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transmitter in the drug resistance
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Recent studies have promoted new insights into the biology of non-small cell

lung cancer (NSCLC) and made considerable progress in the field of treatment,

including targeted therapy for driver gene mutations. Immunotherapy (IO) is

another breakthrough, which has achieved amazing clinical efficacy. However,

the survival status of advanced NSCLC patients is still unsatisfactory. Drug

resistance is an urgent problem to be solved in almost all anti-cancer

treatment schemes. Nowadays, platinum based chemotherapy remains the

standard treatment for patients with driver gene negative advanced NSCLC.

Previous studies have shown that the reduction of intracellular accumulation of

platinum drugs, DNA damage repair and the enhancement of detoxification

effect all lead to platinum resistance. The mechanisms of tyrosine kinase

inhibitors (TKIs) resistance include the emergence of secondary mutation, the

activation of bypass signal pathways, the abnormality of downstream signal

pathways and the transformation of phenotype. The mechanisms of immune

checkpoint inhibitors (ICIs) resistance are more complex. A variety of cells,

cytokines and metabolites participate in it to form an immunosuppressive

microenvironment, resulting in the impairment of effector T cell function.

Exosomes are small molecules secreted by a variety of cells. They can carry

information such as miRNA, lncRNA, and protein, and play a pivotal role in signal

transduction between cells. More and more studies show that exosomes are

important transmitters in lung cancer cells, which can transfer drug resistance

information from drug-resistant cells to sensitive cells. However, the underling

specific mechanisms need to be further explored to find a new breakthrough for

overcoming drug resistance of NSCLC.
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Introduction

Non-small cell lung cancer (NSCLC) accounts for 80% of the

histological types of lung cancer (1). While surgery remains the

optimal treatment for early-stage patients, most are diagnosed at

advanced stages and thus ineligible for resection (2). Currently,

platinum-based chemotherapy serves as the standard systemic

therapy for advanced NSCLC (3, 4). However, its efficacy is

severely limited by intrinsic and acquired resistance—only 30% of

patients respond initially, median overall survival (OS) falls below

one year, and nearly all eventually develop refractory disease,

culminating in poor prognosis (5, 6).

The advent of targeted therapies marked a paradigm shift.

Following the 2004 discovery of epidermal growth factor receptor

(EGFR) mutations, the first-generation EGFR tyrosine kinase

inhibitor (TKIs) like gefitinib showed surprising efficacy in

clinical trial (7, 8). Since then, a variety of driver gene mutations

were gradually identified in NSCLC, such as EML4-ALK

translocations and KRAS mutations (9), which has dramatically

changed the treatment strategy of lung cancer. Compared to

traditional chemotherapy, targeted therapy could significantly

improve the survival of advanced NSCLC patients with driver

gene mutations (10, 11). However, patients treated with TKIs also

develop acquired drug resistance, so the duration of their clinical

benefits is limited.

Immunotherapy (IO) emerged as another breakthrough in the

treatment of advanced lung cancer patients, changing the landscape

of NSCLC in different settings (12). Various large randomized

clinical trials have shown that immune checkpoint inhibitors

(ICIs) could significantly improve the survival of NSCLC patients

when compared with conventional chemotherapy (13, 14), several

anti-PD1/PD-L1 antibodies have been used for antitumor therapy

in clinical (15). Despite remarkable clinical advances have been

achieved in immunotherapy, primary and secondary resistance

mechanisms restrict the durable responses of tumors to ICIs,

leaving most patients with eventual disease progression.

Critically, drug resistance represents the central bottleneck

across all NSCLC therapies—a multifaceted process driven by
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tumor-intrinsic mechanisms, microenvironmental crosstalk, and

intercellular communication. Among these, exosomes have

emerged as pivotal mediators. These extracellular vesicles not

only facilitate tumor progression and metastasis but also

orchestrate chemotherapy, targeted therapy, and immunotherapy

resistance through cargo transfer (such as miRNAs, proteins)

between cancer and stromal cells (16, 17).

