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Background: Immunotherapy has been used in the clinical management of

TNBC.While BRCA1mutations are associated with immunotherapy response, the

therapeutic outcomes in TNBC patients are not promising.

Methods: This study integrated spatial, single-cell, and bulk RNA-seq data to explore

the role of BRCA1 in reshaping the TNBC microenvironment. Through multi-scale

analysis, phenotype changes and potential biomarkers in cancer-associated

fibroblasts (CAF) were identified. To validate these findings at the protein level, we

employed high-resolution, label-free proteomics sequencing in our in-house

cohort, providing critical real-world validation. A predictive system for response to

ICIs was constructed through the step-by-step machine learning pipeline.

Results: Compared to BRCA1 mutant patients, BRCA1 wild-type patients

experienced increased T-cell exhaustion and dendritic cell tolerance. We

identified a MEG3+ pre-CAF subgroup via pseudo-time analysis. Moreover,

ISG15 may serve as an immunoregulatory biomarker, and the proposed

predictive model demonstrated potential in forecasting immunotherapy

response, although further validation is needed.

Conclusions: This study highlighted the cellular heterogeneity of TNBC and

identified ISG15 as a candidate biomarker potentially associated with treatment

response. The ISG15-based predictive system might provide a robust framework

for predicting ICI response.
KEYWORDS

triple-negative breast cancer, BRCA1 mutation, tumor microenvironment, cancer-
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Introduction

Breast cancer remains the most frequently diagnosed

malignancy and the leading cause of cancer-related mortality

among women worldwide (1). Among its molecular subtypes,

triple-negative breast cancer (TNBC), defined by the absence of

estrogen receptor (ER), progesterone receptor (PR), and human

epidermal growth factor receptor 2 (HER2), exhibits pronounced

heterogeneity and aggressive clinical behavior. Compared with

luminal A, luminal B, and HER2-positive subtypes, TNBC is

associated with significantly poorer outcomes (2–4). The 5-year

survival rate for TNBC is approximately 77%, which is 8% to 16%

lower than that of hormone receptor–positive breast cancers (5, 6).

TNBC also demonstrates markedly higher risks of early relapse and

distant metastasis (5). Approximately 25% of patients with TNBC

experience disease recurrence (4), compared to a recurrence rate of

~15% across all breast cancer types (7). In terms of locoregional

recurrence, TNBC and HER2-positive subtypes show substantially

elevated rates (7.6% and 7.5%, respectively), whereas luminal A and

B subtypes have considerably lower rates (1.5% and 2.9%,

respectively) (8). Moreover, nearly 40% of patients with stage I–

III TNBC relapse within 2 to 3 years after receiving standard

therapy (9). These clinical patterns underscore an imperative

need for more effective therapeutic strategies in TNBC, with

immunotherapy emerging as a particularly promising option.

In recent years, immune checkpoint inhibitors (ICIs) have

revolutionized cancer therapy, particularly for solid tumors with

high mutational loads, representing a major breakthrough in

oncology. TNBC is notably suited for this therapy due to its high

tumor mutational burden, increased tumor-infiltrating

lymphocytes, and enhanced PD-L1 expression, all of which

heighten its immunogenicity (10–12).

Approximately 10-20% of TNBC tumors are characterized by

BRCA1 deficiency due to epigenetic modification or mutation (13).

These mutations impair homologous recombination repair, further

increasing sensitivity to DNA-damaging agents including platinum

drugs and PARP inhibitors (14). BRCA1-mutated TNBC exhibits a

unique tumor immune microenvironment characterized by higher

mutational loads and extensive immune lymphocyte infiltration,

suggesting that BRCA1 mutations could serve as potential

biomarkers for ICI responses. Recently, an in vivo study

demonstrated that treatment with ICIs and platinum-based
Abbreviations: BRCA1 mutant, BRCA1-MT; BRCA1 wild-type, BRCA1-WT;

cancer-associated fibroblasts, CAF; dendritic cell, DC; effector memory T cell,

Tem; exhausted T cell, Tex; Extreme Gradient Boosting, XGBoost; false discovery
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chemotherapy significantly reduces tumor growth and improves

survival rates in BRCA1-deficient TNBC mice (15). However, a

comprehensive view of the tumor microenvironment (TME) and

the interplay of tumor, immune, and stromal cells of BRCA1

mutated tumors have not yet been described.

This study used scRNA-seq data from TNBC patients with

BRCA1 mutations (BRCA1-MT) or wild-type (BRCA1-WT) to

explore TME heterogeneity and cellular interactions. Multi-scale

analysis was performed to explore the difference of cancer-

associated fibroblasts (CAFs) in two groups and further identified

ISG15 as a key driver biomarker. Finally, we developed a predictive

system for response to immunotherapy via our proposed machine

learning pipeline, aiming to precisely identify individuals who

benefit from ICI therapy.
Materials and methods

Data acquisition and processing

We extracted and analyzed the sc-RNAseq data involved in this

study from the Gene Expression Omnibus (GEO) database under

the accession number GSE161529, encompassing four samples with

BRCA1-mutant (BRCA1-MT1-4) and four samples with BRCA1

wild (BRCA1-WT1-4). Seurat package was used to generate the

Seurat objects containing scRNA-seq gene expression matrices for

main cell types. Low-quality cells were removed from each sample

according to nFeature, nUMI per cell and, mitochondria content

(Supplementary Figure S1). Further, the expression matrices

underwent normalization and scaling via the NormalizeData and

ScaleData functions in the Seurat package. According to the top

2000 highly variable genes and 30 principal components, reduce

dimension was employed via the UniformManifold Approximation

and Projection (UMAP) algorithm. Harmony algorithm (16) was

conducted to counteract the batch effect. The marker genes for each

cell cluster were identified through the FindAllmarkers function,

with the cutoff criteria as log2FC > 0.25 and false discovery rate

(FDR) < 0.05. With the aid of well-known cell markers and singleR

package (17), major cell populations were annotated. The clustering

of each major cell type was subsequently re-clustered using the

workflow described above. These new clusters were identified as

“subclusters”, representing different phenotypes within each major

cell type. Tissue enrichment was assessed using the ratio of observed

to expected cell number (Ro/e) in each tissue type. Specifically, Ro/e

> 1 indicates enrichment of the cell cluster in that tissue, whereas

Ro/e < 1 suggests under-representation (18).

The filtered spatial transcriptome data was fetched from the

website, https://zenodo.org/record/4739739/. Seurat package was

used to conduct subsequent analysis. According to the top 3000

highly variable genes, the expression matrix of each slice was

normalized and scaled utilizing the SCTransform function.

Subsequently, PCA dimensionality reduction analysis was

performed for building an SNN graph with the default parameter.

Using the anchor-based integration pipeline within Seurat package,

we established a mapping between the spatial RNA-seq and the
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scRNA-seq data, yielding the prediction scores of subcluster to

every spot within each slice.
Function enrichment analysis

Gene ontology (GO) analysis was conducted via clusterProfiler

package (19). We utilized gene set variation analysis (GSVA) to

calculate the enrichment scores of hallmark pathways for each cell.

The differential activating pathways between two cell subclusters

were identified using the limma package (20). The significant terms

and pathways were identified with the cutoff of adjusted p-

value <0.05.
Trajectory analysis of cell differentiation

The R packages, monocle2, and monocle3 were applied to

explore the trajectory of cell differentiation among the selected

clusters (21). For monocle2, the DDRtree algorithm was employed

to reduce the dimensions. The mutual nearest neighbor algorithm

was used to eliminate the batch effect for monocle3.
Differential abundance analysis of cell
neighborhoods via milo

We utilized the milo algorithm for identifying the differential

abundance of cell neighborhoods in two distinct conditions (22).

More specifically, a KNN graph based on scRNA-seq data was

constructed, followed by the data split into cell neighborhoods and

the differential abundance analysis of selected cell subclusters was

performed. In this section, we configured the parameters with k=40

and d=30, following the author’s recommendation.
Identification of malignant cells

The copykat software was utilized to infer genome-wide copy

number variations from the single-cell gene expression count

matrix (23). Immune cells were employed as reference cells,

where single aneuploid cells with copy number variations were

deemed as tumor cells, and diploid cells were predicted as normal

epithelial cells. The CytoTRACE (24) algorithm was employed to

va l i d a t e t h e tumor c e l l p r ed i c t i on s de r i v ed f r om

CopyKAT algorithm.
Gene regulatory network analysis

For quantifying the difference in transcription factors (TF)

activities between distinct cell clusters, cluster-specific gene

regulatory networks were built utilizing pySCENIC (25) package
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with default parameters. Count matrix of scRNA-seq data was

extracted from Seurat object and converted to the Loom format

file as input for downstream analysis. In particular, we first utilized

GRNBoost2 to form a co-expression network, followed by

discovering regulons for every TF via RcisTarget. The motif

database of humans is accessible through the website https://

resources.aertslab.org/cistarget/databases/homo_sapiens/hg38/.

