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Purpose: This study aimed to establish and evaluate a model utilizing bi-

parametric ultrasound-based deep learning radiomics (DLR) in conjunction

with clinical factors to anticipate clinically significant prostate cancer (csPCa).

Methods: We retrospectively analyzed 232 participants from our institution who

underwent both B-mode ultrasound and shear wave elastography (SWE) prior to

prostate biopsy between June 2022 and December 2023. A random allocation

placed the participants into training and test cohorts with a 7:3 distribution. We

developed a nomogram that integrates DLR with clinical factors within the

training cohort, which was subsequently validated using the test cohort. The

diagnostic performance and clinical applicability were evaluated with receiver

operating characteristic (ROC) curve analysis and decision curve analysis.

Results: In our study, the bi-parametric ultrasound-based DLR model

demonstrated an area under the curve (AUC) of 0.80 (95%CI: 0.70-0.91) in the

test set, surpassing the performance of both the radiomics and deep learning

models individually. By integrating clinical factors, a composite model, presented

as the nomogram, was developed and exhibited superior diagnostic

performance, achieving an AUC of 0.87 (95%CI: 0.77-0.95) in the test set. The

performance exceeded that of the DLR (P = 0.049) and the clinical model (AUC =

0.79, 95%CI: 0.69-0.86, P = 0.041). Furthermore, the decision curve analysis

indicated that the composite model provided a greater net benefit across a

various high-risk threshold than the DLR or the clinical model alone.

Conclusion: To our knowledge, this is the first proposal of a nomogram

integrating ultrasound-based DLR with clinical indicators for predicting csPCa.

This nomogram can improve the accuracy of csPCa prediction and may help

physicians makemore confident decisions regarding interventions, particularly in

settings where MRI is unavailable.
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1 Introduction

Prostate cancer (PCa) has become a commonmalignant tumor in

men globally, with its incidence and mortality rates increasing each

year (1). As the global population ages and medical technology

advances, the need for effective screening and early diagnosis has

become more critical. Nonetheless, existing diagnostic techniques like

prostate-specific antigen (PSA) testing and digital rectal examination

(DRE) have shortcomings in precisely detecting clinically significant

prostate cancer (csPCa) (2). These traditional means often lead to

misdiagnosis, underdiagnosis, and over-treatment, imposing

unnecessary psychological and physical burdens on patients.

In the past few years, multiparametric magnetic resonance

imaging (mpMRI) has turned into a popular method for PCa

screening and diagnosis. By integrating various imaging modalities,

mpMRI significantly improves the detection and grading of PCa,

particularly in lesion localization and preoperative assessment (3).

However, the high cost, complex equipment requirements, and

limited sensitivity in detecting small-volume or low-grade tumors

restrict its broader clinical application (4).

Multiparametric ultrasound (mpUS), a cost-effective and easy-

to-operate imaging modality, has garnered increasing attention as

an alternative. By combining imaging techniques like grayscale

ultrasound, elastography, and contrast-enhanced ultrasound,

mpUS provides structural, stiffness, and hemodynamic

information about prostate tissue, offering additional diagnostic

value in the early detection of PCa (5). In a prospective, multicenter

study, Grey et al. analyzed 257 patients suspected of PCa and

compared the diagnostic accuracy of mpUS with mpMRI (6). They

found that the diagnostic rate of csPCa with mpUS was only 4.3%

lower than that of mpMRI, with diagnostic rates of 26% for mpUS

and 30% for mpMRI. Combining both imaging methods further

increased the diagnostic rate to 32%.

The advent of radiomics and deep learning technologies has

introduced new opportunities for improving csPCa diagnosis (7, 8).

Radiomics combines medical imaging, computer science, and

statistics to extract quantitative features from images, revealing

subtle patterns not easily detected through traditional visual

analysis (9). Deep learning algorithms, capable of automatically

identifying complex imaging features, further enhance the accuracy

in diagnosing csPCa (10).