This review systematically analyzes the resistance mechanisms

underlying conventional NSCLC treatments and the deterministic

role of exosomes in fostering therapeutic escape. By elucidating

these pathways, we aim to guide future strategies for overcoming

resistance through exosome-targeted interventions.
Biogenesis and function of exosomes

Exosomes are 30–150 nm small molecules secreted by both

normal cells and cancer cells (18), which can be isolated in many

body fluids such as blood, urine, saliva, bronchoalveolar fluid, etc.

(19). Exosomes are produced in cells through a variety of dynamic

endocytosis pathways (Figure 1). Firstly, membrane proteins sprout

inward through the plasma membrane and are endocytosed to form

early endosomes. Then, the early endosomes mature into the late

endosomes, which are known as multivesicular bodies (MVBs) (20).

MVBs eventually enter the lysosome, where hydrolases and other

enzymes degrade some components of MVBs and remove toxic

substances. MVBs have specific surface proteins, such as CD63,

lysosome related membrane proteins Lamp1 and Lamp2, so they

can fuse to the plasma membrane and become exosomes to release

to the extracellular environment (21, 22). Exosomes can adhere to

receptor cells through integrins on the surface, then induce

intracellular signals. Recipient cells take up exosomes through

phagocytosis, pinocytosis, and macro-pinocytosis (23). In

addition, exosomes can fuse with the plasma membrane directly

to release their contents, regulating the signal transduction of the

recipient cells (24).

Exosomes contain varying quantities of molecules such as

microRNAs (miRNAs), messenger RNAs (mRNAs) and proteins
FIGURE 1

The biogenesis and function of exosomes in tumor cells. Exosomes are produced in cells through a variety of dynamic endocytosis pathways.
Tumor derived exosomes contain varying quantities of molecules, participating in the regulation of cell activies.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1539047
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ji et al. 10.3389/fonc.2025.1539047
(25). Tumor derived exosomes in tumor microenvironment have

unique contents, mediating interactions between cancer cells and

stromal cells, participating in tumor proliferation, angiogenesis,

invasion, migration, metastasis and drug resistance (26). In

addition, exosomes can also be used as biomarkers for early

diagnosis and prognosis evaluation (27). Considering the

regulatory role of the components of exosomes in tumor

microenvironment, exosomes have been explored for the

treatment of cancers. A lot of studies have reported that

exosomes can be modified to deliver molecules with therapeutic

effects, which will become a promising drug delivery system because

of the low toxicity and inherent intercellular communication ability

(28, 29).
Role of exosomes in cisplatin
resistance of NSCLC

Previous studies have shown that more than 60% of patients

with NSCLC were resistant to cisplatin and carboplatin (30). In

addition, these patients also showed varying degrees of resistance to

other drugs, including docetaxel, gemcitabine, paclitaxel and

vinorelbine (30). Therefore, almost all patients with NSCLC will

finally develop resistance to chemotherapeutic drugs, even if the

initial response is satisfactory. Chemoresistance is a major obstacle

in the process of antitumor treatment for all patients and it is one of

the main challenges in cancer management. The mechanisms

related to chemoresistance are complex and have not been

fully understood.

Due to the development of TKIs and ICIs and the diversification

of chemotherapy schemes, the treatment options of cancer are

increasing. However, cisplatin is still a highly potent anticancer

drug, and its resistance mechanism is the most deeply studied in

chemotherapeutic drugs at present.

Cisplatin is a kind of cell cycle nonspecific cytotoxic drug. It

binds to nucleophilic groups in cells and is selectively distributed in

tumor tissues. Cisplatin is hydrolyzed after entering tumor cells and

then forms cisplatin-DNA complex with cell DNA. This process can

destroy the normal structure of cell DNA, hinder the template effect

of DNA, inhibit DNA replication and transcription (31, 32). At the

same time, cisplatin affects DNA repair, induces oxidative stress,

activates apoptosis, and eventually leads to tumor cell death by

activating a variety of signal pathways (33).