The activity of each regulon was measured through the AUCell

algorithm. Subsequently, binary values for each regulon were

obtained using AUC score thresholds automatically determined in

the process. For one specific subcluster, we regarded TFs that

activated in over 20% of cells in at least one subcluster as significant.
Detection of intratumoral and intertumoral
heterogeneity

To explore the distinct levels of tumor heterogeneity between

the BRCA1-WT group and the BRCA1-MT group, we calculated

the intratumoral and intertumoral heterogeneity scores as

previously reported (26). Notably, malignant tumor cells based-

CopyKAT were chosen and re-clustered using the method

described above with default parameters. Extracting the top 50

principal components as features for calculating the heterogeneity

score. To ensure consistency in data scaling, z-score standardization

is used for all heterogeneity scores.
High-dimensional weighted gene co-
expression network analysis

The hdWGCNA package (27), which was designed for

analyzing high-dimensional scRNA-seq data, was deployed to

construct a scale-free network at the single-cell level utilizing

default parameters.
Multi-scale identification framework

In our effort to identify the critical molecular marker in one cell

subgroup, we developed a reliable analysis pipeline via employing

multi-scale data, encompassing bulk and scRNA-seq data. Initially,

we identified the marker genes of myCAF utilizing FindAllMarkers

function, with the threshold as adjusted p-value<0.05 and

log2FC>0.25. Following this, Differential module eigengene

analysis was conducted to discover the myCAF and BRCA1-WT

specific module. For each module, the top 200 hub genes were

extracted. Upon the overlap genes of these myCAF marker genes

and hub genes (Supplementary Table S1), the differential expression

analysis was employed between BRCA1-WT samples and BRCA1-

MT samples within the METABRIC dataset. The substantially

elevated genes in the BRCA1-WT group were regarded as the key

genes (Supplementary Table S2).
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Reconstruction of the ICI response
predictor

Thirteen ICI pre-therapy RNA-seq cohorts with response

informat ion (n = 829) were col lected in this s tudy

(Supplementary Table S3). The expression values of RNA-seq

data for each cohort were converted to TPM values, followed by

log2-transformed. To eliminate unnecessary interference, we

utilized the Combat function in the sva package to integrate the

four cohorts encompassing Braun 2020 (n = 172) (28), Mariathasan

2018 (n = 298) (29), Liu 2019 (n = 119) (30), and Pender 2021 (n =

72) (31). We randomly allocated the integrated cohort (n = 661)

into an 80% training set and a 20% validation set. Model

performance was streamlined via 5-fold cross-validation. Utilizing

the tidymodels package, eight machine learning algorithms were

implemented to derive the predictive models for ICI therapy

response. These algorithms included Support Vector Machine

(SVM), Extreme Gradient Boosting (XGBoost), Random Forest

(RF), LightGBM, naive Bayes (NB), multilayer perceptron (MLP)

neural network, K-Nearest Neighbour (KNN). In terms of the

validation set, the model with the maximum receiver operating

characteristic curve (ROC) was deemed as optimal.
High-sensitivity label-free quantitative
proteomics analysis

After surgically proving, paired tumor (n=9) and para-

carcinoma tissues (n=9) from breast cancer patients were

collected from the First Affiliated Hospital of Zhengzhou

University. Samples were obtained with informed consent. This

study was approved by the Ethics Committee of the First Affiliated

Hospital of Zhengzhou University (Ethics review number: 2024-

KY-0549; Zhengzhou, China). All methods were conducted in

accordance with the relevant guidelines and regulations.

Subsequently, the protein expression was quantified via high-

sensitivity label-free quantitative proteomics sequencing, as

described in the Supplementary Methods.
Statistical analysis

Fisher’s exact test was implemented for categorical variables,

whereas Student’s t-test, Wilcoxon rank-sum test, ANOVA test, and

Kruskal-Wallis test were conducted for continuous variables.

Spearman correlation was used for continuous versus continuous

variables. Survival analysis was performed through Kaplan-Meier

curves and log-rank tests. To correct for multiple tests, the p-values

were adjusted to the FDR utilizing the Benjamini-Hochberg

approach where appropriate. Unless otherwise indicated, all

statistical tests were two-tailed. Significance levels are indicated by

asterisks (*p <0.05; **p <0.01; ***p <0.001, ****p <0.0001).

Statistical and bioinformatics analyses mentioned above were

carried out with R software (version 4.2.1).
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Results

The single-cell atlas of BRCA1 MT and
BRCA1 WT samples

To understand gene-expression perturbations and generate a

comprehensive map of the TME landscape of TNBC, we collected

and analyzed eight specimens, comprising four samples with

BRCA1-mutant (BRCA1-MT1-4) and four samples with BRCA1

wild (BRCA1-WT1-4) (Figure 1A). After filtering low-quality cells

through a rigorous quality control pipeline, 32,386 cells remained

for downstream analysis (Supplementary Figures S1A, B). Of these,

18,182 cells were derived from BRCA1-MT samples, while 14,204

cells were obtained from BRCA1-WT samples. The mean number

of genes examined per cell was 1,331. Afterward, the standard

workflow in Seurat was utilized to identify the subpopulations

within scRNA-seq data, yielding seven unique cell subsets

(Figure 1B). Leveraging the expression of well-characterized

markers, we identified cell lineages, including Epithelial cells,

immune cells (NK/T cells, B cells, and Myeloid cells), stromal

cells (Fibroblasts, pericytes, and endothelial cells) (Figure 1C,

Supplementary Figure S2).

To gain further insight, we assess the difference in TME

landscape between the BRCA1-WT group and the BRCA1-MT

group, and the results indicated that the significantly elevated

percent of immune and stromal cells were observed in the

BRCA1-MT group, comparing to BRCA1-WT group with more

epithelial cells (Figure 1B). Next, differential expression analysis for

each cluster was executed to decode the transcriptional

perturbations caused by BRCA1 mutation, totally yielding 2,199

differentially expressed genes (DEGs) (Figure 1D). Regarding

epithelial cells, BRCA1-WT samples harbored more up-regulated

DEGs than BRCA1-MT samples. Of note, upregulated genes in

BRCA1-WT were mainly enriched in immune cells and Fibroblasts.

Although BRCA1-WT tumors showed a higher proportion of

epithelial cells, the functional disturbances reflected by DEGs

were predominantly associated with immune and stromal

compartments. This may suggest a compensatory or stress-

induced transcriptional response in these less abundant cell types,

highlighting the importance of integrating both compositional and

functional perspectives. Altogether, our findings dedicated the

cellular heterogeneity within TME caused by BRCA1 mutation,

which was meticulously analyzed in the subsequent section.
T cells in BRCA1-WT specimens exhibit a
more exhausted and dysfunctional
phenotype

To investigate the relative heterogeneity of immune cells

between BRCA1-WT and BRCA1-MT samples, we explored the

features and functions of T/NK cells. T/NK cells were re-clustered

into 12 subpopulations, encompassing CD4+ naïve T cells (CD4+

Tn), CD4+ exhausted T cells (CD4+ Tex), CD4+ regulatory T cells
frontiersin.org
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(CD4+ Treg), CD8+ resident memory T cells (CD8+ Trm), four

clusters of CD8+ effector memory T cell (CD8+ Tem), two clusters

of CD8+ effector T cells (CD8+ Teff), CD8+ exhausted T cells (CD8

+ Tex), NK cells, which displayed characteristic marker gene

expression (Figures 2A, B, Supplementary Figure S3A). Notably,

CD4+ Treg, CD4+ Tex, and CD8+ Tex cells exhibited high

expression of canonical exhaustion markers, including PDCD1,

HAVCR2, LAG3, CTLA4, and TIGIT (Figure 2B). Ro/e analysis

further revealed that these subpopulations were preferentially

enriched in the BRCA1-WT group, indicative of a more

exhausted phenotype (Figure 2C). Furthermore, we found that

the proportion of CD4+ Tex cells was positively correlated with

the proportion of CD4+ Treg cells (Supplementary Figure S3B). The

pseudotime analysis was conducted to deeply understand the

immune dynamics. The results revealed that there were potential

developmental branches, from CD4+ Tn to CD4+ Treg (Path1) or

CD4+ Tex (Path2) (Figure 2D). We also identified the differential

expression levels of marker genes during the differentiation and

showed that FOXP3 and ICOS were strikingly upregulated along

the branch of CD4+ Treg, consistent with their established roles in

defining and sustaining the Treg lineage (Supplementary Figure

S3C). It was suggested via trajectory analysis that the developmental

trajectories were unclear in CD8+ T cells (Supplementary Figure

S3D). Moreover, we employed a trajectory analysis based on CD8+

Tem and Teff cells, and the findings illustrated an apparent
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tendency to transform into CD8+ Tex subpopulation (Figures 2E,

F). Moreover, Slingshot-based trajectory analysis was applied to

further corroborate these results (Supplementary Figures S3E, F).

