antiviral

agents (DAAs) eliminate HCV, but liver cancer can still develop in

individuals with advanced liver diseases. Recent research revealed

an increase in liver cancer rates even after successful HCV

eradication with DAAs (15). These findings reveal that removing

the virus and infection treatment are insufficient to halt liver cancer

development. To effectively understand and prevent cancer caused

by viruses, it is crucial to study how viruses affect cellular processes,

including cell growth, movement, and genetic changes (16).
Abbreviations: HCC, Hepatocellular carcinoma; HCV, Hepatitis C virus; GEO,

Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; TCGA-LIHC, The

Cancer Genome Atlas Liver Hepatocellular Carcinoma; DEGs, Differentially

Expressed Genes; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene

Ontology; DGIdb, Drug-Gene Interaction Database; DAAs, Direct antiviral agents;

FDA, Food and Drug Administration; RFS, Recurrence-Free Survival; GDSC,

Genomic of Drug Sensitivity in Cancer; OS, Overall Survival; DFS, Disease-Free

Survival; PFS, Progression-Free Survival; TME, Tumor Microenvironment.
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Identifying signature genes for HBV/HCV could provide a means

for the early diagnosis and management of HCC.

Employing gene signatures at the mRNA level enhances the

prognosis of individuals with HCC. Previous studies have

demonstrated that gene signatures can predict liver cancer

development (17, 18). Lactylation, a new approach to protein

modification discovered in 2019, involves the addition of lactate

molecules to lysine residues (19). The Warburg effect is characterized

by increased anaerobic glycolysis and the production of lactic acid

(20, 21). For example, researchers have reported that in liver cancer,

the less efficient sugar-processing enzyme HK4 is replaced by the

more efficient HK2, leading to increased glucose uptake by cancer

cells (22). A 2023 study revealed that KIF2C (Kinesin Family Member

2C) is linked to MKI67, RACGAP1, RFC4, and STMN1 at the

transcriptome level, suggesting that these genes might play a role in

lactylation-related processes in HCC (23). This research also revealed

that LRGs could be used to diagnose and treat HCC (23). Although

researchers have identified the importance of specific genes in HCC

(17, 24, 25), further studies are needed to explore the significance of

LRGs, especially in HBV/HCV-induced HCC.

The impact of MKI67 and RACGAP1 on HCC linked to

hepatitis B and C is a vital subject for research. MKI67 is a

recognized marker used to detect cellular proliferation (26, 27). It

has been associated with genetic changes near the TTN and CCDC8

genes in HBV-related liver cancer (28). These changes could be

useful for predicting patient outcomes. The overexpression of

MKI67 is linked to worse overall survival (OS) and increased

reoccurrence rates in patients with HBV-related liver cancer (28).

Recent studies have also revealed a connection between MKI67 and

HCV-related liver cancer. Certain microRNAs in naive T cells are

connected to MKI67 expression, suggesting that MKI67 may play a

part in liver cancer related to both HBV and HCV (29).

RACGAP1 plays a pivotal role in cell division and cell cycle

regulation. Recent studies have demonstrated that RACGAP1 is a

valuable marker for predicting outcomes and understanding the

immune response in various cancers, including liver cancer (30).

The overexpression of RACGAP1 has been linked with poor

prognosis and enhanced metastasis in multiple cancers, including

HCC (31). For example, a 2015 study reported increasing the

aggressiveness of tumors and facilitating lymph node metastasis

in patients with colorectal cancer (32). Similarly, a study focusing

on HCC revealed that RACGAP1 interacts with HIF-1alpha,

influencing hepatocarcinogenesis (33). These findings emphasize

the multidirectional role of RACGAP1 in cancer development and

highlight its role as a therapeutic target.

Furthermore, recent studies have also underscored the role of

lactylation, a novel epigenetic modification, in cancer progression.

LRGs influence cancer biology, including immune infiltration and

prognosis, in various cancer types (21, 34). For example, a multiomic

study identified RACGAP1 as one of the hub LRGs associated with

poor prognosis and immune infiltration (21). Similarly, metabolic

reprogramming is frequently observed involving alteration of fatty

acid synthesis, glucose metabolism, and overall metabolic process in

HCC (21). These studies suggest that lactylation could play a crucial

role in modulating cancer progression.
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This study identified a set of LRGs for HCC by using “The

Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-

LIHC)”, three “Gene Expression Omnibus (GEO)” datasets, and a

previously published LRG list. We employed various bioinformatic

tools to identify virus-related genes, which were validated via IHC

analysis of human liver tissue samples. Furthermore, we

investigated the relationships among the TME, immune

infiltration, gene expression, and clinical variables. This study

aimed to identify potential signature genes for HCC caused by

HBV/HCV for screening and management. Our results indicate

that MKI67 and RACGAP1 are significantly associated with

immune infiltration and prognosis in HCC, suggesting their role

as biomarkers for early diagnosis and targeted treatments.
Materials and methods

Data collection and identification of DEGs
related to HCC

The mRNA transcriptome profiles and corresponding clinical

information of 377 patients were downloaded from the TCGA

database (https://protal.gdc.cancer.gov/) (34, 35). A scale method-

based normalization approach was performed with the gene

expression profiles via the R package “limma” (v3.60.4). This

method was chosen because of its wide use in medical research,

its robustness in handling RNA-seq data, and its ability to ensure

that the normalized data are suitable for downstream analysis. The

expression profiles of genes related to HCC were obtained from the

GEO (36). Three GEO datasets, GSE14520 (37), GSE114564 (38),

and GSE25097 (39) were selected to identify DEGs via GEO2R

between HCC and nontumor samples (40). The cutoff for DEGs was

set as |log2FC| > 1 and adjusted p-value < 0.05. These thresholds

were chosen to ensure that the identified DEGs comprised a

significant and biologically relevant change in expression levels.