The mechanisms of cisplatin resistance of tumor cells are

multifaceted. Cisplatin can affect the expression of some

transporters, thus reducing their accumulation in cells. Studies

have shown that low expression of copper transporter 1 (CTR1)

in lung cancer may be related to cisplatin resistance (34). Nucleotide

excision repair (NER) system and mismatch repair (MMR)

pathway play a key role in the repair of DNA damage caused by

chemotherapy (35, 36). Abnormal expression of NER components

(such as xeroderma pigmentosum group A (XPA)) and MMR

related proteins (such as MutS homologue 2 (MSH2)) can

enhance DNA repair and reduce the sensitivity of tumor cells to

cisplatin (37, 38). Reduced glutathione (GSH), metallothionein
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(MT) and other nucleophilic “scavengers” in the cytoplasm can

chelate cisplatin, thus reducing the accumulation and cytotoxic

activity of cisplatin (39). Cisplatin can inhibit the tumor cells

apoptosis and produce drug resistance by regulating PI3K/AKT,

Bax/Bcl-2 and other signal pathways (40). In addition, abnormal

extracellular matrix and epithelial mesenchymal transition (EMT)

can promote the insensitivity of lung cancer cells to cisplatin

(41, 42).

In recent years, many studies have explored the mechanisms of

exosomes in cisplatin resistance, especially the miRNAs in

exosomes, which play an important role in transmitting drug

resistance information. The sources of these exosomes are mainly

divided into two categories. Some exosomes are derived from tumor

cells, while others are secreted by non-tumor cells (Table 1).

It was found that when lung cancer cells A549 were exposed to

cisplatin, they could release more exosomes, and when these

exosomes were co-cultured with other A549 cells, their resistance

to cisplatin increased. It indicated that A549 cells could release

exosomes for intercellular signal communication and realize the

transmission of intercellular drug resistance (51). Five microRNAs

with the most significant expression difference were found in the

exosomes of A549 cells and cisplatin resistance A549 cells (A549/

DDP), they were miR-27b-3p, miR-100-5p, miR-197-5p, miR-4443

and miR-642a-3p. Target gene prediction and pathway analysis

suggested that these microRNA might be important regulators in

the drug resistance of cisplatin (43). There was a study found

that compared with A549 sensitive strain, the expression of miR-

100-5p in the exosomes of A549/DDP cells was significantly

downregulated, while the expression of mammalian target of

rapamycin (mTOR) in recipient cells was regulated by miR-100-

5p. Therefore, exosomes from cisplatin resistant lung cancer cells

could change the sensitivity of other cells by regulating mTOR

through miR-100-5p (44). While another study showed that the

level of miR-4443 in cisplatin resistant NSCLC tumor tissue-derived
TABLE 1 Exosomes involved in chemoresistance of NSCLC and their
potential targets.

Source Content Target

tumor cells derived miR-100-5p (43, 44) mTOR

miR-4443 (45) METTL3/FSP1

miR-425-3p (46) AKT1

miR-197-5p (43) –

miR-642a-3p (43) –

miR-27b-3p (43) –

PKM2 (47) Bcl2

Non- tumor cells derived

CAFs miR-103a-3p (48) BAK1

CAFs miR-130a (49) –

BMSCs miR-193a (50) LRRC1
mTOR, mammalian target of rapamycin; PKM2, pyruvate kinase M2; CAFs, cancer-
associated fibroblasts; BMSCs, bone marrow-derived mesenchymal stem cells.
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exosomes was upregulated. And mechanistic studies indicated that

exosomal miR-4443 could participate in the regulation of cisplatin

resistance of NSCLC cells, and METTL3/FSP1-mediated ferroptosis

might be the potential mechanism (45). After cisplatin stimulation,

the expression of miR-425-3p in exosomes was induced by c-Myc-

mediated transactivation. Further studies showed that exosomal

miR-425-3p promoted the activation of autophagy by targeting

AKT1, which eventually reduced the sensitivity of recipient cells to

cisplatin (46). A study found that hypoxia induced NSCLC cell-

derived exosomal pyruvate kinase M2 (PKM2, a rate-limiting

enzyme in glycolysis) could promote the glycolysis of NSCLC

cells, reduce cisplatin induced reactive oxygen species (ROS), and

inhibit apoptosis through PKM2-Bcl2 pathway. In addition,

exosomal PKM2 induced by hypoxia could reprogram cancer-

associated fibroblasts (CAFs) to create an acidic environment,

thus promoting cisplatin resistance of NSCLC cells (47).