Hence, we hypothesized that CD8+ Tex cells might derive from

CD8+ Tem cells in TNBC, simultaneously developing the property

of elevated exhaustion.

To assess the functional phenotype of T cells, we measured the

T-cell-associated signature scores via ssGSEA. The results

delineated that both CD4+ Tex and CD8+ Trm subpopulations

had higher proliferation scores. The highest cytotoxicity scores were

enriched in CD8+ Teff subpopulation, showing the key cell killing

capability (Figure 2F). For CD8+ T cells, we found that the

cytotoxicity score was negatively associated with naïveness score,

in line with the poor cell killing capability of more naïve T cells

(Supplementary Figure S3G). It was revealed via GO analysis of

CD8+ T cells that pathways linked to immune negative regulation

were preferentially congregated in Tex cells, metabolism-associated

pathways were predominantly observed in Trm cells, and T cell

activation pathways were enriched in other subpopulations

(Supplementary Figure S3H). Signature scores were compared

between the BRCA1-WT and BRCA1-MT groups. As depicted in

Figure 2H, the naïve scores of T cells were substantially elevated in

the BRCA1-MT group compared to the BRCA1-WT group, while

higher exhaustion and proliferation scores of T cells were observed

in the BRCA1-WT group. Intriguingly, we found that the
FIGURE 1

An atlas of cellular heterogeneity from BRCA1-WT and BRCA1-MT patients. (A) The acquisition of multi-scale transcriptomic datasets from TNBC
specimens. (B) UMAP plot of the 32,386 cells from eight TNBC samples, indicating seven main clusters (left panel). The proportions of distinct cell
clusters (right panel). Different colors indicate cell clusters and BRCA1 mutation status. (C) Feature plots of canonical marker genes for every cell
cluster. (D) Bar plots of the DEGs in each cell cluster.
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IGURE 2F

Phenotypic and functional characterization of T/NK cells in BRCA1-WT and BRCA1-MT samples. (A) UMAP plot showing the distribution of T/NK
cells, colored by cell subcluster. (B) Average gene expression of selected marker genes for T/NK cell subclusters. (C) The tissue prevalence for each
cell subcluster estimated via Ro/e analysis. (D) The developmental trajectory of CD4+ T cells, colored by cell subclusters from the associated cell
subpopulations. (E) The developmental trajectory analysis of CD8+ Tem, Tex, and Teff cells, colored by cell subclusters from the associated cell
subpopulations. (F) Violin plot showing the signature scores of gene sets associated with naiveness, cytotoxicity, exhaustion, proliferation, and
Treg in each T cell subpopulations, colored by cell subpopulations in (A). (G) Heatmap showing the differentially activated TFs in each T cell
subpopulations. (H) Signature scores of CD4+ cells (top panel), and CD8+ T cells (bottom panel) compared between the BRCA1-WT and BRCA1-MT
groups. Wilcoxon rank-sum test. (I) Scatter plot showing the correlation of pseudotime and exhaustion score of CD8+ Tem, Tex, and Teff cells,
colored by cell subpopulations in (A). (J) Signature scores of NK cells compared between the BRCA1-WT and BRCA1-MT groups. Wilcoxon rank-sum
test. (K) Bar plot showing the differentially activated pathways compared between BRCA1-WT and BRCA1-MT groups, colored by groups in (H).
*** p<0.001, **** p<0.0001.
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cytotoxicity score of CD8+ T cells in the BRCA1-WT group was

significantly higher than the BRCA1-MT group (Figure 2H).

Consistent with prior research, dysfunctional T cells displayed

higher proliferative potential (Figures S3I, J).

For Tem, Teff, and Tex subpopulations of CD8+ T cells, we dug

into the dynamic landscape of exhaustion scores along

developmental trajectory via pseudotime analysis, discovering a

significantly more rapid ascent of exhaustion scores in BRCA1-

WT group (Figure 2I). SCENIC analysis was conducted to further

unravel the underlying mechanism of a more dysfunctional

phenotype in the BRCA1-WT group. Specifically, genes within

the interferon regulatory factor family (including IRF2 and IRF9)

exhibited increased transcriptional activity in dysfunctional T cells

which preferentially enriched in BRCA1-WT group (Figure 2G).

Notably, this activation pattern was also confirmed at the gene

expression level. We compared the expression profiles of IRF family

genes in exhausted T cells between the two groups, and the results

were consistent with our hypothesis (Supplementary Figure S4),

collectively contributing to the formation of the immune-suppress

microenvironment (32, 33). These findings illustrated that BRCA1

potentially induced the immune dysfunction of T cells, leading to a

better understanding for the immunotherapy of BRCA1-

associated TNBC.

In addition, we delved into the underlying function of NK cell

subpopulation between the two groups. It was revealed by GSVA

that the BRCA1-WT group was characterized by more activated

metabolism-related pathways, such as fatty acid metabolism,

glycolysis, and oxidative phosphorylation (Figure 2K). This result

was supported by the finding of elevated cytotoxicity scores of NK

cells in the BRCA1-WT group (Figure 2J). Taken together, these

evidences indicated the activation of NK cells in the BRCA1-

WT group.
Activated phenotype of TAMs in the
BRCA1-MT group and immune tolerogenic
phenotype of DCs in the BRCA1-WT group

Accumulating evidences indicated that myeloid cells are the

most abundant leukocytes in breast tumours (34), and we herein

decoded the cellular complexity of myeloid cells in the patients with

BRCA1-WT and BRCA1-MT. Myeloid cells were subclustered into

monocyte, Tumor-associated macrophage (TAM) including SPP1+

TAM, C1Qs+TAM, HSPs+ TAM, ACP5+ TAM, and CCL5+ TAM,

classical dendritic cell (cDC) encompassing cDC, CD1A+ DC,

LAMP3+ DC and PCLAF+ DC, plasmacytoid DC (pDC) as well

as unknown subpopulations (Figure 3A). Combined with the

marker genes of each subpopulation (Figure 3B, Supplementary

Figure S5A), the unknown cell subpopulation was regarded as

double cells and excluded from the subsequent analysis.

In contrast to enhanced transcriptional perturbations of

myeloid cells within the BRCA1-MT group (Figure 1D), the Ro/e

analysis demonstrated that TAMs predominantly enriched in the

BRCA1-WT group but not C1Qs+ TAM and CCL5+ TAM

(Figure 3C). The trajectory analysis of monocytes and TAMs
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indicated that along seperate developmental paths, monocytes

derived from three TAM subpopulations including SPP1+ TAM,

C1Qs+ TAM, and ACP5+ TAM (Figure 3D). Subsequently, the

signature scores in each TAM subpopulation were evaluated to

illustrate the functional phenotype. As depicted in Figure 3E, the

M1 and M2 scores showed no significance among these TAM

subpopulations. However, we found a strikingly positive correlation

between M1 and M2 scores, reflecting the cellular heterogeneity of

TAMs within TME (r=0.31, p < 0.001) (Figure 3F). In response to

the function of their respective marker genes, we observed that

SPP1+ TAMs showed increased angiogenesis scores, whereas C1Qs

+, HSPs+, and CCL5+ TAM subpopulations showed increased

phagocytosis scores (Figure 3E). In contrast with the relationship

between M1 and M2 scores, a significant negative correlation was

observed in phagocytosis and angiogenesis scores, indicating their

superiority in illustrating the features of TAMs (r = -0.29, p < 0.001)

(Figure 3G). BRCA1 mutation might comprehensively enhance the

activation of TAMs within the TME, as supported in Figure 3H.

TAMs from BRCA1-MT tumors exhibited significantly higher M1

polarization scores, as well as elevated angiogenesis and

phagocytosis scores, compared to those from BRCA1-WT tumors

(Figure 3H). These results indicate that TAMs in the BRCA1-MT

group are functionally more active, potentially contributing to the

dynamic remodeling of the immune landscape.

We then interrogated the features of DC subpopulations and

conducted a comparison between the two groups. Monocle3

discovered that PCLAF+ DC cells with high proliferation

differentiated into LAMP3+ DC cells with comprehensively

elevated function along pseudotime trajectory, which was

validated by correlation analysis between signature scores and

pseudotime (Figures 3I-K, Supplementary Figures S5B-S4C).

Besides, there was a significant positive link between activation

score and migration score as well as the tolerance score of DC cells

(Figure 3L, Supplementary Figure S5D). PCLAF+ DC, as an

immature DC subpopulation enriched in the BRCA1-WT group,

induced the proliferation of Treg cells through interacting with

Tumor cells (Figure 3C) (35). Awing to the immature property of

PCLAF+ DC, we excluded this subpopulation and conducted the

comparison of signature scores between the two groups. The result

indicated that all three signature scores were strikingly higher in the

BRCA1-WT group than in the BRCA1-MT group (Figure 3M).