To identify similar genes across all four datasets, the

“VennDiagram” R package was used. This package was selected

to facilitate the identification of genes that are common in different

datasets (41).
Expression, PPI, and functional enrichment
analysis of DEGs

Volcano plots were created to visualize the relationships among

the common DEGs via the “ggplo2” R package (42), with

significance thresholds of p values <0.05 and |log2FC| >1. We

constructed a protein-protein interaction (PPI) network and

heatmap via the ‘igraph’ and ‘pheatmap’ R packages, respectively

(43, 44). The PPI network was generated based on STRING-backed

data, and a heatmap was designed by using expression data of DEGs

across the datasets. For functional enrichment analysis, the

“enrichplot” R package was employed for GO and KEGG

pathway analysis. This analysis investigated the potential

biological functions of the DEGs (45).
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Identification of lactylation-related DEGs
via the LASSO model construction

Previously reported 330 LRGs were selected (23) to identify the

LRGs from the common DEGs via the “VennDiagram” R package

(41). This intersection helped us to identify genes common to both

datasets. We employed the ‘ggplot2’ R package to visualize

lactylation-related DEGs in volcano plots based on their

expression (46). The PPI network was constructed via the ‘igraph’

package, with data retrieved from the STRING database (43). This

network helped us visualize the linkages between proteins.

Furthermore, the R package “enrichplot, clusterProfiler” was

employed for Gene Ontology (GO) analysis to investigate the

potential biological functions of lactylation-related DEGs (45).

Finally, a correlation heatmap was created via the ‘pheatmap’

package between lactate accumulation genes and production-

associated genes (LDHA, LDHB, EP300, and HIF1A) in the TME

and LRGs (47). Moreover, to verify the prognostic significance of

the LRGs in HCC, a predictive model was executed via least

absolute shrinkage and selection operator (LASSO) regression via

the “glment” R package. The risk score for each HCC patient was

calculated (risk score = S (coefficient × gene expression)), where the

coefficient and expression level (E) corresponded to each LRG. OS

was compared between the high- and low-risk groups via Kaplan–

Meier (KM) curves. Additionally, we conducted a correlation

analysis between LRGs and widely recognized biomarkers (48).
Gene expression profiling and survival
analysis for LRGs

We validated the expression patterns of the identified

lactylation-related DEGs via The University of ALabama at

Birmingham CANcer data analysis Portal (UALCAN, http://

ualcan.path.uab.edu/) (49) and the Gene Expression Profiling

Interactive Analysis (GEPIA) web tool (http://gepia.cancer-

pku.cn/ accessed on July 7, 2020) (50). These online tools provide

comprehensive expression data across cancer types. Consequently,

to assess overall survival (OS), disease-free survival (DFS), and

progression-free survival (PFS), we utilized KM plotter (https://

kmplot.com/ accessed in October 2023) (51, 52). This tool allows us

to perform real-time survival analysis between high- and low-

risk groups.
Immune infiltration and pathway
correlation analysis of the LRGs

Gene set cancer analysis (GSCA) was used to assess the

correlation of methylation and pathways (inhibitors, activators)

with the identified LRGs in liver cancer. This widely used platform

has 7876 samples from 32 types of cancer, providing comprehensive

cancer-related pathway analysis (53). Additionally, we investigated

the correlation of LRGs with immune checkpoint inhibitors (ICIs).

The R package “tidyverse” was used to prepare the data, and
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“ggplot2” was used to create a heatmap. Moreover, the TIMER tool

was used to validate the relationships between the expression of six

LRGs and immune cells across 40 cancer types from TCGA data

(“https://cistrome.shinyapps.io/timer/) (51, 54) via the

deconvolution method.
Drug sensitivity to LRG mRNA expression

In addition to immune cell correlation, we conducted drug-gene

interaction analysis for six LRGs via the Drug–Gene Interaction

Database (DGIdb), which was accessed on Dec 21, 2023 (55). These

data have been widely used in previous studies and consolidate data

from various sources to demonstrate drug-gene interactions and

gene categories. Furthermore, the Genomic of Drug Sensitivity in

Cancer (GDSC) database was utilized to determine the correlation

between the identified LRGs and drug sensitivity. This widely used

platform has an IC50 of 265 molecules in 860 cell lines (56).
Gene enrichment and virus interactions
analysis

This study investigated six LRGs and oncoviruses associated with

liver cancer via the OncoDB database (https://oncodb.org/, Accessed

on Feb 12, 2024). A p-value>0.05 was considered to indicate

statistical significance. Furthermore, gene set enrichment analysis

(GSEA) was performed via the CAMOIP (www.camoip.net) web

tool. This web tool facilitated the elucidation of the biological

pathways and mechanisms associated with these genes.
Immunohistochemical staining