Given the recent developments in these approaches, we

performed a retrospective study to establish and evaluate a bi-

parametric ultrasound-based deep learning radiomics (DLR) aimed

at improving the accuracy of csPCa diagnosis. This model could

provide an alternative diagnostic tool for physicians, especially in

settings where MRI is not available.
2 Materials and methods

2.1 Patient demographics

From June 2022 to December 2023, 272 patients suspected of

having PCa, due to PSA rise and/or positive DRE, were
Frontiers in Oncology 02
retrospectively enrolled at the Department of Urology, Second

Affiliated Hospital of Nantong University. Below are the criteria

for inclusion: 1) elevated PSA; 2) received bi-parametric ultrasound

including both grey scale and shear wave elastography (SWE)

followed by prostate biopsy. Below are the criteria for exclusion:

1) PSA > 30 ng/mL; 2) absence of bi-parametric ultrasound and/or

biopsy data; 3) history of radiotherapy or endocrine therapy prior to

biopsy; 4) prostate volume > 80 mL. Finally, participants were

randomly allocated to the training and test cohorts with a 7:3

distribution. The flowchart is shown in Figure 1.
2.2 Ethics

This research received approval from the Ethics Committee of

the Second Affiliated Hospital of Nantong University (2022KT100)

and was performed in line with the ethical standards set by the 1964

Declaration of Helsinki.
2.3 Transrectal bi-parametric ultrasound
examination

The apex, middle, and base of the prostate were examined using

B-mode ultrasound and SWE for each patient. Two seasoned

radiologists performed the examination with an Aixplorer®

Ultrasound scanner (Supersonic Imagine, Aixplorer V, France).

Following the measurements of prostate volume (volume =

length × width × height × 0.52), transverse and sagittal scans of the

entire prostate were recorded by B-mode ultrasound. The presence

of calcifications, cysts, and hypoechoic lesions indicated abnormal

echo patterns. The operator visually identified and saved images of

the prostate’s apical, middle, and base transverse planes. If any

prostate areas appeared more suspicious than these selected planes,

they were captured and stored.

Before SWE imaging, settings for maximum penetration and

optimal elasticity were adjusted as needed. The SWE box scanned

each predefined transverse plane on one side or both sides for full

prostate coverage. A stable signal was maintained with the sensor

held steady for 5 seconds. If areas outside the planned imaging

plane appeared suspicious, they were also examined.
2.4 Biopsy procedure and pathology

A radiologist with ten years of experience performed TRUS-

guided trans-perineal prostate biopsies using a Mylab Twice

Ultrasound scanner with a 5.5-10 MHz probe. Local anesthesia

was administered with 10 mL of lidocaine via a 22 G needle. An 18-

G biopsy gun from Bard, capable of penetrating 22 mm, was used.

The “12+X” biopsy, consisting of a 12-core systematic biopsy

and targeted biopsies for suspicious regions detected by SWE or

TRUS, was performed for each individual. A systematic biopsy was

performed in accordance with predefined transverse planes,

utilizing visual estimation by an experienced radiologist. This
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procedure involved the insertion of a needle into 12 designated

regions of the prostate (11). In addition to the previously mentioned

12 needles, three or four additional needles were inserted into the

area of suspicion.

Pathologists, unaware of clinical and ultrasound results,

evaluated biopsy samples. A Gleason score (GS) was recorded

upon confirming PCa, with a score of 3 + 4 or higher indicating

clinical significance (12).
2.5 Regions of interest segmentation

To maintain data consistency and comparability, the ultrasonic

images were standardized prior to segmentation. The boundary of

prostate lesion was manually drawn as region of interest (ROI)

using 3D Slicer software (version 5.7.0, 3D Slicer image computing

platform | 3D Slicer). For consistency in the ROIs of bi-parametric

ultrasound images, the identical standards were rigorously

performed, and the same expert visually checked them. The

method of detail segmentation referred to the study by Liang

et al. (13), and determining the location and size of the lesion is

roughly as followed: 1) using detailed prostate biopsy records

(puncture site and depth) and pathology findings to identify the

lesion’s location and nature; 2) matching pathology descriptions

with TRUS images; 3) applying B-mode ultrasound ROIs to SWE
Frontiers in Oncology 03
images due to unclear tumor boundaries in SWE; 4) In cases of

csPCa, SWE was utilized to identify ROIs corresponding to

suspicious areas, particularly when B-mode imaging failed to

reveal these areas. A key point in ROI labeling for multifocal PCa

is using pathology results to identify the lesion with the highest GS

value; if GS values are identical, the largest lesion was selected.