Taken together, we proposed the hypothesis that activated DCs in

the BRCA1-WT group could mediate immune tolerance within

the TME.
A subgroup of novel B cells in the BRCA1-
WT group

Next, we investigated the B cell subclusters in TNBC. The B cells

were subdivided into six subpopulations based on canonical marker

genes (Figures 4A, B). Utilizing Ro/e analysis, we found that

plasma3 cells were preferentially distributed in the BRCA1-WT

group (Figure 4C). FDCSP, one marker gene of this subcluster, was

associated with the activation and differentiation of B cells
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FIGURE 3

The characterization of myeloid cells in BRCA1-WT and BRCA1-MT samples. (A) UMAP plot showing the distribution of myeloid cells, colored by cell
subpopulations. (B) Average gene expression of selected marker genes for myeloid subclusters. (C) The tissue prevalence for each cell subcluster was
calculated via Ro/e analysis. (D) The developmental trajectory of monocytes, and TAMs, colored by cell subpopulations in (A). (E) Violin plot showing the
signature scores of gene sets associated with M1, M2, angiogenesis, and phagocytosis in each TAMs cell subpopulations, colored by cell subpopulations in
(A). (F) Scatter plot showing the correlation of M1 and M2 signature scores in TAMs, colored by cell subpopulations in (A). (G) Scatter plot showing the
correlation of angiogenesis and phagocytosis signature scores in TAMs, colored by cell subpopulations in (A). (H) Signature scores of TAMs were compared
between the BRCA1-WT and BRCA1-MT groups. Wilcoxon rank-sum test. (I) The developmental trajectory of DCs, colored by cell subpopulations in (A). (J)
Violin plot showing the signature scores of gene sets associated with activation, migration, and tolerance in each DC cell subpopulation, colored by cell
populations in (A). (K) Scatter plot showing the correlation of pseudotime and activation score in DCs, colored by cell subpopulations in (A). (L) Scatter plot
showing the correlation of activation and tolerance signature scores in DCs, colored by cell subpopulations in (A). (M) Signature scores of DCs compared
between the BRCA1-WT and BRCA1-MT groups. Wilcoxon rank-sum test. **** p<0.0001.
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(Supplementary Figure S6A). For delving into the complexity of

function within B cells, GO analysis was employed. Plasma3 cells

were enriched in ROS regulation pathways, such as response to

oxidative stress, and detoxification, which served as the signal

regulator of B cells (36) (Figure 4D).
Heterogeneity of gene expression and a
special pro-metastasis subcluster in
epithelial cells

Having evaluated immune cell heterogeneity, our attention

subsequently shifted to epithelial cells. Tumor epithelial cells were

distinguished from non-malignant epithelial cells via the CopyKAT

package and were further divided into 19 cell subpopulations

(Supplementary Figures S6B, C). Compared to the immune and

stromal cells, significant differences were observed in epithelial cells

across distinct specimens, revealing substantial intrasample

heterogeneity (Figures 4E, 1B). The expression of signature for

distinct tumor subsets was identified (Supplementary Figure S6D).

Intriguingly, Epi15, characterized by high expression of ISG15 was

found mainly in the BRCA1-WT4 specimen. ISG15 is regarded as a

critical proto-oncoprotein that enhances the proliferation and

metastasis of TNBC via inhibiting ubiquitin pathway (37, 38),

and may also mediate tumor immunity via the JAK/STAT

signaling pathway (39, 40).

We assessed the tumor heterogeneity scores across TNBC

samples, demonstrating a significant positive correlation between

intra- and inter-tumoral heterogeneity (r = 0.97, p < 0.001)

(Figure 4F). Furthermore, marginally elevated heterogeneity

scores were found in the BRCA1-WT group when compared to

the BRCA1-MT group (Figure 4G). Intriguingly, the expression

levels linked to human leukocyte antigen class I (HLA-I) displayed

inconsistency across TNBC samples, implying potential deficits in

the antigen-presenting capabilities of tumor cells (Figure 4I).

Specifically, the mean expression level of HLA-A correlated

positively with the percent of immune cells (Figure 4H). Despite

higher immune cell proportions in BRCA1-MT samples, there were

significant variations among these samples (Figure 4I).
BRCA1-driven CAF reprogramming and
clinical outcomes in TNBC

Stromal cells in TME exhibited obvious functional and

phenotypical heterogeneity and comprised multiple subsets. In

stromal cells, we identified five cell types with distinct functional

features, including myofibroblastic CAFs (myCAFs), inflammatory-

like CAFs (iCAFs), pericytes, endothelial cells, and unknown cells

(Figure 5A). The unknown subset was regarded as double cells and

excluded from the subsequence analysis. As shown in Figure 5B and

Supplementary Figure S7, myCAFs were characterized by the high

expression of POSTN and ACAT2, which showed immune-

suppressive and pro-invasive TME (41), while iCAFs exhibited
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elevated cytokine-related gene expression, such as CXCL12, and

CXCL14. It was revealed by distribution analysis that myCAFs were

primarily gathered in the BRCA1-WT group, while iCAFs were

mainly enriched in the BRCA1-MT group (Figure 5C). Notably, the

iCAF3 subset, highly expressing MEG3, showed a similar

distribution in the two groups. As previously characterized,

MEG3+ CAFs could modulate metalloprotease-associated gene

expression, including MMP1, MMP3, and MMP9, which was the

signature of pre-CAFs (42, 43). Thus, iCAF3 subset was regarded as

the original of CAFs, as evidenced by CytoTRACE (Figure 5E).

Monocle analysis further demonstrated that the iCAF3 subset

differentiated into myCAFs and iCAFs along separate pathways,

as corroborated by Slingshot (Figures 5D, F). These findings

suggested that BRCA1 mutation status might be a potential key

driver of CAF differentiation direction. Using SCENIC analysis,

iCAFs exhibited the activation of some essential TFs, such as JUN,

FOSB, and FOS (Figure 5G), reflecting high response probability to

ICIs (44). Furthermore, GSVA analysis revealed that the TNFa
pathway was preferentially activated in iCAFs (Figure 5H). Taken

together, we deduced that BRCA1 mutation mediated homologous

recombination deficiency (HRD), thus promoting the activation of

the TNFa pathway via modulating the JUN and FOS expression,

and ultimately induces the iCAF phenotype.

For myCAFs that were enriched in the BRCA1-WT group, the

TGF-b signaling pathway was found to promote the myCAF

transformation. GSVA analysis indicated that epithelial-

mesenchymal transition and apical junction pathways were also

observed in myCAFs, suggesting that myCAFs might facilitate

cancer metastasis (Figure 5H). We employed ssGSEA to assess

the clinical significance of signature genes from myCAF in TNBC

patients, demonstrating a correlation between elevated levels of this

subset and poor prognosis (Figure 5I). In summary, our findings

suggested that BRCA1 mutat ions could induce CAF

reprogramming within the TME, thereby mediating distinct

clinical outcomes in TNBC.
Cell–cell interactions of CXCL signaling
sent primarily by the iCAFs and CD99
signaling sent primarily by the myCAFs

To dissect the intercellular interaction network in TNBC,

CellChat was performed. Unsurprisingly, the BRCA1-MT group

had more interaction strengths compared to the BRCA1-WT group,

reflecting that BRCA1 mutation drove complex communication

networks (Figure 6A). As shown in Figure 6B, the iCAFs exhibited

the elevated strength of outgoing signals in the BRCA1-MT, while

myCAFs had the increased strength of outgoing signals in the

BRCA1-WT group. Furthermore, we identified the differential

molecular crosstalk between CAF and other cell subpopulations

(Figures 6C, D). Notably, the iCAF-mediated CXCL12-CXCR4

receptor/ligand pair was significantly enhanced in the BRCA1-

MT group, while myCAF-mediated CD99-CD99 was strikingly

increased in the BRCA1-WT group. More specifically, the
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FIGURE 4

The properties of B cells and epithelial cells in TNBC patients with or without BRCA1 mutation. (A) UMAP plot showing the distribution of B cells, colored
by cell subpopulations. (B) Average gene expression of selected marker genes for B cells. (C) The tissue prevalence for each cell subcluster via Ro/e
analysis. (D) Top five biological process terms of each B subcluster via GO analysis. (E) UMAP plot of epithelial cells, colored by sample. (F) Scatter plot
showing the correlation of intratumoral heterogeneity and intertumoral heterogeneity, colored by sample. (G) Comparison of intratumoral and
intertumoral heterogeneity between the BRCA1-WT and BRCA1-MT groups. Student’s t-test. (H) Scatter plot showing the correlation of the expression
level of HLA-A and percent of immune cells, colored by sample. (I) Average gene expression of HLA-associated genes among epithelial subpopulations.
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receivers of increasing CXCL12 signaling network were observed to

involve nearly all immune cell types in the BRCA1-MT group,

reflecting its central role in driving immune regulation (45). For the

CD99 signaling network, we observed decreased crosstalk

communications between myCAFs and other immune cell types

in the BRCA1-WT group, indicating its role in inhibiting immune

infiltration (Figure 6E).
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Multi-scale integrated analysis pinpointed
ISG15 as a critical myCAF-associated gene

