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MR radiomics in assessment
of consistency of pituitary
macroadenoma: can T1-
weighted contrast enhanced
image improve diagnostic
performance of T2-weighted
image?
Menghong Zou1†, Hongwei Li1†, Hongchao Yao1, Yang Liu2*

and Jie Zhang1*

1Department of Radiology, The Third Hospital of Mianyang (Sichuan Mental Health Center),
Mianyang, China, 2Department of Neurosurgery, The Third Hospital of Mianyang (Sichuan Mental
Health Center), Mianyang, China
Objectives: To evaluate and compare the efficacy of radiomics models derived

from T2-weighted and/or contrast-enhanced T1-weighted (CET1) images in

assessing pituitary macroadenoma consistency, and to validate their

performance stability under varying MRI field strengths and scanner vendors.

Methods: A total of 133 patients with pathologically proven pituitary

macroadenomas (35 fibrous, 98 non-fibrous) were retrospectively included.

Three logistic regression models were constructed: a T2 model, a CET1 model,

and a T2-CET1 combined model, based on features selected from coronal T2-

weighted and contrast-enhanced T1-weighted (CET1) images. An external

validation cohort of 40 patients (20 fibrous, 20 non-fibrous) was selected from

another healthcare institution. Model performance was primarily evaluated using

receiver operating characteristic (ROC) analysis. Stratified analyses were

performed to compare the predictive performance of the models across

different magnetic field strengths (1.5T and 3.0T) and scanner vendors.

Results: In the test dataset, the T2-CET1 combined model outperformed both

the independent CET1 and T2 models, achieving an AUC of 0.86, accuracy of

83.3%, sensitivity of 83.3%, and specificity of 83.8%. This compares favorably with

the CET1 model (AUC: 0.80, accuracy: 73.3%, sensitivity: 80.0%, specificity:

66.7%) and the T2 model (AUC: 0.79, accuracy: 76.7%, sensitivity: 76.7%,

specificity: 76.7%). The combined model’s superior performance extended to

the external validation set, where its AUC (0.865) exceeded that of the CET1

model (0.765) and the T2 model (0.811). Performance varied by MRI field

strength. For 1.5T systems, AUCs were 0.50 (CET1), 0.76 (T2), and 0.58

(combined). For 3.0T systems, the corresponding AUCs were 0.61, 0.83, and

0.56. Similarly, analysis by specific scanner model showed AUCs of 0.60 (CET1),

0.83 (T2), and 0.53 (combined) for one scanner, compared to 0.54, 0.84, and 0.52

for the other.
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Abbreviations: CET1, T1-weighted contrast enhanced i

image; ROI, Region of interest; SMOTE, Synthetic M

Technique; ROC, Receiver operating characteristic; AUC

curve; DCA, Decision curve analysis.
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Conclusions: Combining CET1 with T2 improves prediction performance for

pituitary macroadenoma consistency. However, the T2 model demonstrates

greater stability across different equipment than either the CET1 or

combined models.
KEYWORDS

radiomics, pituitary macroadenoma, hierarchical analysis, consistency,
combined model
Highlights
• Preoperative assessment of pituitary macroadenoma

consistency can inform clinical management and predict

surgical risk.

• The radiomics model using combined CET1 and T2

imaging sequences is superior to single-sequence models

in predicting pituitary adenoma consistency.

• Compared to CET1-based or combined T2-CET1 models,

the T2-based model exhibits lower variability across

different field strengths and equipment manufacturers.
1 Introduction

Pituitary adenoma is the most common sellar tumor and the third

most common intracranial tumor, accounting for approximately 10–

25% of central nervous system tumors (1–4). Surgical resection,

primarily via the transsphenoidal approach, represents the mainstay

of treatment (5, 6). Accurately predicting the preoperative texture

(non-fibrous vs. fibrous) of a pituitary macroadenoma is critical to

optimizing the choice of surgical approach (7). For example, tumors

predicted to be rigid or fibrotic may require a broader surgical

approach (e.g., a double-nostril approach rather than a single-nostril

approach) or advance planning of alternative approaches (e.g., a

transcranial approach), especially in complex anatomical situations

such as large tumors, invasion of the cavernous sinus, or significant

expansion into the saddle (8–10). Radiomics quantifies imperceptible

lesion characteristics by mathematically analyzing spatial distributions

and pixel intensities withinmedical images. Recent studies have applied

MRI radiomics to evaluate pituitary adenoma texture. For instance,

Cuocolo et al. (11) developed anMR-based radiomics model predicting

macroadenoma consistency, achieving an AUC of 0.99 and accuracy of

0.93. However, this study was limited by its small sample size, exclusive

use of T2-weighted sequences, and reliance on unvalidated subjective

intraoperative consistency assessments. Crucially, multi-sequence MRI
mage; T2, T2-weighted