Our comprehensive bioinformatic analysis of the six LRGs revealed

thatMKI67 and RACGAP1were significantly associated with HBV and

HCV in HCC. We conducted an immunohistochemical study of the

patient’s liver tissue to validate these findings. This study was

conducted after approval from the Institutional Review Board of the

First Affiliated Hospital of Dalian Medical University (Approval

number: “PJ-KS-KY-2018-07 (X)”). Written informed consent was

obtained from all participants. All methods were conducted in

accordance with the Declaration of Helsinki. Liver tissue samples

were collected from 60 individuals with HCC, including 20

individuals diagnosed with HCC without infection, 20 with HBV,

and 20 with HCV infection. The etiological information for selected

HCC samples without infection included 17 males and 03 females

(n=20), while for HCC samples with HBV, 17 males and 03 females

(n=20) were included, and for HCC samples with HCV, 16males and 4

females (n=20) were included. Detailed clinical information on these

patients is given in Table 1.

Immunohistochemical staining was conducted as described in

previous studies (57, 58). Briefly, formalin-fixed, paraffin-embedded

tissues were removed and mounted on glass slides. The sections were

deparaffinized with xylene and rehydrated through a series of ethanol
Frontiers in Oncology 04
dilutions (100% to 70%). Antigen retrieval was performed via citrate

buffer (pH 6.0) in a pressure cooker for 10 minutes with proper heating

(90–95°C). Endogenous peroxidase activity was quenched with 3%

hydrogen peroxide in methanol for 30 minutes at room temperature.

The sections were then blocked with 3% BSA (Sigma–Aldrich, St.

Louis, MO, USA) at room temperature for 30 minutes to prevent

nonspecific binding. The sections were incubated with primary

antibodies against MKI67 (1:100 dilution, Ki67 rabbit mAb

(A20018) and RACGAP1 (1:100 dilution, RACGAP1 rabbit mAb

(A24948), ABclonal) overnight at 4°C. After being washed with PBS,

the sections were incubated with an HRP-labeled goat anti-rabbit IgG

(1:200; GB23303; Servicebio) secondary antibody for 30 minutes at

room temperature. The immunoreaction was visualized via 3,3’-

diaminobenzidine (DAB) counterstaining with hematoxylin. The

sections were washed, and the slices were dehydrated with alcohol

and cleared in xylene. Images were captured via a light microscope

(LEICA DM 2500) at 40x magnification. The expression levels of

MKI67 and RACGAP1 were quantified via the optical density (OD)

method by two independent scholars. Five random high-power fields

(40×) were selected for each section, and the OD values were

measured using ImageJ software (NIH, USA).
Statistical analysis

Statistical analyses were performed using R software (version

4.4.1). The normality of data distribution was assessed using the

Shapiro–Wilk test and one-way Analysis of Variance (ANOVA) to

compare OD values across different conditions for each gene. A p-

value < 0.05 was considered statistically significant.
Results

Comprehensive analysis to identify
differentially expressed genes associated
with HCC

We identified DEGs from TCGA-LIHC and GEO datasets via the

“limma” R package and the GEO2R analysis tool. The limit for DEGs

was set at a log2-fold change (log2FC > 1) and a p-value < 0. 05). The

TCGA-LIHC dataset identified 19840 DEGs; subsequently, the GEO

datasets (GSE14520, GSE114564, and GSE25097) identified 1100,

3100, and 1872 DEGs, respectively (Supplementary File-S1). The

volcano plots (Figures 1A-D) represent the gene expression

variations in liver cancer, with red dots indicating upregulated genes,

blue dots representing downregulated genes, and gray dots

representing genes whose expression was not significantly altered.

The x-axis shows the log2-fold change, and the y-axis shows the

-log10(adjusted p-value). These visualization provide a summary of

significant expression changes in dataset of HCC. Moreover, the

“VennDiagram” R package was used to identify common genes, and

we identified 244 commonDEGs across all selected datasets (Figure 1E;

Supplementary File-S2). Figure 1F shows a plot illustrating the

interactions of the DEGs, which indicate the connection of LRGs.
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https://cistrome.shinyapps.io/timer/
https://oncodb.org/
http://www.camoip.net
https://doi.org/10.3389/fonc.2025.1537084
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TABLE 1 Etiological and demographic information of the HCC samples.

HCC without viruses HCC with HBV HCC with HCV

Pathological
Grade

Gender Age
Clinical

Stage (CNLC)
Pathological

Grade

Grade IV Male 63 Stage Ia Grade II

Grade III Male 78 Stage Ia Grade IV

Grade II Female 75 Stage Ia Grade II

Grade II Male 53 Stage Ia Grade II

Grade II Male 50 Stage Ia Grade II

Grade IV Male 67 Stage Ib Grade II

Grade III Female 63 Stage Ib Grade II

Grade II Male 61 Stage Ib Grade II

Grade IV Male 65 Stage Ia Grade II

Grade II Male 73 Stage Ib Grade II

Grade II Male 57 Stage Ia Grade II

Grade III Male 59 Stage Ib Grade II

Grade I Male 60 Stage Ia Grade II

Grade II Male 74 Stage II Grade II

Grade II Female 69 Stage Ia Grade II

Grade III Male 76 Stage Ia Grade II

Grade II Male 66 Stage IVb Grade II

Grade I Male 70 Stage IIIa Grade II

Grade III Male 68 Stage II Grade II

Grade I Female 74 Stage IVb Grade II
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Gender Age
Clinical