Non-tumor cells derived exosomes are also important

transmitters of intercellular drug resistance information. It was

found that MiR-103a-3p was highly expressed in CAFs and CAFs

exosomes in NSCLC. When CAFs exosomes were added to culture

medium of NSCLC cells, the expression of miR-103a-3p in

exosomes of NSCLC cells increased. In vitro experiments showed

that exosomal miR-103a-3p derived from CAFs could inhibit

cisplatin induced apoptosis and promote resistance to cisplatin in

NSCLC cells, which has also been confirmed by mouse

tumorigenesis assay in vivo. While the RNA-binding protein

pumilio homolog 2 (PUM2) could facilitate miR-103a-3p

packaging into CAFs derived exosomes in cytoplasm and nucleus.

Further experiments showed that miR-103a-3p promoted the

resistance of NSCLC cells to cisplatin by downregulating BAK1

(48). In addition, another study showed that miR-130a in CAFs

derived exosomes could also promote the resistance of NSCLC cells

to cisplatin, and PUM2 was also involved in the packaging process

of miR-130a into exosomes (49). The expression of miR-193a in

bone marrow-derived mesenchymal stem cells (BMSCs) derived

exosomes was increased, which could inhibit the proliferation and

migration of NSCLC cisplatin resistant cells. The BMSCs derived

exosomal miR-193a could also promote apoptosis and reduce the

cisplatin resistance of NSCLC cells. And the downregulation of

LRRC1 expression caused by miR-193a played a regulatory role in

the mechanism of cisplatin resistance (50).
Role of exosomes in TKIs resistance of
NSCLC

Two classic oncogene mutations in NSCLC are epidermal

growth factor receptor (EGFR) mutation or anaplastic lymphoma

kinase (ALK) chromosome rearrangement (the most common one

is EML4-ALK fusion) (52). These two gene mutations have become

the standard and routine detection items of advanced lung

adenocarcinoma. In various randomized phase III clinical trials,

EGFR and ALK TKIs have always shown higher efficacy than

chemotherapy, making targeted therapy the standard treatment

for advanced NSCLC with such gene mutations (53, 54). However,
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drug resistance remains a pervasive challenge in clinic, patients will

eventually get progress during targeted therapy. Therefore, in this

review, we mainly focus on the molecular mechanisms of drug

resistance of EGFR and ALK TKIs.

According to the response of the tumor to the initial treatment,

drug resistance can be divided into two types. One is primary drug

resistance, who have no response at all to the treatment. The other is

acquired drug resistance. Such patients may have a complete or

partial response at first, but eventually have no response over time

(55). The primary resistance of NSCLC to EGFR TKIs is mainly

related to wild-type EGFR. The activation mutation of KRAS or

BRAF and the loss of function of apoptotic protein BIM will lead to

primary drug resistance (56–58). Some rare EGFR mutations can

also reduce the sensitivity of tumors to TKIs, such as small

insertions or duplications in exon 20 (59). Fibroblast growth

factor (FGF), hepatocyte growth factor (HGF) and neuregulin1

(NRG1) in tumor microenvironment are involved in the regulation

of primary drug resistance by regulating Ras/MAPK or PI3K/Akt

signaling pathway (60). In addition, the activation of NF-kB
signaling is also identified as one of the mechanisms of primary

resistance to EGFR TKIs (61).

In recent years, extensive efforts have been made to clarifying

the mechanisms of acquired drug resistance of TKIs (Figure 2). The

acquired resistance of the first-generation EGFR TKIs (gefitinib or

erlotinib) is mainly mediated by the development of T790M

mutation, which occurs in 50-65% of EFGR mutation and TKIs

resistant patients (62), other secondary mutations including T854A,

D761Y and L747S (63). The first mutation of resistance to second-

generation EGFR-TKI (afatinib) is also T790M mutation, and the

secondary mutation of resistance to third generation EGFR-TKI

(osimertinib) is EGFR C797S or G796D mutation (64). For the first

generation ALK-TKI crizotinib resistant patients, ALK kinase

domain mutations are the most common mechanisms, including

L1196 M, C1156Y, L1152 R, G1202R, S1206Y and G1269A

mutations (65, 66). And G1202R is the most common mutation

in patients resistant to second-generation ALK-TKIs (alectinib,

ceritinib, brigatinib) (67). Unlike the first or second generation

ALK-TKIs, most lorlatinib resistant patients have multiple ALK

mutations, such as L1196M/D1203N, F1174L/G1202R and

C1156Y/G1269A (68).