We reasoned that finer-resolution changes in cel l

subpopulations may be masked when analyzing the relative

frequencies of broad cluster-based cell type identifications. To

obtain subtler differences of cell subsets within TME, we grouped
FIGURE 5

Characterization of stromal cells in TNBC samples. (A) UMAP plot showing the distribution of stromal cells, colored by cell subpopulations. (B) Average
gene expression of selected marker genes for stromal subclusters. (C) The tissue prevalence for each subcluster estimated via Ro/e analysis. (D) The
trajectory analysis of CAF subclusters via slingshot, colored by cell subpopulations. (E) Boxplot indicating the differential potential of CAF subclusters
using CytoTRACE algorithm, colored by cell subpopulations. (F) The developmental trajectory of CAF subclusters utilizing the monocle2 algorithm,
colored by cell subpopulations. (G) Heatmap showing the differential activated TFs in each stromal subcluster. (H) Bar plot indicating the differentially
activated pathways compared between myCAF and iCAF clusters. (I) K-M survival analysis of patients from the METABRIC dataset with low and high
infiltration abundance of the myCAF subgroup. Log-rank test.
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the cells into “neighborhoods” through k-nearest neighbor

clustering, as implemented via the milo analysis framework.

Differential abundance analysis of cell neighborhoods revealed

that BRCA1-WT patients exhibited significant enrichment for

myCAFs and BRCA1-MT patients were characterized by the

enrichment of iCAFs (Figures 7A, B). To further elucidate the

interactions among cell types at the spatial scale, four BRCA1-WT
Frontiers in Oncology 12
TNBC samples were included in this study. For every spot within

the spatial data, we calculated the enrichment scores of each cell

type, and correlation analyses were performed in each spatial RNA-

seq sample (Figure 7C). The enrichment scores of myCAFs and

iCAFs exhibited a significant positive correlation. In contrast,

myCAFs and iCAFs demonstrated a clear spatial exclusivity

(Figure 7D). These results reflected the homogeneity and
FIGURE 6

Cell-cell interaction network in BRCA1-WT and BRCA1-MT samples. (A) Bar plot showing the interaction strength between BRCA1-WT and BRCA1-
MT samples. (B) Heatmap indicating the differential interaction strength of cell-cell interaction network between BRCA1-MT and BRCA1-WT
samples. The bar represents the accumulated strength of interactions that were sent (right) or received (top) by each cell type. (C, D) The elevated
receptor/ligand interactions of CAFs with other cell subsets in the BRCA1-MT (C) and BRCA1-WT samples (D). (E) The inferred CXCL and CD99
signaling pathway network. Edge width denotes the communication probability.
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FIGURE 7

The identification of the key genes via integrated multi-scale analysis. (A) Neighborhood graph of immune and stromal cells utilizing Milo differential
abundance testing. Nodes represent neighborhoods from the cell populations. Colors indicate the log2-fold change between BRCA1-WT and
BRCA1-MT patients. Neighborhoods that enriched in BRCA1-MT patients are shown in red. Neighborhoods deleted in BRCA1-MT patients are shown
in blue. (B) Beeswarm and boxplots of cell subpopulations from immune and stromal cells based on Milo differential abundance testing. (C) The
correlation of spatial position among a subset of cell clusters in each sample. Spearman correlation. (D) Spatial distribution of enrichment scores for
myCAF and iCAF. (E) Boxplot showing the difference of enrichment scores between myCAF and iCAF in CAF+ spots. (F) Gene co-expression
network of TNBC. Each dot represents a single gene, colored by the gene module. The dot size is scaled by the eigengene-based connectivity (kME)
of the gene. The top five genes of each module are shown. (G) Phenotype-specific gene modules were identified via differential module eigengene
analysis. The significance threshold was set to log2FC (fold change) > 1 and adjusted p-value<0.05. (H) A flowchart depicting the selection pipeline
of key genes based on multi-scale data, including scRNA-seq and bulk RNA-seq. (I) Comparison of enrichment scores between myCAF and iCAF in
ISG15+ spots. Wilcoxon rank-sum test. *** p<0.001, **** p<0.0001.
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heterogeneity within CAF subgroups. In addition, we observed a

high degree of colocalization among CD4+ Tex, Bm, LAMP3+ DC,

and CD8+ Tem, suggesting the presence of tertiary lymphoid

structures (Supplementary Figure S8A). The mutual exclusivity

relationship was also observed between epithelial cells and plasma

cells (Supplementary Figure S8B).

We examined the enrichment scores of CAF subclusters in

specific CAF spots. It was evident that myCAFs had substantially

increased enrichment scores, consistent with their primary role in

the CAF phenotype atlas of BRCA1-WT samples (p < 0.001)

(Figures 7B, E). To pinpoint functional gene modules associated

with the myCAF subcluster in the BRCA1-WT group, we

conducted a co-expression network analysis using hdWGCNA on

CAF cells, obtaining nine gene modules (Figure 7F). Notably, both

CAF-M3 and CAF-M6 were significantly linked to the BRCA1-WT

phenotype and the myCAF subcluster (log2FC > 1, p < 0.05)

(Figure 7G). Employing a multi-scale identification framework,

ISG15 was regarded as a crucial gene within myCAFs from

BRCA1-WT patients, as devised in Figure 7H. Next, the

association between ISG15 expression and myCAFs was also

validated through spatial RNA-seq data. In spots expressing

ISG15, the enrichment scores of myCAFs substantially exceeded

others (p < 0.0001) (Figure 7I).
Construction of an ISG15-driven predictive
system for ICI response

The expression level of ISG15 was significantly upregulated in the

BRCA1-WT group compared to the BRCA1-MT group (p< 0.05)

(Figure 8A). Given this, we reasoned that a subset of patients within the

BRCA1-WT group, who exhibit BRCA1-like characteristics, may

influence ISG15 expression. Thus, the TNBC samples were split into

BRCA1-like and non-BRCA1-like groups as depicted by Chen et al

(46). The comparison of ISG15 expression showed that the elevation of

ISG15 expression was observed in the BRCA1-like group compared to

the non-BRCA1-like group (Supplementary Figure S9A). We next

evaluated the genetic vulnerabilities in eight TNBC cell lines via the

CRISPR gene essentiality data extracted from the DepMap database.

The result suggested that ISG15 was the most essential gene for

SUM229PE cells, one of the BRCA1-WT cell lines (Supplementary

Figure S9B). Our proteomics cohort (in-house cohort) indicated a

substantial upregulation of ISG15 expression in breast cancer tissues

compared to normal tissues, a finding supported by paired

comparisons in the GSE109169 cohort. (Figure 8B, Supplementary

Figure S9C). In summary, our study indicated that ISG15 was

significantly upregulated in breast cancer, however, its functional role

in TNBC specimens with BRCA1 mutation remained elusive.

Next, we evaluated the relationship between immunotherapeutic

response and BRCA1-related classification systems including BRCA1

mutation and BRCA1-like via the TIDE (Tumor Immune

Dysfunction and Exclusion) algorithm. No significant association

between the scores for dysfunction and exclusion and the BRCA1

status (p > 0.05) (Figure 8C). Exclusion score was significantly

elevated in the BRCA1-like group relative to the non-BRCA1-like
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group, and a higher dysfunction score was observed in the non-

BRCA1-like group (Supplementary Figure S9D). These results

indicated that the classification system based on BRCA1 status

showed poor performance for immunotherapeutic response, and

the development of a novel predictive model is particularly necessary.

As previous research indicated, ISG15 played a key role in

regulating the immune infiltration of the TME, and its upregulation

could synergically augment the therapeutic efficacy of ICIs (47).

Utilizing protein-protein interaction analysis, we identified 50

ISG15-associated genes (Supplementary Figure S9E). Logistic

regression was conducted 1,000 times to select the robust

predictive features for immunotherapeutic response, yielding 11

genes as the input features for developing the model. Based on the

12 cohorts with immunotherapeutic response information, we used

eight machine learning to devise the predictive model. A 5-fold

cross-validation approach was employed to streamline the model

and the ROC value was utilized to evaluate the performance of

models (Figure 8D). Comparison of the performance of eight

predictive models in the validation set showed that the greatest

AUC of 0.60 (95% CI: 0.51–0.69) occurred in the KNN model,

which was utilized for subsequent analysis (Figures 8E, F). For the

testing set, the KNN model had an AUC of 0.61 (95% CI: 0.51–

0.71), as shown in Figure 8G. To further explore the clinical

significance of the KNN model, survival analysis was performed

on TNBC patients from the METABRIC cohort. Increased response

probability was associated with favorable overall survival (p < 0.05)

(Figure 8H). In the TNBC patients from the TCGA cohort, we

observed a similar trend of overall survival (p = 0.182) (Figure 8I).