Stage (CNLC)
Pathological

Grade
Gender Age

Clinical
Stage (CNLC)

Female 58 Stage Ia Grade III Male 49 Stage Ia

Male 68 Stage Ia Grade II Male 64 Stage Ia

Male 52 Stage IIIa Grade IV Male 57 Stage Ia

Male 69 Stage Ia Grade II Female 51 Stage Ia

Male 55 Stage Ia Grade IV Male 41 Stage Ia

Male 68 Stage Ia Grade I Male 52 Stage Ib

Male 46 Stage Ib Grade III Female 63 Stage IIIa

Male 63 Stage Ia Grade II Male 58 Stage IIa

Male 69 Stage Ia Grade I Male 48 Stage IIIb

Male 70 Stage IIIa Grade II Male 64 Stage Ia

Male 37 Stage IIIa Grade IV Male 59 Stage Ia

Female 61 Stage Ib Grade III Male 65 Stage Ia

Male 55 Stage Ib Grade II Male 66 Stage Ib

Male 56 Stage Ia Grade II Male 56 Stage Ia

Male 56 Stage IIIa Grade II Female 62 Stage IIa

Male 67 Stage Ia Grade I Male 46 Stage Ib

Male 63 Stage Ib Grade II Male 52 Stage IIa

Female 45 Stage IIIa Grade II Male 61 Stage Ia

Male 67 Stage Ib Grade I Male 50 Stage Ia

Male 54 Stage Ia Grade II Male 69 Stage Ia
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This PPI interaction indicate the functional relationships between

DEGs in HCC. Finally, the heatmap (Figure 1G) visually compares

gene expression across the datasets, with red indicating upregulated

genes, blue indicating downregulated genes, and white indicating genes

with minimal expression. This heatmap helps us compare how genes

are expressed in different studies in HCC. These findings indicate that

the identified DEGs might be crucial for identifying potential

biomarkers of lactylation and targets for the treatment of HCC.
Frontiers in Oncology 06
Functional enrichment and pathway
analysis of DEGs associated with HCC

Our previous findings of Figure 1 explicated the relationships

between common DEGs via PPI and differential expression. To

further explore the significance of DEGs, GO and KEGG analyses

were used to elucidate the role of DEGs in HCC progression and

development. We selected the top ten significant GO terms and
FIGURE 1

Comprehensive analysis of DEGs across the selected datasets (A-D) Volcano plots indicate the DEGs in HCC compared to normal liver tissue in the
GSE14520, GSE25097, GSE114564, and TCGA-LIHC, respectively (E) Venn diagram illustrating the overlap of DEGs across the selected datasets (F)
PPI network of the common DEGs (G) Heatmap showing the expression patterns of all 244 common DEGs across the four datasets. This analysis
revealed that the common DEGs are interlinked and have different expressions across the dataset.
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KEGG pathways (p values < 0.05). The DEGs were involved mainly

in metabolic processes, including the xenobiotic metabolic process,

the cellular response to xenobiotic stimulus, the olefinic compound

metabolic process, and the steroid metabolic process (Figures 2A-

C). These findings revealed the involvement of metabolic pathways

in HCC development, which is relevant to lactylation process.

Furthermore the KEGG analysis revealed that the DEGs are

significantly involved in various metabolism-related pathways
Frontiers in Oncology 07
(Figure 2E), such as fatty acid degradation, drug metabolism, etc.

In the bar and bubble plots, the x-axis shows the gene ratio, and the

color indicates the adjusted p-value, whereas the y-axis is labeled

with enrichment terms and KEGG pathways. The network plots

(Figure 2D, F) depict node size as the gene count, edge thickness as

the term overlap, and node color as the significance (darker = lower

p-value). These analyses revealed key biological processes, cellular

components, molecular functions, and pathways potentially
FIGURE 2

The enrichment analysis of 244 common DEGs (A-C) Bar plots illustrating the Gene Ontology, BP, MF, and CC, respectively (E) Dot plot indicating
the KEGG pathways enrichment of DEGs (D, F) Circular network plots illustrate the GO and KEGG enrichments of DEGs. These visualizations
underscore the relationship of DEGs with metabolic pathways.
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involved in HCC development and progression, which is relevant to

our study. Table 2 lists the top five GO terms, which include B.P.,

CC, and M.F. (Supplementary-S3). Collectively, these findings

highlight the involvement of DEGs in metabolic processes,

suggesting their importance for lactylation in HCC.
Identification and analysis of lactylation-
related genes and the protein-protein
interaction network associated with HCC

A comprehensive analysis was conducted to identify

LRGs in HCC, integrating multiple analytical approaches. The

“VennDiagram” R package was used to identify the genes common

to the DEGs (244) and LRGs (330): ALB, G6PD, HMGA1, MKI67,

RACGAP1, and RFC4 (Figure 3A). We visualized the expression of

six LRGs through a volcano plot by using ‘ggplot2’ (Figure 3B), where

red highlights indicate upregulated genes and blue highlights indicate

downregulated genes. The results revealed that five genes were

upregulated, whereas ALB was downregulated. Taken together, the

PPI networks (Figure 3C) revealed intricate connections between

lactylation genes and other proteins, particularly those involved in

glycolysis, suggesting a potential link to altered metabolism in HCC.

The analysis revealed that these six LRGs are closely related to several

glycolysis-related proteins (e.g., PFKL, PKM, PGAM1, ALDOA, and

GAPDH) and other LRGs (e.g., LADHA, LADHB, and LADHC).