Another mechanism of TKIs resistance is the aberrated

activation of the bypass pathways (Figure 2). The aberrance of

other members of HER family, amplification of c-Met,

overexpression of AXL, overexpression of HGF, overexpression

and activation of integrin beta1, and the abnormality of IGFR can

affect the PI3K/AKT, MAPK, ERK, or NF-kB signaling pathways to

induce EGFR TKIs resistance (63). Abnormal expression of

downstream molecules may also lead to resistance to gefitinib or

erlotinib, such as the aberrant expression of NF1 and the loss of

PTEN (63). Bypass signaling tracks associated with ALK-TLIs

resistance including the abnormal of EGFR, HER2/3, IGF-1R, c-

KIT, etc. (Figure 2) (69). The other two rare mechanisms of

acquired TKIs resistance are the phenotypic change of NSCLC via

EMT and the histological transformation of NSCLC into SCLC (63,

69). Some drug transporters (ABCB1/PGP and ABCG2/BCRP) and
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lysosomal sequestration may also be involved in erlotinib and

gefitinib resistance (64). In addition, tumor heterogeneity is a

common phenomenon. Generally, TKIs sensitive cells and

acquired drug-resistant tumor cells are mixed. When the sensitive

cells are killed, the drug-resistant cells proliferate rapidly and

become the dominant cell group, further enhancing the drug

resistance (69).

The studies of exosomes in drug resistance of TKIs mainly focus

on gefitinib, erlotinib and osimertinib. It was found that the level of

lncRNA H19 in gefitinib resistant cells was higher than that in

sensitive cells. In addition, knockout of lncRNA H19 increased the

sensitivity of cells to gefitinib. Further studies confirmed that

lncRNA H19 could be encapsulated in exosomes and transferred

to sensitive cells to induce gefitinib resistance, which was specifically

mediated by heterogeneous nuclear ribonucleoprotein A2B1

(hnRNPA2B1), an RNA binding protein that controls the loading

of RNA into exosomes (70). Tumor derived exosomal circRNA-

102481 could enhance the expression of ROR1 and promote

gefitinib resistance (71). A microRNA analysis of exosomes

showed that miR-564, miR-658, miR-3126-5p, miR-3652, miR-

3682-3p and miR-6810-5p were significantly up-regulated in the

exosomes of gefitinib resistant cells. Further studies proved that

exosomal miR-564 and miR-658 from gefitinib resistant NSCLC

cells could induce drug resistance in sensitive cells (72). Studies have

shown that tumor-derived exosomal miR-21 and miR-522-3p could

participate in gefitinib resistance by regulating PI3K/Akt signaling

pathway, while exosomal miR-214 could confer gefitinib resistance

via Bax/Bcl2 signaling (73–75). Exosomal lncRNA H19 could also

regulate the expression of autophagy-related protein 7(ATG7) by
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targeting miR-615-3p, thus affecting the drug resistance of NSCLC

cells to erlotinib (76). A study demonstrated that exosomes

containing wild-type EGFR protein were internalized by EGFR

mutant cancer cells through clathrin-dependent endocytosis, and

then the downstream PI3K/Akt and MAPK signaling pathways

were activated by the wild-type EGFR protein, thus triggering

osimertinib resistance (77). It was found that miR-210-3p was

highly expressed in the exosomes of osimertinib resistant cells.

What’s more, exosomal miR-210-3p could directly promote EMT

of tumor cells and resistance to osimertinib (78). In addition,

NSCLC cell line H1975 could transfer lncRNA SOX2-OT into

macrophages through exosomes. LncRNA SOX2-OT facilitated

the expression of Smads by sponging miR-627-3p and induced

macrophages M2 polarization to aggravate the drug resistance of

cancer cells to osimertinib (79).

To clarify the role of exosomes in NSCLC drug resistance, a

comparison with classical mechanisms, such as gene mutations and

drug efflux pumps, is instructive. Mutations like EGFR T790M

primarily confer resistance by decreasing the binding affinity for

tyrosine kinase inhibitors, thus limiting therapeutic efficacy (73).