Unlike the classification systems of BRCA1 mutation and

BRCA1-like, the high response probability group exhibited

significantly lower exclusion scores (p < 0.05) and slightly higher

dysfunction scores (p = 0.19), as depicted in Figure 8J. Utilizing

ssGSEA, we found that elevated immune infiltration scores were

observed in the high response probability group relative to the low

response probability group (Figure 8K).

The global feature importance for the KNN model was assessed

using the DALEX package, identifying PCNA, STAT1, IFI6, and

OAS1 as the four most significant genes (Supplementary Figure S9F).

PCNA, a key immunological checkpoint molecule, is suggestive of a

favorable response to NK cell-based immunotherapy (48). The

stability of PCNA was augmented by ISG15 modification

(ISGylation), substantiating the model’s validity in predicting

immune therapy responses (49). ISG15 and STAT1 collectively

activated IFN-related pathways, which promoted the release of

IFNg within immune cells, ultimately modulating accumulated

immune infiltration (50). Furthermore, the expression of IFI6 was

markedly positively associated with the abundance of B and T cells

within TME, indicating a key role in immune regulation (51). The

RNA sensor OAS1 and its upregulation responded to the

amplification of IFN-1 and immune suppression genes, as

evidenced by the partial elevation of immune suppressive cells in

the high response probability group (50). Taken together, our

predictive model has the potential to accurately identify TNBC

patients who benefit from ICI therapy compared to the prediction

based on BRCA1 mutation status.
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FIGURE 8

Establishment of a predictive model for immunotherapy response. (A) Boxplot showing the difference of ISG15 expression levels between BRCA1-WT
and BRCA1-MT groups in TNBC specimens from METABRIC dataset. Wilcoxon rank-sum test. (B) Higher expression of ISG15 occurred in tumor
tissue compared to normal tissue from the in-house proteomics cohort. T-test. (C) Boxplot indicating the difference of immune dysfunction (left
panel) and exclusion scores (right panel) between BRCA1-WT and BRCA1-MT groups in TNBC specimens from METABRIC dataset. Wilcoxon rank-
sum test. (D) workflow of developing the ISG15-associated model via machine learning algorithms. (E) ROC curves indicating the difference of
multiple models in the validation set. (F) ROC curve of KNN model in the validation set. (G) ROC curve of KNN model in the testing set. (H, I) K-M
survival analysis based on the response probability from KNN model in the METABRIC dataset (H) and TCGA dataset (I). Patients in the low response
probability group had poor survival. Log-rank test. (J) Boxplot indicating the difference of immune exclusion (left panel) and dysfunction scores (right
panel) between high and low response probability groups in TNBC specimens from METABRIC dataset. Wilcoxon rank-sum test. (K) The difference in
ssGSEA scores of immune cell types between the high and low response probability groups in TNBC specimens from METABRIC dataset. Wilcoxon
rank-sum test. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.
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Discussion

TNBC is considered a unique subtype of breast cancer with an

unfavorable prognosis, known by high heterogeneity and lacking

effective therapeutic targets (52). Notably, around half of TNBC

patients exhibit BRCA1 mutation (13). Recent findings have

indicated that BRCA1-mutant TNBCs are potentially responsive

to ICI treatments owing to their high immunogenicity and

mutational burden (15). Nevertheless, understanding of the TME

in BRCA1-mutant TNBC remains unclear. In this study, we

leveraged scRNAseq, spatial transcriptome, and bulk RNAseq

data to comprehensively unravel the TME landscape in the

BRCA1-MT TNBC, compared to the BRCA1-WT TNBC.

Supplementary Table S4 provides a clearer summary of the

phenotypic differences across epithelial, immune, and stromal

compartments by integrating the key findings from multi-omic

analyses. Our analysis revealed that immune and stromal

components were enriched in the BRCA1-MT group, which was

regarded as “hot” tumor. In contrast, the BRCA1-WT group was

primarily composed of tumor cells, in line with the features of

“cold” tumor (53). Through subpopulation analysis, we delved

deeper into the cellular heterogeneity of the TME in these two

types of TNBC, providing new insights into TME distributions

driven by BRCA1 mutation. Our research also found that BRCA1

mutation drove the distinct differential direction of CAFs into iCAF

or myCAF. Through Cell communication analysis, we identified

iCAF-mediated CXCL12-CXCR4 and myCAF-mediated CD99-

CD99 signaling networks to offer new therapeutic strategies for

both two types of TNBC. Subsequently, based on multi-scale data

analysis, we identified ISG15 as a key immune molecule and

developed an ISG15-associated predictive system to predict

responses to ICIs.

Our study performed a comprehensive comparison of the TME

landscapes in BRCA1-MT and BRCA1-WT TNBC. The BRCA1-

WT group exhibited the enrichment of elevated exhausted but

enhanced cytotoxic T cells, alongside tolerant DC. Spatial

transcriptomics revealed positive correlations between Tex, Treg,

and LAMP3+ DCs. Notably, the increased CXCL13 expression in

the CD4+ Tex subset induced the formation of tertiary lymphoid

structure (54), suggesting enhanced cytotoxic activity in the

BRCA1-WT group. This group also displayed robust expression

of HLA-related molecules, indicating the immunotherapeutic

response probability (55). Unfortunately, the dominant tumor

cells and myCAFs increased the stiffness of TME, suggesting a

poorer immune response. In contrast, BRCA1 mutation was

associated with higher levels of immune infiltration, suggesting

effective immune responses (56). BRCA1 mutation accumulated

more tumor mutational burdens and induced the elevation of

neoantigen, thereby broadly activating T cells in the TME.

Mechanistically, BRCA1 mutation-mediated DNA damage

enhanced the activation of NF-kB pathway signaling, thus

promoting inflammation and immune cell infiltration (57, 58).

Despite accumulated neoantigen production in the BRCA1-MT

group, the heterogeneous expression of HLA-related genes within
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tumor cells may impair immune cell recruitment and ICI response

in this group.

As critical components of the TME, TAMs participated in

various processes including tumor growth, angiogenesis, immune

regulation, metastasis, as well as chemotherapy resistance. Through

reclustering of the myeloid lineage, we identified five unique TAM

subpopulations with distinct functional phenotypes. Mirroring

previous reports, SPP1+ TAMs exhibited the high expression of

SPP1, CCL20, and angiogenesis-associated genes, notably VCAN

and VEGFA, while C1Qs+ TAMs expressed C1Qs, APOE, and

SLC40A1. Complement C1q, including C1QA/B/C, improves

phagocytosis but inhibits inflammation for macrophage (59).

Moreover, three distinct TAM subclusters were identified. HSPs+

TAM was characterized by the elevated expression of HSPA1A,

HSPA1B, and HSPB1, corroborating prior studies that HSPs cause

the production of tolerogenic TAMs (60). Mechanically, augmented

HSPs also potentiate breast cancer metastasis via the EMT process

(61). ACP5+ TAMs were linked to overexpression of

metalloenzyme-related genes encompassing ACP5, MMP9, and

CTSP, increasing the metastatic potential of TNBC cells (62).

CCL5 derived from TAMs promotes tumor invasion, metastasis,

and the self-renewal of BCSCs (63). These TAM subclusters

mentioned above contributed to the aggressive and immune-

tolerant characterization of BRCA1-WT TNBC. Nevertheless,

BRCA1-MT TNBC showed enhanced angiogenesis and boosted

innate phagocytic activity. Additionally, our study also

demonstrated that macrophage characteristics based on vascular

and phagocytic phenotypes were accurately captured rather than

the traditional M1/M2 classification.

In the TME, CAF is the most prominent stromal cell type with

extensive cellular interactions. Utilizing Ro/e and global differential

abundance analyses, myCAFs were predominantly found in the

BRCA1-WT group, whereas iCAFs were prevalently enriched in the

BRCA1-MT group. Further, multiple pseudotime analyses

identified a novel origin subpopulation of CAFs (iCAF3), termed

pre-CAF. The CAF subpopulations showed a complex relationship

of homology but spatial exclusion, underscoring the CAF

heterogeneity within TME. Through differential activation of TFs

and enrichment pathways, we dug into the underlying molecular

mechanism of BRCA1 influencing the differentiation of pre-CAFs.