Literature analysis plots (Supplementary-S7-I) revealed that MKI67,

RACGAP1, and RFC4 have limited publications, suggesting their

potential innovation and distinctiveness in HCC therapy.
Functional enrichment and correlation
analysis of the genes related to lactylation
in HCC

We performed enrichment analysis on the six lactylation-related

DEGs to explore their potential in the progression of HCC via R

software. The results revealed that these genes were enriched mainly in

cell cycle-related terms, including condensed chromosomes, the

cytoplasmic side of the membrane, DNA conformation changes, and

myeloid cell homeostasis (Figure 3D). These enrichments are known to

be involved in the regulation of energy metabolism and have been

implicated in cancer development. The correlation heatmap

(Figure 3E) further illustrates the interrelationships between the

identified lactylation-associated genes and genes associated with

lactylation accumulation in HCC. Overall, this multifaceted analysis

underscores the potential significance of lactylation-associated genes in

HCC pathogenesis, particularly concerning the regulation of energy

processes, and provides a foundation for future investigations into their

roles in cancer development and potential therapeutic targeting.
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TABLE 2 The top five GO phrases, which include Biological processes,
Cellular components, and Molecular functions.

Ontology ID Description
p-
value

Count

BP

GO:0006805
Xenobiotic
metabolic process

3.02797E-
14 18

GO:0071466
Cellular response to
xenobiotic stimulus

5.90207E-
14 21

GO:0009410
Response to
xenobiotic stimulus

7.23169E-
14 30

GO:0120254
Olefinic compound
metabolic process

2.25362E-
13 19

GO:0008202
Steroid
metabolic process

5.28374E-
12 24

CC

GO:0098687
Chromosomal
Region

2.43467E-
06 18

GO:0072686 Mitotic Spindle
2.87564E-
06 12

GO:0042827
Platelet
Dense Granule

4.52573E-
06 5

GO:0000793
Condensed
Chromosome

9.97887E-
06 14

GO:0000779

Condensed
Chromosome,
Centromeric Region

1.46027E-
05

11

MF

GO:0070330 aromatase activity
2.4623E-
11 9

GO:0016712

oxidoreductase
activity, acting on
paired donors, with
incorporation or
reduction of
molecular oxygen,
reduced flavin or
flavoprotein as one
donor, and
incorporation of one
atom of oxygen

1.5816E-
10 10

GO:0005506 iron ion binding
1.7149E-
10 16

GO:0016614

oxidoreductase
activity, acting on
the CH-OH group
of donors

2.7362E-
10 15

GO:0016709

oxidoreductase
activity, acting on
paired donors, with
incorporation or
reduction of
molecular oxygen,
NAD(P) Has one
donor, and
incorporation of one
atom of oxygen

1.1207E-
09 9
fron
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Construction and validation of the prognostic
model for HCC using TCGA-LIHC data

Furthermore, the LASSO model was employed to identify

prognostic markers among the LRGs (Figure 3F). The results

revealed that ALB had the lowest coefficient value, whereas RFC4
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had the highest coefficient value, with the others also showing

significant values. These findings suggest that these genes could

potentially play a role in predicting patient prognosis. Subsequently,

cross-validation for LASSO was represented by a lambda plot

(Figure 3G). The KM plot revealed significant differences in OS

between the high- and low-risk groups for MKI67 and RACGAP1,
FIGURE 3

Comprehensive analysis of Lactylation-related genes. This figure shows a detailed analysis of LRGs in HCC, their interactions, expression profile, and
roles in HCC progression (A) Venn diagram shows the overlap between 244 DEGs and 330 LRGs, overlapping identifies 06 common genes (B)
Volcano plot displays the expression level of six common lactylation-related DEGs (C) The network plot shows interactions between six LRGs with
glycolysis proteins. Red nodes: genes of interest; Green nodes: glycolysis-related genes; Blue nodes: lactylation-related genes (D) GO enrichment
network for the six LRGs (E) Correlation heatmap of LRGs and lactylation accumulations associated genes in HCC (F-J) Plots showing the LASSO,
Prognostic and risk score model of six LRGs. These analyses endorse that these LRGs could be potential prognostic markers in HCC except ALB.
Statistical significance is indicated as follows: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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with a p-value <0.05 (Figure 3H). Additionally, a univariate Cox

regression analysis (Figure 3I) confirmed the significance of all the

LRGs except for ALB. Finally, the nomogram model results

illustrated (Figure 3J) the predictive power of the identified LRGs.

To further validate these findings, we compared our LRGs with five

widely used biomarkers (GPC3, HSP70, GP73, OPN, and AFP)

reported in recent studies (48). Our results revealed thatMKI67 was

significantly positively correlated with GPC3 and AFP, whereas

RACGAP1 was significantly positively associated with OPN and

GPC3. Both MKI67 and RACGAP1 were significantly negatively

correlated with GP73 (Supplementary S6). Collectively, these results

suggest that LRGs may serve as robust prognostic markers in HCC.
Validation of expression, stage-specific
expression and survival analysis of LRGs in
HCC

We conducted the expression analysis of six LRGs in both

normal and primary tumor samples of HCC. ALB was significantly

lower in primary tumors compared to normal samples (p <0.05).