Meanwhile, drug efflux transporters such as ABCB1 and ABCG2

reduce drug accumulation inside tumor cells through active drug

export, resulting in treatment failure (80). These traditional resistance

mechanisms are typically cell-intrinsic, affecting individual cancer

cells, and generally irreversible once established. By comparison,

exosomes provide a distinctive mechanism involving intercellular

communication. They can transfer resistance-associated molecules—

including miRNAs and proteins—from resistant cells to sensitive

cells, thus propagating resistance throughout diverse tumor
FIGURE 2

Mechanisms of acquired drug resistance of EGFR and ALK TKIs. The resistance mechanisms of TKIs mainly include the emergence of secondary
mutations, bypass activation and phenotypic transformation. The exosomes secreted by drug-resistant cells contain special cytokines, which are
transmitted to sensitive cells to make them resistant to TKIs.
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populations (73). Additionally, exosomes modulate the tumor

microenvironment and mediate immune evasion, which are

distinct processes not typically associated with traditional mutation

or efflux-based resistance mechanisms (81). Clinically, the presence

of exosomal contents in biofluids allows for non-invasive monitoring

of treatment response. Furthermore, exosome secretion, uptake, and

cargo packaging are processes amenable to therapeutic targeting.

Therefore, exosomes hold promise not only as biomarkers for

resistance but also as novel therapeutic targets, underscoring

their increasingly recognized and multifaceted role in NSCLC

drug resistance.
Role of exosomes in ICIs resistance of
NSCLC

Drug resistance of ICIs can also be divided into primary

resistance and acquired resistance. Statistics show that less than

30% of NSCLC patients respond to ICIs, and most patients suffer

primary resistance (82). The emergence of ICIs resistance is a

complex, dynamic and interdependent process, which is closely

related to many tumor and host factors (Figure 3).

The efficacy of ICIs depends on the formation of tumor new

antigens. If the tumor specific antigens are less expressed and their

immunogenicity become weak, it will be not enough to activate

primitive T cells. And if a neoantigen is structurally like an immune
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tolerance antigen or an autoantigen, it will be difficult to be

recognized by antigen-presenting cells (APCs) and activate T

cells, which will lead to the drug resistance to PD-1/PD-L1

inhibitors (83). Class I MHC, b-2 microglobulin (b2M), large

multifunctional proteinase (LMP) and transporter associated with

antigen processing (TAP) are important components of tumor

antigen processing and presentation devices, resistance to PD-1/

PD-L1 inhibitors also occurs when the genes encoding them

become abnormal. For example, the loss of b2M expression leads

to the impaired expression of class I MHC molecules on the surface

of APCs, resulting in impaired antigen presentation and finally

immune tolerance (84). Furthermore, the downregulation of HLA

class I molecules may also be related to ICIs resistance (85).

Several factors lead to the inadequate function of tumor specific T

cells and reduce the clinical effect of PD-1/PD-L1 inhibitors. The

expression of many co-inhibitory receptors, such as cytotoxic T

lymphocyte antigen 4 (CTLA-4), T cell immunoglobulin and

mucin domain-3 (TIM3) and lymphocyte activation gene 3 (LAG3)

participate in immune escape and affect the antitumor effect of T cells

(86). Emerging evidence suggest that T cell exhaustion is associated

with epigenetic changes manifested as immune dysfunction and

continuous expression of surface inhibitory receptors, making it

difficult to function as normal effector T cells (87).

A variety of cells and cytokines in tumor microenvironment

(TME) form an immunosuppressive state, which can diminish the

therapeutic efficacy of PD-1/PD-L1 inhibitors. Regulatory T cells
FIGURE 3

Mechanisms of drug resistance of immune checkpoint inhibitors in NSCLC. The mechanism of immunotherapy resistance is complex. Loss of
antigen expression or presentation defect of tumor cells, abnormal signaling pathways in tumor cells and upregulation of non-PD-1 / PD-L1 immune
checkpoints will affect the interaction between tumor cells, antigen presenting cells and T cells. In addition, many immunosuppressive cytokines will
inhibit the antitumor activity of T cells.
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(Tregs) can inhibit the function of effector T cells by secreting some

inhibitory cytokines (88, 89). The removal of Tregs in the TME can

enhance the antitumor effect of PD-1/PD-L1 inhibitors (90).