inority Oversampling

, Area under the ROC

02
typically provides richer diagnostic information (12–14), and contrast-

enhanced T1-weighted (CE-T1) imaging—essential for pituitary

adenoma diagnosis and differential diagnosis—remains unexplored

in radiomics-based consistency prediction. This study aims to

develop a more accurate predictive model for pituitary

macroadenoma consistency using a larger patient cohort and multi-

sequence MR images (including CE-T1), thereby optimizing surgical

approach selection. Concurrently, we evaluate model stability under

defined conditions.
2 Materials and methods

2.1 Patient data collection

Patients diagnosed with pituitary macroadenoma between January

2011 and August 2020 were identified within the Picture Archiving and

Communication System (PACS), yielding a total of 133 patients.

Inclusion criteria were: (a) preoperative MR plain scan and contrast-

enhanced examination with complete imaging data; (b) complete

clinical data, including surgical records and postoperative

pathological results; and (c) pituitary macroadenoma diameter ≥1

cm. Exclusion criteria were: (a) poor image quality inadequate for

radiomic analysis; and (b) recurrent pituitary macroadenoma. The

patient screening process is shown in Figure 1.
2.2 Study design

The study workflow is shown in Figure 2 and comprises four

steps: (1) patient cohort enrollment and tumor segmentation, (2)

feature extraction, (3) model construction and evaluation, and (4)

stratified analysis based on equipment type and magnetic

field strength.
2.3 Histologic study

In this study, tumor consistency was classified based on collagen

expression levels measured in postoperative pathological sections.

Sections were stained using the Masson trichrome method masson
frontiersin.org
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staining reagent purchased from Zhuhai Baso Biotechnology Co.,

Ltd., product code BA4079B). For each sample, five random fields

of view were captured at ×200 magnification. The collagen-positive

area within the tumor was quantified using ImageJ software (v1.8.0,

National Institutes of Health) by measuring the blue-stained

extracellular matrix area. Tumors were classified as non-fibrous if

collagen constituted less than 15% of the total tumor area, and

fibrous if collagen constituted 15% or more (15–18).
2.4 Image segmentation and radiomic
feature extraction

CET1 images and T2 images of all patients were imported into

ITK-SNAP (http://www.itksnap.org/, version: 3.8.0), and then two

radiologists of different seniority(operated at an interval of 2 weeks)

used a layer-by-layer manual outline of the lesion to generate a

region of interest (ROI) (the delineation method was described in

the Supplementary Data Sheet 1). The pre-processing, including

Gaussian noise reduction, offset field correction, and histogram

matching, was implemented on A.K. software (Artificial Intelligence

Kit, A.K., version 3.3.0, GE Healthcare). After pre-processing, the
Frontiers in Oncology 03
image features were extracted using open-source Pyradiomics (19).

Finally, 107 features were extracted from both the CET1 and the T2.

Their detailed description is available in the online Pyradiomics

documentation (https://pyradiomics.readthedocs.io/en/latest/

features.html). Test of ICC for characteristics derived by two

clinicians. Features with ICC > 0.75 were retained for

further analyses.
2.5 Model building and evaluation

The enrolled patients were randomly allocated to a training set and

a validation set in a 7:3 ratio. Using the ultimately selected feature set,

prediction models based on T2, CE-T1, and combined T2 plus CE-T1

texture parameters were constructed via machine learning methods,

including logistic regression, support vector machines (SVM), and

decision trees. SMOTE was specifically employed to address the critical

clinical problem of underrepresented difficult tumor cases in our

dataset (20–22). Our approach directly addresses this gap by

enhancing training data for edge cases where human experts

typically struggle, aligning with clinical needs for improved difficult-

case diagnostics. Patients were then randomly allocated to training and
FIGURE 1

The patient screening process.
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validation sets in a 7:3 ratio. After splitting the dataset into training and

testing sets, the SMOTE was applied exclusively to the training set to

balance the class distribution before model training. The testing set

remained untouched throughout this process.To reduce information

redundancy, radiomic features were filtered using a two-step process:
Fron
1. Correlation-based filtering: Features with an inter-feature

correlation coefficient exceeding 0.90 were removed.

2. Low-variance filtering: Features exhibiting variance ≤ 0.1

were excluded. Subsequently, the Gradient Boosted

Decision Tree (GBDT) algorithm was employed to

further refine the feature set based on feature

importance scores.
Logistic regression models were constructed using the final

filtered features:
• Separate models for T2-weighted images and CET1-

weighted images.

• A combined model integrating selected features from both

image types.
For each model (individual or combined), a radiomics score

(Radscore) was calculated using the formula:

Radscore ¼ Intercept  + o(b_i  ∗ X_i)

where Intercept is the constant term, b_i represents the logistic
regression coefficient for the *i*-th feature, and X_i is the

feature value.