The expression levels of G6PD, HMGA1, MKI67, RACGAP1, and

RFC4, were significantly higher in tumor samples with (p < 0.05)

(Figures 4A, D, G, J, M, P). The blue violin plots represent the

distribution the frequency of expression levels, across different HCC

stages (Figures 4B, E, H, K, N, Q). F values and corresponding p

values from ANOVA are provided in the plots. Moreover, we

investigated the OS of LRGs with both low and high expression

levels (Figures 4C, F, I, L, O, R). The log-rank p values were < 0.05,

with hazard ratio (HR) values of 2.52 (1.77–3.59), 2.08 (1.47–2.95),

1.96 (1.38–2.77), 1.96 (1.38–2.77), and 1.81 (1.26–2.59),

respectively. Thess findings revealed the differential expression of

LRGs between normal and tumor tissues, various stages and their

association with overall survival. These results underscoring the

potential of LRGs as prognostic biomarker in HCC.

Similarly, we also investigated the PFS and recurrence-free

survival (RFS) suggesting their involvement in HCC progression

and development. High expression of G6PD, HMGA1, MKI67,

RACGAP1 associated with these LRGs at both low and high

expression levels (Supplementary-S4-A, B). These findings

highlight their specific potential as markers for HCC diagnosis

and prognosis.
Analysis of immune infiltration and
pathways associated with LRGs in HCC

By using the web tool “GSCA”, we investigated immune

infiltration and methylation with the expression of six LRGs in

liver cancer. The results revealed a significant correlation between

these LRGs and various immune cells, such as B cells, Tregs, DCs,

macrophages, and myeloid dendritic cells, in liver cancer

(Figure 5A). The dot plot shows a remarkable positive correlation

with Tregs and B cells and a negative correlation with macrophages,

monocytes, NK cells, etc. Red indicates a positive correlation with
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immune cells, whereas blue indicates a negative correlation, with

significant stars. The heatmap depicted the mean correlation

between methylation and immune infiltration of the six LRGs in

liver cancer (Figure 5B), including a significant association. These

results indicate that significant positive and negative correlations

between these genes may indicate aberrant histone methylation

activity, which could be crucial in cancer development.

To further elucidate the pathways involved, the findings

highlighted that these LRGs are significantly correlated with

cancer-related pathways, such as apoptosis, the cell cycle, and

DNA damage (Figures 5C, D). Additionally, correlation analysis

between the LRGs and ICI using TCGA-LIHC data (Figure 5E)

indicated that the five genes were significantly positively correlated

with ICI, whereas ALB was negatively correlated. Collectively, these

findings suggest that the six LRGs could be potential biomarkers,

highlighting their role in the TME, which could be important for

developing targeted immunotherapy in HCC. Additional

informative analysis of immune cells with LRGs via TIMER data

is shown in Supplementary Figure S5.
Exploring drug-gene interactions of
lactylation-related genes in HCC

Our results from gene-drug interactions revealed 163 drug

interactions, with 81 drugs approved by the Food and Drug

Administration (FDA) with three genes (RACGAP1, G6PD, and

ALB) shown in Supplementary S6A. Further analysis revealed that

13 of these approved drugs are also related to immunotherapy.

Moreover, the GDSC platform was used to determine the

correlation between mRNA expression and drug sensitivity in

cancer (Supplementary Figure S6B, C). The results indicated that

most of the identified LRGs are negatively correlated with drug

sensitivity, except G6PD. These findings emphasize the potential

and clinical importance of the identified LRGs in HCC therapies.
Integrated expression profile with OncoDB
and GSEA of lactylation-related genes in
HCC

Furthermore, GSEA was conducted forMKI67 and RACGAP1 by

dividing the gene profile into high-expression groups and low-

expression groups. Box plots represent the 10 enriched processes,

which are related mostly to the regulation of energy in cancer, such as

the lactate metabolic process, KEGG glycolysis, and the cell cycle

(TCA) (Figures 6A, B). The expression profile of six LRGs were

analyzed via “OncoDB”. The results revealed significant correlations

betweenMKI67 and RACGAP1 with both HCV-HCC (p < 0.05) and

HBV-HCC (p > 0.05) (Figures 6C-F). Aditionally, RFC4 also

demonstrated a robust correlation with HBV-HCC (p < 0.05).

Althogh the MKI67 and RACGAP1 were significantly

differentially expressed between positive and negative HCV, but

we observed the higher median of expression in HCV-negative

compared to the HCV-positive patients. This discrepancy maybe
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due to the attributed disparity in sample sizes beween the groups.

To validate these findings we conducted external validataion. The

two HCV-related datasets (GSE140845, and GSE154211) were

selected frome GEO database. The analysis employed between

HCV-positive v.s HCV-negative HCC samples (Supplementary-

S7, S8). The results confirmed that all the HCV-related HCC has

high expression values of MKI67 and RACGAP1 as compared to

non-viral samples.
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These findings suggest that these genes may play critical roles in

the progression of HBV/HCV-induced HCC. The other genes

(G6PD, HMGA1, and ALB) presented weaker associations with

HBV/HCV-induced HCC, indicating that their roles might be more

general in HCC pathogenesis than specific to viral etiology

(Supplementary-S8). These results collectively highlight the

potential of LRGs as biomarkers and therapeutic targets in HCC,

particularly in viral hepatitis-associated HCC. The identified drug
FIGURE 4

The Expression and Survival Analysis of Six LRGs (A, D, G, J, M, P) The box plots indicate the expression levels of six LRGs between HCC tumor vs
normal liver tissue (B, E, H, K, N, Q) The violon plots illustrate the expression levels between stages (C, F, I, L, O, R) The Kaplan-Meier plots showing
the overall survival plot between low and high-risk groups.
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interactions and differential expression patterns provide a