BRCA1-mediated DNA damage stimulated the TNFa signaling

pathway via activating TFs including FOS and JUN, thereby

mediating iCAF transformation. In contrast, an enhanced TGF-b
signaling pathway in the BRCA1-WT group induced myCAF

differentiation. Unintriguingly, CellChat analysis underscored

more frequent cellular interactions occurred in the BRCA1-MT

group, marked by an abundance of non-tumor cells. The extensive

activation of the CXCR4-CXCL12 signaling network is observed

within the “hot” TME, while the CD99-CD99 signaling network is

prevalent across the “cold” TME (53). Our cell communication

analysis not only supported these observations but also emphasized

the crucial role of CAFs in TNBC.

ISG15 encodes the ISG15 protein, which is involved in multiple

cell processes, encompassing cell motility and tumor invasion (64).
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Prior studies suggest that ISG15 may serve as a promising

immunomodulatory to modulate the TME towards inhibiting

tumor direction (65). Employing a multi-scale framework, ISG15

was pinpointed as a crucial gene in myCAFs of BRCA1-WT

patients. With the aid of spatial transcriptomics and proteomics

data, we confirmed that ISG15 is highly expressed and

predominantly co-located with the myCAF subcluster in breast

cancer, underlining its significant role in pro-tumor. Interestingly,

despite previous reports of its elevated expression in BRCA1 mutant

TNBC cell lines (66), we found that ISG15 was a signature gene of

the myCAF subset in the BRCA-WT group. Employing the BRCA1-

like classification system, we noted high ISG15 expression in the

BRCA1-like category. Additionally, TNBC cell line data from the

DepMap database indicates that ISG15 ranks as the top essential

gene for survival in the TNBC-WT cell line (SUM229PE). In line

with this paradoxical phenotype, ISG15 is elevated both in stromal

and cancer cells (67).

Machine learning has been widely utilized in medical research

for decoding the TME and predicting therapeutic responses. In light

of the essential role of ISG15 in tumor immunoregulation, we

constructed an ISG15-associated predictive system for ICI response

leveraging our proposed machine learning framework. This model

had good performance for evaluating immune cell content in the

TME and forecasting immunotherapy effectiveness. As ISG15 acts

as a double-edged sword in immunoregulation, pro-tumorigenic

immune cells were inevitably increased, leading to the decreased

performance of this model. Despite BRCA1 status are not

significantly correlated with immune cell content, BRCA1

mutation-mediated TME still exhibits more anti-tumor activity.

Thus, the combination of BRCA1 mutation status with our

predictive model could enhance the accuracy in identifying

patients who benefit from ICI therapy.

Although our study provides significant insights into the TME

heterogeneity between the BRCA1-WT group and the BRCA1-MT

group from TNBC patients, several limitations should be further

explored. To comprehensively delineate the TME differences

between the two groups from the spatial transcriptome

perspective, spatial RNAseq data on BRCA1 mutation should be

collected and analyzed. Furthermore, although the predictive

system was developed from multiple ICI cohorts, it has not yet

been validated in TNBC cohorts treated with ICIs. Moreover, our

researches are supported solely by multi-scale transcriptome data

analysis, the underlying molecular mechanisms require

further elucidation.
Conclusions

In conclusion, our multi-scale transcriptomic analysis of

BRCA1 status in TNBC provides new insights into their role in

structuring the TME. Furthermore, ISG15 was highlighted as a

potential immunoregulatory marker associated with TME

alterations between the two groups, warranting further

investigation into its function and therapeutic relevance.
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Moreover, the study constructs a predictive system to identify

precisely the TNBC patients for clinical benefits.
Data availability statement

The single-cell RNA sequencing data used in this study were

obtained from the Gene Expression Omnibus (GEO, https://www.ncbi.

nlm.nih.gov/geo/) under accession number GSE161529. Spatial

transcriptomics data are available at Zenodo (https://zenodo.org/

record/4739739). Bulk transcriptomic, somatic mutation, and clinical

data for TNBCwere retrieved from The Cancer GenomeAtlas (TCGA,

https://portal.gdc.cancer.gov/) and the METABRIC cohort via

cBioPortal (https://www.cbioportal.org/study/summary?id=brca_

metabric). The external validation dataset was obtained from GEO

(GSE109169). Immune checkpoint inhibitor cohorts were integrated

from GEO (GSE135222, GSE78220, GSE126044, GSE67501,

GSE115821 , GSE96619 , GSE100797 , GSE91061) , the

IMvigor210CoreBiologies R package, Genome Sciences Centre

(https://www.bcgsc.ca/downloads/immunoPOG/), and two published

studies (DOI: 10.1038/s41591-020-0839-y , 10.1038/s41591-019-0654-

5 ). Proteomic data generated in this study were acquired via high-

sensitivity label-free LC-MS/MS and processed using Proteome

Discoverer 2.4 with a 1% FDR threshold; detailed methods are

provided in the Supplementary Materials. The raw proteomic data

are available from the corresponding author upon reasonable request.
Ethics statement

The studies involving humans were approved by the Ethics

Committee of the First Affiliated Hospital of Zhengzhou University.

The studies were conducted in accordance with the local legislation

and institutional requirements. The participants provided their

written informed consent to participate in this study.
Author contributions

SS: Conceptualization, Formal analysis, Methodology, Writing –

original draft, Writing – review & editing. SC: Methodology,

Visualization, Writing – review & editing. KL: Writing – review &

editing, Formal analysis.GZ:Writing– review&editing, Investigation.

NW: Writing – review & editing, Data curation. YX: Validation,

Writing – review & editing. XW: Funding acquisition, Writing –

review & editing. JC: Supervision, Writing – review & editing. LL:

Project administration, Writing – review & editing. YS: Project

administration, Investigation, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This work was supported
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://zenodo.org/record/4739739
https://zenodo.org/record/4739739
https://portal.gdc.cancer.gov/
https://www.cbioportal.org/study/summary?id=brca_metabric
https://www.cbioportal.org/study/summary?id=brca_metabric
https://www.bcgsc.ca/downloads/immunoPOG/
https://doi.org/10.3389/fonc.2025.1538574
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2025.1538574
by China Postdoctoral Science Foundation (No. 2021M702965,

2021M692924), the Joint Construction Project of Medical Science

and Technology Research Program of Henan Province (No.

LHGJ20210335), the Major Research Project of High Education

Institutions of Henan Province, China (No. 22A320021), and the

Scientific and Technological Project Key R&D of Henan Province

(No. SBGJ202102123).
Acknowledgments

The proteomics data were analyzed through the free online

platform of the Majorbio Cloud Platform (cloud.majorbio.com).

We extend our sincere thanks to the Majorbio Cloud Platform.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Oncology 18
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1538574/

full#supplementary-material
References
1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J
Clin. (2023) 73:17–48. doi: 10.3322/caac.21763

2. Dent R, Trudeau M, Pritchard KI, HannaWM, Kahn HK, Sawka CA, et al. Triple-
negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res.
(2007) 13:4429–34. doi: 10.1158/1078-0432.Ccr-06-3045

3. Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular
subtyping and treatment progress. Breast Cancer Res. (2020) 22:61. doi: 10.1186/
s13058-020-01296-5

4. Bou Zerdan M, Ghorayeb T, Saliba F, Allam S, Bou Zerdan M, Yaghi M, et al.
Triple negative breast cancer: updates on classification and treatment in 2021. Cancers
(Basel). (2022) 14. doi: 10.3390/cancers14051253

5. Chen Z, Liu Y, Lyu M, Chan CH, Sun M, Yang X, et al. Classifications of triple-
negative breast cancer: insights and current therapeutic approaches. Cell Biosci. (2025)
15:13. doi: 10.1186/s13578-025-01359-0

6. Howard FM, Olopade OI. Epidemiology of triple-negative breast cancer: A
review. Cancer J. (2021) 27:8–16. doi: 10.1097/ppo.0000000000000500

7. Pedersen RN, Esen BÖ., Mellemkjær L, Christiansen P, Ejlertsen B, Lash TL,
et al. The incidence of breast cancer recurrence 10–32 years after primary diagnosis.
JNCI: J Natl Cancer Institute. (2021) 114:391–9. doi: 10.1093/jnci/djab202

8. Ignatov A, Eggemann H, Burger E, Ignatov T. Patterns of breast cancer relapse in
accordance to biological subtype. J Cancer Res Clin Oncol. (2018) 144:1347–55.
doi: 10.1007/s00432-018-2644-2

9. Radosa JC, Eaton A, StempelM, Khander A, Liedtke C, Solomayer EF, et al. Evaluation
of local and distant recurrence patterns in patients with triple-negative breast cancer
according to age. Ann Surg Oncol. (2017) 24:698–704. doi: 10.1245/s10434-016-5631-3

10. Agostinetto E, Losurdo A, Nader-Marta G, Santoro A, Punie K, Barroso R, et al.
Progress and pitfalls in the use of immunotherapy for patients with triple negative
breast cancer. Expert Opin Investig Drugs. (2022) 31:567–91. doi: 10.1080/
13543784.2022.2049232