Figure 2 illustrated lesion segmentation for enrolled patients. Also,

specialized personnel made sure that the segmentation and related

pathological results were accurate.
2.6 Feature extraction of radiomics and
deep learning features

The PyRadiomics package (version 2.1.2) was employed to extract

radiomic signatures, encompassing both original and wavelet-

transformed features. The study was designed in accordance with the

Image Biomarker Standardization Initiative (IBSI) reporting guidelines

(14). Extracted radiomics features consisted of First Order Features,

Shape-Based Features, and Texture-Based Features.

ResNet-50, pre-trained on the extensive and annotated ImageNet

database, was chosen as the base model for feature extraction. The

network’s final fully connected layer was taken out, and the average

pooling layer was applied to extract maximum values from each

feature map layer, thus converting them into raw values.
FIGURE 1

Flow diagram of the study population.
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Intraclass correlation coefficient (ICCs) was employed to appraise

the consistency of lesion segmentation between and within observers.

A cohort of 50 patients was randomly selected to assess inter-observer

consistency, while an additional segmentation was conducted by a

radiologist one week later to evaluate intra-observer consistency. Two

radiologists, each having extensive experience in diagnosing prostate

ultrasounds, delineated the ROIs.
2.7 Feature selection of radiomics and
deep learning features

Feature scaling was performed utilizing the z-score method, which

transformed the feature data within the training set into a distribution

characterized by amean of 0 with a standard deviation of 1. The goal of

the program was to identify the most significant features associated

with csPCa using 1702 radiomics features and 1024 deep learning

features. The feature selection process involved several statistical and

machine learning techniques to ensure robustness and reduce

dimensionality. Initially, the Mann–Whitney U test was performed

to identify features significantly linked to the outcome, which set a

common p-value threshold of 0.05, ensuring conservative selection and

maintaining their statistical reliability within imaging data. Next,

Spearman’s rank correlation detected highly correlated features. If

the coefficient between any two features exceeded 0.9, one of them

was excluded from the analysis. Only the features that were

significantly associated with the outcome and had a p-value below

the threshold were retained. Then, the Lasso regression with 10-fold

cross-validation was employed to remove features with zero-weight.

The final feature selection was based on the lambda.1se criterion, which

helps simplify the model by balancing predictive performance and

complexity. Finally, feature permutation importance was assessed

using a random forest to identify valuable features. A stepwise
Frontiers in Oncology 04
feature selection approach was applied, progressively expanding the

feature subset while evaluating the area under the curve (AUC) to

determine the optimal combination (Supplementary Figure S1). This

process aimed to maintain classification performance while reducing

the number of features, preventing overfitting, and enhancing the

model’s generalization ability.
2.8 Model construction

Six models based on deep learning radiomics (DLR)—specifically,

Support Vector Machine (SVM), Light Gradient Boosting Machine

(LightGBM), Extreme Gradient Boosting (XGBoost), Random Forest

(RF), K-Nearest Neighbors (KNN), and Logistic Regression (LR)—

were developed for both the training and test sets to identify the model

with the optimal AUC. Ultimately, LR was chosen due to its superior

AUC performance on the test set. The weight coefficients of the selected

features were determined through multivariate analysis, leading to the

derivation of a formula to compute the radiomics score, deep learning

score, and DLR score. Univariate and multivariate analyses were

employed to identify independent clinical risk factors. An integrated

model, incorporating the clinical factors and DLR score, was

constructed using LR and is represented as a nomogram.
2.9 Statistical analysis

For continuous variables, either the median with interquartile

range (IQR) or the mean with standard deviation was used, and

they were analyzed using the Mann–Whitney U test or the Kruskal–

Wallis’ test, as needed. The sample size of this study adhered to the

10-events-per-variable (EPV) rule (15). Missing data, when less

than 20%, were addressed using Multiple Imputation by Chained
FIGURE 2

TRUS B-mode imaging (A) and SWE imaging (B) were conducted from the same anatomical location in an 83-year-old patient diagnosed with PCa,
characterized by a fPSA level of 0.78 ng/mL, a tPSA level of 13.7 ng/mL, and a biopsy Gleason score of 4 + 3 = 7. The ROI, delineated by a red solid
line, was identified in both the B-mode ultrasound and SWE images. PCa, prostate cancer.
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Equations (MICE). The AUC, along with 95% confidence intervals