foundation for further investigations into novel treatment

strategies for HCC.
Immunohistochemical validation of MKI67
and RACGAP1

We collected HCC patient samples (n=60), including 20 from

patients with HCC without the virus, 20 from patients with HBV-

HCC, and 20 from patients with HCV-HCC. The results of the

“ANOVA” revealed a significant effect of condition on the OD

values of both genes. MKI67 p < 0.05, and RACGAP1, p < 0.05.

Pairwise t-tests with Bonferroni correction for MKI67 indicated
Frontiers in Oncology 12
significant differences between HCC, HBV-HCC, and HCV-HCC

patients (p < 0.05) (Figures 7A, C, E). For RACGAP1, significant

differences were observed between HCC, HBV, and HCV (p < 0.05)

(Figures 7B, D, F).

The Kruskal–Walli’s test confirmed the significant effects of

condition on the OD values for both MKI67 (c² (2) = 30.004, p <

0.05) and RACGAP1 (c² (2) = 17.630, p < 0.05). Dunn’s test for

MKI67 also revealed significant differences between HCC, HBV,

and HCV (p = 0.05). For RACGAP1, a significant difference was

found between HCC, HBV, and HCV (p < 0.05), whereas

differences between HBV and HCV (p = 0.79) were not

significant boxplots (Figure 7G). Our results revealed that patients

diagnosed with HCV had much higher expression levels of MKI67

and RACGAP1 than did patients diagnosed with HBV or HCC.
FIGURE 5

The correlation of LRGs and immune infiltration (A) The individual heatmaps indicating the correlation between LRGs and immune cell infiltration
across the 40 types of cancers (B) The bar plot showing the correlation between LRGs and immune cells in liver cancer. (C, D) The bar plots
showing the correlation between LRGs and pathways involved in liver cancer (E) The Pearson correlation representing by heatmap between six LRGs
with ICIs. These analyses indicate the relationship of LRGs in HCC progression. Statistical significance is indicated as follows: *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001.
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MKI67 levels varied across all groups, whereas significant

differences in RACGAP1 were observed only between the HCV-

HCC and HBV-HCV groups. There was a notable association

between pathological grade and RACGAP1 (p=0.001), but for

MKI67, it was not significant (p=0. 07). These findings highlight

the differential expression of MKI67 and RACGAP1 in HCC, HBV,

and HCV (Figure 7H) and provide valuable insights into the

molecular mechanisms underlying these diseases. A marked

difference in bilirubin levels was observed between the groups

(p=0.0424) for both genes (Figure 7I).
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Discussion

Recent studies have highlighted the potential of lactate and its

lactylation modification in cancer progression (59). Lactylation is a

post-translational modification of proteins, plays a pivotal role in

cellular metabolism, and is increasingly recognized for its

involvement in the development of tumors (19, 60). Previous

research indicated that the accumulation of lactate in tumors

allows the cancer cells to evade the immune system, facilitating

their growth and proliferation (61, 62). To elucidate the function of
FIGURE 6

A comprehensive Correlation Analysis Between LRG Expressions Enrichments and Viruses (A, B) Box plots demonstrating the most relevant
enrichments of MKI67 and RACGAP1 between high vs low expression in liver cancer (C, D) The box plot showing the significant correlation of these
genes with HCV-associated HCC (E, F) The box plot showing the significant correlation of these genes with HBV associated HCC. Statistical
significance is indicated as follows: ns (Non-significant) p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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lactylation modification in HCC, we identified common genes

between lactylation-related gene set and DEGs as LRGs. These six

LRGs (ALB, G6PD, HMGA1, MKI67, RACGAP1, and RFC4) could

serve as important markers for HCC. Our bioinformatic

investigation indicated a significant association between MKI67
Frontiers in Oncology 14
and the RACGAP1 gene in HCC linked to HBV and HCV.

Further validation through IHC analysis of patient samples

confirmed that these two genes are more strongly correlated with

HCC caused by HBV/HCV compared to HCC without viruses.

These findings underscore the significance of further investigating
FIGURE 7

Validation of MKI67 and RACGAP1 expression levels in HCC groups by IHC (A, C, E) The images representing the expression level of MKI67 between
HCC, HCC-HBV and HCC-HCV, similarly (B, D, F) images showing the RACGAP1 expression between HCC, HCC-HBV and HCC-HCV (G) The box
plots indicating the OD values of these genes across the HCC groups (H, I) The correlation of MKI67, RACGAP1 expression with pathological grade
and bilirubin levels indicating by box plot and scatter plot, respectively. Statistical significance is indicated as follows: ns (non-significant) p > 0.05; *p
< 0.05; **p < 0.01; ***p < 0.001.
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the potential of MKI67 and RACGAP1 in predicting outcomes and

developing targeted therapies for HCC induced by viruses.