MDSCs are the main regulatory factors of immune response

under various pathological conditions, which can promote

angiogenesis, tumor invasion and metastasis. The presence of

MDSCs in TME will reduce the effect of IO (91). Tumor

associated macrophages (TAMs), including M1 macrophages and

M2 macrophages, another class of cells that regulate the immune

environment against tumors (92). Immunosuppressive cytokines

such as CCL5, CCL7 and CXCL8, can aggregate MDSCs and Tregs

into the TME (93). In addition, indoleamine 2,3-dioxygenase (IDO)

produced by tumor or immune cells can improve the production

and activity of Tregs and MDSCs, produce immunosuppressive

metabolites to influence the function of effector T cells (94). Some

gene mutations are associated with immunosuppression. PTEN

gene deletion leads to the upregulation of CCL2, hypoxia

inhibitory factor 1 (HIF-1) and vascular endothelial growth factor

(VEGF), which leads to the transformation of macrophages from

M1 type to M2 type, resulting in negative immune regulation (95).

KRAS mutation will cause the loss of STK11/LKB1, and then T cell

suppressor neutrophils are recruited, resulting in the reduction of T

cells infiltration (96, 97).

Tumor cells can produce exosomes rich in cancer promoting

components, such as immunosuppressive proteins like PD-L1,

regulating immune response and promoting drug resistance (98).

PD-L1 derived from tumor exosomes presented both on the surface

and within exosomes, and exosomes can transport PD-L1 to other

cells with low or no expression of PD-L1 and may bind to PD-1 (99).

Insoluble PD-L1 expressed on plasma/serum exosomes is associated

with disease progression of NSCLC (100). Previous study found that

exosomes containing PD-L1 isolated from NSCLC patients could

reduce the production of IFN-g and interleukin-2 (IL-2), inhibiting

the activity of CD8+ T cells, this effect was more significant in

exosomes with high level of PD-L1 (101). What’s more, exosomes

with high levels of PD-L1 could also induce apoptosis of CD8+ T cells

through PD-L1/PD-1 interaction (102). So far, there are few studies

on exosomes in ICIs resistance of NSCLC. It is necessary to further

explore and clarify their role in immune regulation, to provide new

theoretical basis for ICIs resistance, and look for potential

therapeutic breakthroughs.

Building upon the mechanistic distinctions outlined above, we

further explore the unique clinical implications of exosome-

mediated resistance in NSCLC. Exosome-mediated resistance

differs from traditional drug resistance mechanisms in NSCLC,

such as gene mutations, drug efflux pumps, EMT, and tumor

heterogeneity. Generally, mechanisms like gene mutations or drug

efflux involve intrinsic cellular changes, often irreversible and

restricted to single tumor cells. In contrast, exosomes can deliver

resistance-associated molecules such as miRNAs and proteins from

resistant cells to sensitive ones, enabling the horizontal spread of

resistance throughout tumor populations (103).

Moreover, exosomes have additional roles in modifying the

tumor microenvironment and facilitating immune escape, features

rarely seen with mutations or efflux pump-related resistance (104).
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Clinically, exosomes can be detected in patients’ body fluids,

providing a non-invasive way to monitor drug resistance and

disease progression dynamically. Importantly, various steps

involved in exosome biology—including secretion, uptake, and

cargo packaging—can be therapeutically targeted, offering novel

strategies for overcoming drug resistance beyond conventional

approaches (105).
Emerging exosome-based
combination strategies in NSCLC

Recent studies suggest that exosome-targeting approaches may

complement existing NSCLC therapies by enhancing drug

sensitivity, overcoming resistance, or serving as biomarkers.

Table 2 provides representative examples of such strategies under

preclinical or exploratory investigation (105–108).
Conclusion

Drug resistance is an inevitable thorny problem in the clinical

treatment of NSCLC. Whether it is the classical chemotherapy,

targeted therapy or immunotherapy, the emergence of drug

resistance limits the clinical efficacy, and its molecular mechanisms

are multifactorial and complex. There is increasing evidence

that exosomes are involved in the drug resistance process of

NSCLC, which can transmit information between cells though the

miRNAs or proteins in it. However, further exploration of tumor

microenvironment after lung cancer treatment is still needed to

overcome the issue of drug resistance.
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