(CIs), was applied to quantify the capability of each model. The

DeLong test was employed to assess the statistical significance of

discrepancy in AUC values among the models. To enhance

decision-making, a nomogram for the integrated model was

developed. Additionally, decision curve analysis was employed to

appraise the clinical utility of the clinical model, DLR score, and

nomogram. Statistical significance was indicated by a two-tailed P-

value below 0.05. R software (version 4.2) and Python (versions 3.7

and 3.9) were employed for the analyses outlined above. Figure 3

illustrated the complete workflow of this analysis.
3 Results

3.1 Patients’ characteristics

Between June 2022 and December 2023, 272 patients with PSA

rising and/or positive DRE were enrolled, with 232 meeting the

inclusion criteria for this study. A detailed description of the

baseline characteristics can be found in Table 1. There was no

significant difference in the proportion of csPCa between the

training and the test sets (56.17% [91/162] vs. 47.14% [33/70], P

= 0.206). Significant differences between csPCa and non-csPCa

groups, which included benign tissue and GS 3 + 3 PCa, were

revealed by univariate analysis in both two sets for all clinical

factors, except free prostate-specific antigen (fPSA). Subsequently, a

clinical model was developed using multivariate analysis

incorporating these factors, which served as a baseline for

evaluating the nomogram proposed in this study (Table 2).
3.2 Image signature analysis

The consistency of feature extraction was evaluated through

intra-observer and inter-observer assessments using intraclass
Frontiers in Oncology 05
correlation coefficients (ICCs). The results indicated that feature

extraction demonstrated high reproducibility, with both inter-

observer and intra-observer ICCs exceeding 0.8.

From single parametric ultrasound image per patient, we

extracted a total of 851 features, yielding 1,702 features across bi-

parametric ultrasound images. Furthermore, we derived 512×2 deep

learning features from the average pooling layer of the ResNet-50

architecture for each individual. Following the feature selection

process, we determined 10 radiomic features and 6 deep learning

features, which were subsequently integrated to form DLR

signatures (Supplementary Figure S1). With the exception of

E_wavelet_LHH_firstorder_Median, all features demonstrated

statistically significant differences between the csPCa and non-

csPCa groups (P < 0.05) (Supplementary Figure S2). The values

of deep learning features were significantly higher in the csPCa

group compared to the non-csPCa group (P < 0.001).
3.3 The development of deep learning
radiomics model

Following the selection of features, we evaluated multiple

modeling techniques to identify the most effective approach for

model construction. Among these models, the LR model revealed

superior diagnostic performance, achieving an AUC of 0.78 (95%

CI: 0.61-0.94) on the test set. The diagnostic performance metrics

for the remaining models are presented in Supplementary Figure

S3. For each patient, we computed the radiomics score, deep

learning score, and DLR score utilizing the weight coefficients

derived from multivariate analysis, with the specific formulas

detailed in Appendix 1. Our findings indicated that the DLR

score achieved an AUC of 0.80 (95% CI: 0.69-0.91) in the test set,

marginally surpassing the radiomics score (AUC = 0.78, 95% CI:

0.67-0.89) and outperforming the deep learning score (AUC = 0.73,

95% CI: 0.61-0.85), as illustrated in Figure 4. Furthermore, the

specificity and accuracy of the DLR score were 0.87 (95% CI: 0.70-
FIGURE 3

Developing a deep learning radiomic nomogram for predicting clinically significant prostate cancer involves four key stages: (a) ROI segmentation,
(b) feature extraction, (c) feature selection, and (d) predictive modeling. Two predictive modeling strategies were used: the radiomics strategy
involved feature extraction, reduction, and statistical modeling, while the deep learning strategy utilized ResNet-50, pretrained on ImageNet, for
feature extraction. The final fully connected layer was removed, and global max pooling was applied to convert feature maps into raw values.
Ultimately, the models developed through various strategies and utilizing different imaging modalities were integrated and evaluated for their
applicability in clinical settings. ROI, region of interest.
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0.99) and 0.77 (95% CI: 0.54-0.91), respectively, surpassing those of

the radiomics. However, there is no significant difference between

DLR score and both radiomics (P = 0.48) and deep learning (P =

0.2) in the test set. Additional information is provided in

Supplementary Tables S1 and S2.
3.4 The development of the nomogram

In our study, multivariate analysis revealed that age, free-to-

total prostate-specific antigen (f/t PSA) ratio, and prostate volume

were independent predictors for csPCa within the training set, with

statistical significance indicated by P-values less than 0.05 (Table 2).