11. Keenan TE, Tolaney SM. Role of immunotherapy in triple-negative breast
cancer. J Natl Compr Canc Netw. (2020) 18:479–89. doi: 10.6004/jnccn.2020.7554

12. Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-
negative breast cancer-the road to new treatment strategies. Lancet. (2017) 389:2430–42.
doi: 10.1016/s0140-6736(16)32454-0

13. Choi E, Mun GI, Lee J, Lee H, Cho J, Lee YS. BRCA1 deficiency in triple-negative
breast cancer: Protein stability as a basis for therapy. BioMed Pharmacother. (2023)
158:114090. doi: 10.1016/j.biopha.2022.114090

14. Krais JJ, Johnson N. BRCA1 mutations in cancer: coordinating deficiencies in
homologous recombination with tumorigenesis. Cancer Res. (2020) 80:4601–9.
doi: 10.1158/0008-5472.Can-20-1830
15. Nolan E, Savas P, Policheni AN, Darcy PK, Vaillant F, Mintoff CP, et al.
Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated
breast cancer. Sci Transl Med. (2017) 9. doi: 10.1126/scitranslmed.aal4922

16. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast,
sensitive and accurate integration of single-cell data with Harmony. Nat Methods.
(2019) 16:1289–96. doi: 10.1038/s41592-019-0619-0

17. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based analysis
of lung single-cell sequencing reveals a transitional profibrotic macrophage.
Nat Immunol. (2019) 20:163–72. doi: 10.1038/s41590-018-0276-y

18. Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, et al. Landscape and dynamics of
single immune cells in hepatocellular carcinoma. Cell. (2019) 179:829–845.e820.
doi: 10.1016/j.cell.2019.10.003

19. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal
enrichment tool for interpreting omics data. Innovation (Camb). (2021) 2:100141.
doi: 10.1016/j.xinn.2021.100141

20. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007

21. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The
dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering
of single cells. Nat Biotechnol. (2014) 32:381–6. doi: 10.1038/nbt.2859

22. Dann E, Henderson NC, Teichmann SA, Morgan MD, Marioni JC. Differential
abundance testing on single-cell data using k-nearest neighbor graphs. Nat Biotechnol.
(2022) 40:245–53. doi: 10.1038/s41587-021-01033-z

23. Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, et al. Delineating copy
number and clonal substructure in human tumors from single-cell transcriptomes.
Nat Biotechnol. (2021) 39:599–608. doi: 10.1038/s41587-020-00795-2

24. Gulati GS, Sikandar SS, Wesche DJ, Manjunath A, Bharadwaj A, Berger MJ, et al.
Single-cell transcriptional diversity is a hallmark of developmental potential. Science.
(2020) 367:405–11. doi: 10.1126/science.aax0249

25. Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H,
Hulselmans G, et al. SCENIC: single-cell regulatory network inference and
clustering. Nat Methods. (2017) 14:1083–6. doi: 10.1038/nmeth.4463

26. Kang K, Wu Y, Han C, Wang L, Wang Z, Zhao A. Homologous recombination
deficiency in triple-negative breast cancer: Multi-scale transcriptomics reveals distinct
tumor microenvironments and limitations in predicting immunotherapy response.
Comput Biol Med. (2023) 158:106836. doi: 10.1016/j.compbiomed.2023.106836

27. Morabito S, Reese F, Rahimzadeh N, Miyoshi E, Swarup V. hdWGCNA
identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep
Methods. (2023) 3:100498. doi: 10.1016/j.crmeth.2023.100498
frontiersin.org

http://www.cloud.majorbio.com
https://www.frontiersin.org/articles/10.3389/fonc.2025.1538574/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1538574/full#supplementary-material
https://doi.org/10.3322/caac.21763
https://doi.org/10.1158/1078-0432.Ccr-06-3045
https://doi.org/10.1186/s13058-020-01296-5
https://doi.org/10.1186/s13058-020-01296-5
https://doi.org/10.3390/cancers14051253
https://doi.org/10.1186/s13578-025-01359-0
https://doi.org/10.1097/ppo.0000000000000500
https://doi.org/10.1093/jnci/djab202
https://doi.org/10.1007/s00432-018-2644-2
https://doi.org/10.1245/s10434-016-5631-3
https://doi.org/10.1080/13543784.2022.2049232
https://doi.org/10.1080/13543784.2022.2049232
https://doi.org/10.6004/jnccn.2020.7554
https://doi.org/10.1016/s0140-6736(16)32454-0
https://doi.org/10.1016/j.biopha.2022.114090
https://doi.org/10.1158/0008-5472.Can-20-1830
https://doi.org/10.1126/scitranslmed.aal4922
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1016/j.cell.2019.10.003
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/nbt.2859
https://doi.org/10.1038/s41587-021-01033-z
https://doi.org/10.1038/s41587-020-00795-2
https://doi.org/10.1126/science.aax0249
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1016/j.compbiomed.2023.106836
https://doi.org/10.1016/j.crmeth.2023.100498
https://doi.org/10.3389/fonc.2025.1538574
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2025.1538574
28. Braun DA, Hou Y, Bakouny Z, Ficial M, Sant’ Angelo M, Forman J, et al.
Interplay of somatic alterations and immune infiltration modulates response to PD-1
blockade in advanced clear cell renal cell carcinoma. Nat Med. (2020) 26:909–18.
doi: 10.1038/s41591-020-0839-y

29. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFb
attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells.
Nature. (2018) 554:544–8. doi: 10.1038/nature25501

30. Liu D, Schilling B, Liu D, Sucker A, Livingstone E, Jerby-Arnon L, et al.
Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in
patients with metastatic melanoma. Nat Med. (2019) 25:1916–27. doi: 10.1038/s41591-
019-0654-5

31. Pender A, Titmuss E, Pleasance ED, Fan KY, Pearson H, Brown SD, et al.
Genome and transcriptome biomarkers of response to immune checkpoint inhibitors
in advanced solid tumors. Clin Cancer Res. (2021) 27:202–12. doi: 10.1158/1078-
0432.Ccr-20-1163

32. Lukhele S, Rabbo DA, Guo M, Shen J, Elsaesser HJ, Quevedo R, et al. The
transcription factor IRF2 drives interferon-mediated CD8+ T cell exhaustion to restrict
anti-tumor immunity. Immunity. (2022) 55:2369–2385.e2310. doi: 10.1016/
j.immuni.2022.10.020

33. Morimoto Y, Kishida T, Kotani SI, Takayama K, Mazda O. Interferon-b signal
may up-regulate PD-L1 expression through IRF9-dependent and independent
pathways in lung cancer cells. Biochem Biophys Res Commun. (2018) 507:330–6.
doi: 10.1016/j.bbrc.2018.11.035

34. Williams CB, Yeh ES, Soloff AC. Tumor-associated macrophages: unwitting
accomplices in breast cancer Malignancy. NPJ Breast Cancer. (2016) 2:15025.
doi: 10.1038/npjbcancer.2015.25

35. Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E, et al. Tumor cells
convert immaturemyeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25
+ regulatory T cell proliferation. J Exp Med. (2005) 202:919–29. doi: 10.1084/jem.20050463

36. Zhang H, Wang L, Chu Y. Reactive oxygen species: The signal regulator of B cell.
Free Radical Biol Med. (2019) 142:16–22. doi: 10.1016/j.freeradbiomed.2019.06.004

37. Burks J, Reed R, Desai S. ISGylation governs the oncogenic function of Ki-Ras in
breast cancer. Oncogene. (2014) 33:794–803. doi: 10.1038/onc.2012.633

38. Wang F, Zhang N, Niu R, Lu Y, Zhang W, He Z. Identification of biomimetic
nanoplatform-mediated delivery of si-ISG15 for treatment of triple-negative breast
cancer. Cell Signal. (2024) 118:111117. doi: 10.1016/j.cellsig.2024.111117

39. Escher TE, Lui AJ, Geanes ES, Walter KR, Tawfik O, Hagan CR, et al. Interaction
between MUC1 and STAT1 drives IFITM1 overexpression in aromatase inhibitor-
resistant breast cancer cells and mediates estrogen-induced apoptosis. Mol Cancer Res.
(2019) 17:1180–94. doi: 10.1158/1541-7786.Mcr-18-0916

40. Wang Z, Li T, Gong Z, Xie J. Role of ISG15 post-translational modification in
immunity against Mycobacterium tuberculosis infection. Cell Signalling. (2022)
94:110329. doi: 10.1016/j.cellsig.2022.110329

41. Chen C, Guo Q, Liu Y, Hou Q, Liao M, Guo Y, et al. Single-cell and spatial
transcriptomics reveal POSTN(+) cancer-associated fibroblasts correlated with
immune suppression and tumour progression in non-small cell lung cancer. Clin
Transl Med. (2023) 13:e1515. doi: 10.1002/ctm2.1515
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