Chronic HBV/HCV infections are prevalent worldwide, with

approximately 80% of liver cancer cases (63, 64). HCV is an

oncogenic virus that promotes carcinogenesis through cycles of

damage and regeneration, driven by molecular mechanisms,

including inflammation, proliferation, apoptosis, and genomic

alterations (14, 65). Our findings suggest that HCC associated

with HCV may exhibit distinct characteristics, particularly in

genes linked to lactylation. This emphasizes the importance of

identifying specific for predicting disease progression and

potential treatment targets, such as viruses-induced HCC.

Recent studies have shown, RACGAP1 expression is correlated

with tumor size, clinical grade, histological type, and prognosis in

various tumor types. For example, it promotes cell motility and

invasion in uterine carcinosarcoma, with its positive expression

associated with poorer prognoses (66). Colorectal cancer patients

have poor prognoses linked to RACGAP1 expression (67). Another

study reported that the overexpression of RACGAP1 also predicts

survival rates for squamous cell carcinoma (68). Consistent with

these studies, this study also revealed that RACGAP1 is a significant

prognostic marker in HCC induced by HBV/HCV via lactylation.

These collective findings underscore the importance of RACGAP1

in HCC progression and prognosis.

Previous studies have shown that MKI67 affects immune

infiltration and T-cell fatigue and serves as a prognostic

biomarker in cancers, especially HCC. Measuring MKI67 levels

improves the effectiveness of anti-LIHC immunotherapy by

assisting in prognosis prediction (69). Our study also identified

the links between clinical indicators, such as increased levels of

bilirubin linked to liver dysfunction, and gene activity in patients

with HCV (70). Additional comprehensive studies are required to

confirm these outcomes and evaluate their clinical applications.

This might assist in establishing potentially improving diagnostic

and prediction of liver diseases.

The TME plays is pivotal in cancer progression, with lactylation

playing a significant role within it (47). In this research, we

identified LRGs to predict prognosis in HCC. The results

indicated a significant correlation between LRGs and immune

cells, demonstrating a positive correlation with, B-cells, Tregs,

and Tr1 in LIHC while showing a negative correlation with,

macrophages, th17 NK cells, etc. The pathways analysis further

supported these findings and underscored the role of immune

infiltration in HCC development. These results align with a

broader understanding of TME’s role in cancer development and

underscore the crucial role of LRGs as biomarkers for

immunotherapy strategies in HCC.

Additionally, the correlation with selected ICIs demonstrated a

significant correlation between LRGs with ICI markers including,

PD-1, PD-L1, and CTLA-4, except for ALB. Moreover, Single-

Sample Gene Set Enrichment Analysis (ssGSEA) confirmed that the

MKI67 and RACGAP1 are significantly associated with lactylation-

related pathways, which are crucial in cancer development (71).

Furthermore, the LASSO model identified key lactylation-related

prognostic biomarkers for HCC, including MKI67 and RACGAP1
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showed a significant predictor while ALB had the least impact. This

analysis enhances our understanding of identified LRGs in HCC

biology. Collectively, these findings suggest that the LRGs can play a

role in immune response therapy strategies, but further studies and

clinical trials are needed to assess their efficacy and safety.

Previous studies have reported that identifying biomarkers

using genomic analysis significantly improves HCC treatment,

yet need to identify more molecules for early diagnosis, and

targeted therapies (48). Consistent with these studies, our study

shows that LRGs significantly correlated with approved

biomarkers like AFP, GPC3, and GP73. Thses results suggest

their potential as early diagnostic targets. Further validatory

studies are required to confirm these findings and explore the

clinical applications.

In summary, we validate our bioinformatics findings by

employing IHC analysis of HCC patients’ samples. The current

study demonstrated that MKI67 and RACGAP1 are significantly

overexpressed in HBV/HCV-related HCC, compared to HCC

without viruses. This overexpression suggests a more significant

role in the development of HCC induced by HBV/HCV. These

results revealed that MKI67 and RACGAP1 can predict outcomes

and serve as pivotal therapeutic targets, especially for HCC related

to HBV/HCV. This research provides valuable insights into the

distinctive features of HCC associated with HBV/HCV and paves

the way for new diagnostic and therapeutic strategies.

While this study identified potential biomarkers and

therapeutic targets by comprehensive bioinformatics analysis

and validation with IHC. However, some limitations can be

acknowledged. First, the data was taken from public databases,

there may be variations in results due to differences in patient

selection and data processing. Secondly, the sample size was limited,

which may affect the generalizability of findings. Future prospective

cohort studies with a significant number of patients should be

conducted. Thirdly our study didn’t consider the several factors that

can influence HCC progression including, smoking, alcohol

drinking, diabetes, lifestyle, etc. These factors should be

considered in future studies for better HCC outcomes. Further

studies are needed to investigate the mechanism underlying these

interactions and potential therapeutic applications.
Conclusion

In conclusion, this study identified six lactylate-related genes

(ALB, G6PD, HMGA1,MKI67, RACGAP1, and RFC4) as promising

independent prognostic biomarkers for HCC. MKI67 and

RACGAP1 were especially identified as a predictive signature with

prognostic potential for HBV and HCV-related HCC. These genes

provide insights into poor survival and immune cell infiltration in

tumors. Validation using HCC patient samples highlighted that

MKI67 and RACGAP1are significantly overexpressed in HBV/HCV

positive HCC compared to HCC without viruses. These findings

indicate that these genes can work as a potential biomarker for early

diagnosis, management, and treatment of HCC caused by HBV/

HCV via lactylation.
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