These independent predictors were subsequently combined with

the DLR score to construct a composite model, which is visually

represented as a nomogram (Figure 5).
Frontiers in Oncology 06
3.5 The evaluation of the nomogram

The nomogram demonstrated excel lent diagnostic

performance, achieving an AUC of 0.91 (95% CI: 0.87-0.95) in

the training set and 0.87 (95% CI: 0.77-0.95) in the test set

(Figure 6). Furthermore, the Delong test indicated a statistically

significant difference between the nomogram and both the DLR

score (P = 0.049) and the clinical model (P = 0.041) in the test set,

underscoring the superior discriminative capability of the

nomogram for detecting csPCa (Table 3). No significant

difference was observed between the DLR score and the clinical

model (Supplementary Table S3). Furthermore, the performance of

the nomogram was assessed across different threshold levels in the

test set, as detailed in Supplementary Table S4. A threshold value of

0.59 was identified as optimal, demonstrating a balance between

sensitivity and specificity, with 0.82 and 0.84, respectively. A

threshold of 0.19 exhibited a high sensitivity of 0.94, while a

threshold of 0.89 achieved a high specificity of 1.0.

Our study’s calibration curve showed strong agreement between

the nomogram’s predicted probabilities and the actual outcomes

(Figure 7A). Furthermore, the results of our decision curve analysis,

depicted in Figure 7B, illustrated that the nomogram provided

substantial clinical decision-making benefits, with an effective

threshold range of ≥15% in the test set.
4 Discussion

The study focused on developing and validating a mixed model

presented by nomogram, which integrated a bi-parametric
TABLE 1 Baseline characteristics of patients.

Variable
Training set (n=162) Validation set (n=70)

Non-csPCa (n=71) csPCa (n=91) P value Non-csPCa (n=37) csPCa (n=33) P value

Age
Median (IQR)

71.00
(67.00 – 76.00)

74.00
(69.00 – 78.50)

0.016
68.00

(60.00 – 74.00)
72.00

(69.00 – 77.00)
0.046

tPSA
Median (IQR)

8.06
(5.88 – 10.85)

10.70
(6.83 – 16.53)

0.002
8.45

(5.66 – 11.20)
13.82

(9.37 – 17.02)
0.001

fPSA
Median (IQR)

1.32
(0.96 – 1.86)

1.24
(0.81 – 1.82)

0.520
1.17

(0.83 – 1.69)
1.38

(1.10 – 1.65)
0.269

f/tPSA
Median (IQR)

0.17
(0.11 – 0.22)

0.11
(0.08 – 0.14)

<0.001
0.15

(0.11 – 0.23)
0.10

(0.08 – 0.14)
0.003

PSAD
Median (IQR)

0.18
(0.13 – 0.28)

0.35
(0.21 – 0.56)

<0.001
0.17

(0.12 – 0.23)
0.34

(0.26 – 0.55)
<0.001

Volume
Median (IQR)

44.27
(31.19 – 58.21)

32.38
(23.78 – 41.72)

<0.001
42.68

(34.54 – 70.17)
34.24

(26.52 – 47.79)
0.016

Gleason score, n (%) <0.001 <0.001

3 + 3 7 (9.86) 0 6 (16.22) 0

3 + 4 0 28 (30.77) 0 9 (27.27)

4 + 3 0 21 (23.08) 0 9 (27.27)

≥4 + 4 0 42 (46.15) 0 15 (45.46)
fro
csPCa, clinically significant prostate cancer; PSA, prostate-specific antigen; PSAD, PSA density.
TABLE 2 The results of multivariate logistic regression.

B Wald OR with 95%CI P

(Intercept) -2.313 1.177 0.099 (0.001~6.209) 0.278

Age 0.08 7.952 1.083 (1.027~1.149) 0.005

tPSA 0.03 0.111 1.03 (0.86~1.224) 0.739

f/tPSA -14.177 5.411 0 (0~0.026) 0.020

PSAD -0.483 0.051 0.617 (0.011~57.362) 0.821

Volume -0.04 3.866 0.96 (0.921~0.999) 0.049
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ultrasound-based DLR with clinical factors. This integration

enhanced the accuracy of early identification of csPCa in patients

with suspected PCa prior to undergoing prostate biopsy. Compared

to the clinical model and the DLR score separately, the nomogram

exhibited enhanced diagnostic performance, achieving an AUC of

0.87 (95% CI: 0.77-0.95) in the test set. Furthermore, the results from

calibration and decision curve analyses corroborated the model’s

robustness and clinical applicability. To our understanding, this study

was the first to merge ultrasound-based radiomics with deep learning

features to assess the risk of csPCa in individuals suspected of PCa.

To date, multiparametric MRI (mpMRI) has been

recommended by guidelines for further identification of PCa

lesions, thereby reducing the need for unnecessary biopsies (16).
Frontiers in Oncology 07
Several studies have been carried out to enhance the accuracy of

csPCa detection using the Prostate Imaging—Reporting and Data

System (PIRADS) score, both showing improved diagnostic

performance (17, 18). However, the limited availability of

mpMRI, along with contraindications or intolerance to MRI in

some patients, may restrict its widespread use. Consequently, there

has been increasing interest among physicians in utilizing

ultrasound as an alternative diagnostic tool for PCa detection due

to their lower cost, wider accessibility, and easier integration into

routine clinical workflows. Previous studies have demonstrated that

multiparametric ultrasound detected 4.3% fewer csPCa cases

compared to mpMRI, but resulted in 11.1% more patients being

referred for biopsy (6). Considering its inferior diagnostic
FIGURE 5

Nomogram that integrated DLR score and clinical factors for predicting csPCa.
FIGURE 4

Receiver operating characteristic curves of radiomics score, deep learning score and DLR score, respectively in the training (A) and test (B) cohorts.
DLR, deep learning radiomics.
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performance compared to MRI, further efforts are necessary to

enhance its accuracy.

Artificial intelligence has profoundly altered medical practice by

facilitating more rapid and precise data analysis, thereby

revolutionizing diagnostic and therapeutic approaches (19). This

technological advancement has necessitated a reevaluation of

conventional screening methodologies. Deep learning techniques

employed multi-layer convolution and filtering to generate ultra-

high-dimensional features associated with diseases. Although these

features are frequently challenging to interpret in a clinical context,

they exhibited strong correlations with patient group classifications,

leading to models with substantial clinical applicability (20). In our

study, we deliberately eschewed end-to-end methodologies (21),

instead prioritizing the integration of clinical scores to augment the

interpretability of the model. As illustrated in Supplementary Figure

S2, the deep learning features exhibited elevated values in the csPCa

group compared to the non-csPCa group, potentially enhancing
Frontiers in Oncology 08
medical professionals’ comprehension of the predictive outcomes.

Nevertheless, our methodology may result in an underutilization of

intricate data patterns, thereby diminishing the model’s capacity to

identify potential predictive signals and consequently affecting its

accuracy. Further research is warranted to investigate strategies for

enhancing the model’s accuracy while preserving its practicality and

simplicity in clinical settings.

Radiomics and deep learning techniques have predominantly been

applied in conjunction with mpMRI for the diagnosis of PCa (7, 22,

23), the grading of pathological features (10), and the prediction of

biochemical recurrence (8). The diagnostic performance ranged from

0.788 to 0.958. Nevertheless, there is a notable absence of studies

utilizing ultrasound-based deep learning approaches, with only a

limited number of investigations focusing on ultrasound-based

radiomics of prostate lesions. Liang et al. developed a radiomics

model utilizing gray-scale ultrasound and SWE, and subsequently

constructed an LR model by incorporating clinical factors and the
TABLE 3 Diagnostic performance of the models.

Clinical model DLR score Nomogram

Training Test Training Test Training Test

AUC
(95%CI)

0.81
(0.71-0.87)

0.79
(0.69-0.86)

0.85
(0.79-0.91)

0.80
(0.70-0.91)

0.91
(0.87-0.95)

0.87
(0.77-0.95)

Sensitivity
(95%CI)

0.64
(0.57-0.87)

0.76
(0.60-0.97)

0.82
(0.69-0.96)

0.73
(0.59-0.91)

0.84
(0.72-0.98)

0.85
(0.69-1.00)

Specificity
(95%CI)

0.89
(0.58-0.95)

0.73
(0.52-0.95)

0.75
(0.57-0.91)

0.87
(0.76-0.97)

0.85
(0.68-0.94)

0.81
(0.65-0.94)

Accuracy
(95%CI)

0.77
(0.69-0.82)

0.77
(0.68-0.84)

0.80
(0.74-0.86)

0.78
(0.51-0.91)

0.85
(0.80-0.90)

0.84
(0.75-0.91)

Youden index
(95%CI)

0.53
(0.40-0.65)

0.49
(0.37-0.66)

0.57
(0.46-0.72)

0.59
(0.43-0.81)

0.68
(0.60-0.80)

0.66
(0.49-0.83)
DLR, deep learning radiomics; AUC, area under curve.
FIGURE 6

Receiver operating characteristic curves of clinical model, DLR score and nomogram in the training (A) and test (B) cohorts.
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radiomics score. This model reached an AUC of 0.90 for detecting PCa

in the test set (13). Similarly, Sun et al. conducted a study involving 166

patients, demonstrating that a multiparametric ultrasound approach,

which combined grey scale ultrasound with CEUS, obtained an AUC

value of 0.89 for detecting peripheral zone PCa (24). In a study by

Wildeboer et al, an automatically multiparametric ultrasound classifier

was developed and demonstrated comparable diagnostic performance,

with AUC of 0.75 and 0.90 for PCa and csPCa, respectively (25). These

research underscores the potential role of ultrasound-based radiomics

in PCa diagnosis. However, relying solely on the extraction of radiomic

features may not capture the deeper, intrinsic characteristics of the

tumor, thereby potentially limiting its broader applicability. In this

research, we concurrently utilized radiomics and deep learning

methodologies to develop a DLR model aimed at providing

enhanced image information. Our findings demonstrated that the

DLR score exhibited superior diagnostic performance in identifying

csPCa compared to other models, including the radiomics score and

deep learning score, achieving an AUC of 0.80 (95% CI: 0.68-0.91) in

the test set. Nevertheless, no significant differences were perceived

among the three models on the test set (Supplementary Table S2),

indicating only marginal improvement when deep learning features

were integrated with radiomic features. This outcome may be

attributed to the delineation of prostate lesion by employing manual

segmentation method in this study, which is specifically tailored for

radiomics. Li et al. reported that a rectangular bounding box was

employed to delineate the whole prostate instead of the segmentation

of the prostate lesions for deep learning purposes (7). We hypothesized

that segmentation for deep learning requires a broader scope to

facilitate the extraction of more comprehensive information. There is

a need for more research and exploration in this subject.
Frontiers in Oncology 09
Over the past few decades, numerous studies have been

conducted on the prediction of PCa; however, an optimal model

based on prostate-related clinical factors has yet to be established.

Utilizing multivariate analyses, we identified age, f/tPSA, and prostate

volume as significant clinical risk factors. Chen et al. demonstrated

that age, positive DRE, f/tPSA, and PSA density were independent

clinical risk factors of PCa, achieving an AUC of 0.82 (26), similar to

our study’s results. Wang et al. conducted a systematic review of ten

studies and reported that the use of the f/tPSA maintained high

diagnostic accuracy, with a summary ROC of 87% (27). Nonetheless,

several studies have identified PSA density as an independent risk

factor rather than the f/tPSA. Differences in clinical factors selected in

each study and inconsistent case grouping may account for this

discrepancy. Furthermore, our study identified prostate volume as an

independent predictor of csPCa, aligning with findings from previous

research. According to Porcaro et al., a larger prostate volume index

was connected to a lower risk of high tumor burden and was related

to reduced biological aggressiveness of prostate cancer in patients

who underwent initial random biopsies (28).

Furthermore, there are a few limitations to this study. First, the

retrospective design of this single-center study, which included only

232 patients for the development of the DLR model, potentially

diminished the statistical power and may constrain the

generalizability of the findings. This issue is recurrent in the field of

radiomics research, as evidenced by other studies with smaller sample

sizes, encompassing 166 (24), 112 (13), and 103 (29) patients. The

results of our study are promising, as they furnish preliminary evidence

supporting the correlation between multi-parametric ultrasound-based

deep learning radiomics and patients with csPCa, thereby presenting a

viable alternative for those unable to undergo MRI examinations.
FIGURE 7

The assessment of the nomogram via calibration curve (A) and Decision curve (B).
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Moreover, prior research has demonstrated that model performance

can deteriorate due to inconsistencies in data collection protocols,

patient heterogeneity, and the challenges of external data validation

(30). Consequently, our findings necessitate a larger sample size and

external validation prior to their application in clinical practice. Future

research will focus on expanding the patient sample size by prolonging

the enrollment period and may potentially develop this study into a

multi-center research project. Secondly, in our study, manual

segmentation was utilized to define the region of interest (ROI),

which may result in reduced reproducibility, poor inter-operator

consistency, and a process that was both time-consuming and labor-

intensive. Although existing literature has explored automated

segmentation methods for delineating the prostate gland (23, 31), the

automatic segmentation of lesions remains challenging. Given the

limitations associated with the low detection rate of prostate lesions

using grayscale ultrasound and the registration of multi-parametric

ultrasound images in our study, automatic segmentation for

delineating the ROI may not necessarily be less effective than manual

segmentation. Consequently, we propose the future implementation of

deep learning techniques to automatically delineate the entire prostate

as the ROI and to employ deep learning-based visual analysis for the

identification of suspicious lesions. This approach is anticipated to

enhance reproducibility and reduce the labor burden, thereby

facilitating large-scale studies in the future. Thirdly, while the DLR

score demonstrated superior diagnostic efficacy in our study, it was not

directly compared with the PIRADS score, a widely utilized scoring

system based on mpMRI in clinical practice. Future research should

incorporate PIRADS scores to further validate themodel’s effectiveness.

In our study, the nomogram developed by integrating

DLR score with clinical factors, demonstrated high diagnostic

performance and clinical utility in identifying csPCa. By

combining deep learning with radiomics, the model could

effectively capture the multidimensional information inherent in

imaging data, thereby enhancing radiologists’ confidence in

predicting csPCa in future clinical practice.
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Appendix 1

Formulas of deep learning radiomics model.

Radiomics_score:

= 0.3488 + (-0.6361) * E_original_shape_Flatness + (0.3754) *

E _ o r i g i n a l _ n g t d m _ B u s y n e s s + ( - 0 . 4 1 6 5 ) *

E _ w a v e l e t . L L H _ g l c m _ M C C + ( - 0 . 3 4 6 1 ) *

E _w a v e l e t . LHH_ fi r s t o r d e r _M e d i a n + ( 0 . 4 5 8 4 ) *

E_wavelet .HLH_glrlm_LongRunEmphasis + (0.3724) *

E _ w a v e l e t . L L L _ g l c m _ I d m + ( 0 . 6 1 4 7 ) *

B _ o r i g i n a l _ s h a p e _ S p h e r i c i t y + ( - 0 . 9 8 2 9 ) *

B _ o r i g i n a l _ g l c m _ C o r r e l a t i o n + ( 0 . 8 6 9 5 ) *

B_wavelet.LHH_glszm_SizeZoneNonUniformity + (0.7131) *

B_wavelet.HLH_glrlm_RunVariance

Deep learning_score:

=0.3480 + (0.2547) * E_feature_91 + (0.3263) * E_feature_168 +

(-0.0296) * E_feature_264 + (0.2842) * B_feature_111 + (0.3121) *

B_feature_159 + (0.2215) * B_feature_424

DLR_score:

= 0.4176 + (-0.2110) * E_original_shape_Flatness + (-0.1514) *

E _ o r i g i n a l _ n g t d m _ B u s y n e s s + ( - 0 . 3 1 8 2 ) *

E _ w a v e l e t . L L H _ g l c m _ M C C + ( - 0 . 3 8 4 9 ) *

E _w a v e l e t . LHH_ fi r s t o r d e r _M e d i a n + ( 0 . 3 6 1 7 ) *

E_wavelet .HLH_glrlm_LongRunEmphasis + (0.3862) *

E _ w a v e l e t . L L L _ g l c m _ I d m + ( 1 . 0 5 0 7 ) *

B _ o r i g i n a l _ s h a p e _ S p h e r i c i t y + ( - 1 . 1 0 2 1 ) *

B _ o r i g i n a l _ g l c m _ C o r r e l a t i o n + ( 0 . 9 6 6 7 ) *

B_wavelet.LHH_glszm_SizeZoneNonUniformity + (0.7215) *

B_wavelet.HLH_glrlm_RunVariance + (0.1090) * E_feature_91 +

(0.6123) * E_feature_168 + (0.0398) * E_feature_264 + (0.5253) *

B_feature_111 + (0.5) * B_feature_159 + (0.046) * B_feature_424
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