Model performance was evaluated using:
• Receiver Operating Characteristic (ROC) curves, reporting

the Area Under the Curve (AUC), accuracy, sensitivity,
tiers in Oncology 04
specificity, positive predictive value (PPV), and negative

predictive value (NPV).

• Calibration curves to assess agreement between predicted

probabilities and actual outcomes.

• Decision Curve Analysis (DCA) to quantify the net clinical

benefit across various threshold probabilities.
Finally, model stability was assessed via stratified analysis across

different MRI field strengths (1.5T vs. 3.0T) and manufacturers

(Siemens vs. Philips) the code was described in the Supplementary

Data Sheet 2 and 3.
2.6 Statistical analysis

R (version 3.5.1) and Python (version 3.5.6) were used for feature

selection, model building, and evaluation. To ensure model

reproducibility, the inter-class correlation coefficient (ICC) was

calculated to assess feature stability between two independent

radiologists. Features with an ICC > 0.75 were retained, demonstrating

relatively high inter-reader agreement in segmented tumor volume.

Statistical significance was defined as a two-tailed P value below 0.05.
3 Results

3.1 Patient characteristics

We included a total of 133 patients: 35 in the hard group (16

male, 19 female; mean age 51.2 ± 12.4 years) and 98 in the soft
FIGURE 2

The study workflow.
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group (46 male, 52 female; mean age 52.4 ± 13.2 years). There were

no statistically significant differences in age or gender between the

hard and soft groups (P > 0.05). In the external validation cohort, 40

patients were enrolled, comprising 20 patients with soft consistency

(12 males and 8 females, mean age 54.3± 11.7 years) and 20 patients

with hard consistency (12 males and 8 females, mean age 52.7 ±

14.1 years).
3.2 Training and validation of the
radiomics-based machine learning

The intraclass correlation coefficient (ICC) values for radiomic

features extracted from regions of interest (ROI) outlined by both

operators exceeded 0.75. Following Spearman correlation analysis,

56 features from T2-weighted images and 19 features from contrast-

enhanced T1-weighted (CET1) images were retained. Radscore

calculation and detailed accuracy metrics are provided in the

Supplementary Materials.

Prior to applying SMOTE, the AUC values for the T2-based

model, CE-T1-based model, and their combined model were 0.70,

0.56, and 0.70, respectively (Figures 3-6). Following the application

of SMOTE, the combined model achieved an accuracy of 83.3%,

sensitivity of 83.3%, specificity of 83.8%, and an AUC of 0.86. In

comparison, the performance metrics for the individual

models were:
Fron
• CET1 Model: Accuracy 73.3%, AUC 0.80, Sensitivity 80.0%,

Specificity 66.7%
tiers in Oncology 05
• T2 Model: Accuracy 76.7%, AUC 0.79, Sensitivity 76.7%,

Specificity 76.7%
Corresponding ROC curves are shown in Figures 7, 8.

Calibration curves (Figures 9, 10) demonstrated good

performance for all three models in both the training and

validation cohorts. Decision curve analysis (DCA, Figures 11, 12)

indicated that the combined model yielded the highest net benefit

across nearly all threshold probabilities.

On the external validation set, the combined model maintained

superior performance with an AUC of 0.865, outperforming the

CET1 model (AUC 0.765) and the T2 model (AUC 0.811). The

ROC curves for external validation are presented in Figure 13.
3.3 Evaluation of radiomics model in
different equipment (different field
strengths and different vendor)

Among 133 included patients, 128 were analyzed by scanner

vendor (GE Healthcare [n=5] was excluded from stratified analysis

due to small sample size). Scans were performed using Philips

Healthcare (all 3.0T; n=39) or Siemens Healthcare equipment (1.5T:

n=34; 3.0T: n=55). Results demonstrated that the model derived

from T2-weighted images alone exhibited greater stability across

different scanner types (both vendors and field strengths) compared

to models using CET1-weighted images alone or combined T2 and

CET1 images (Figures 14, 15).
FIGURE 3

Three prediction models' ROC curves in the training set.
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4 Discussion

In our study, we first developed models to predict pituitary

macroadenoma consistency using CET1 images and T2 images

separately, then created a combined model using both sequences.
Frontiers in Oncology 06
The combined model outperformed models based on either

sequence alone. However, further stratified analysis revealed

that the model built solely on T2 images demonstrated

greater stability than either the CET1-only model or the

combined model.
FIGURE 4

Three prediction models' ROC curves in the test set.
FIGURE 5

The DCA curves of the three predictive models on the training set.
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FIGURE 6

The DCA curves of the three predictive models on the test set.
FIGURE 7

After applying SMOTE, the ROC curves of the three models on the training set.
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The radiomic model combining CET1 and T2 images for

preoperative prediction of pituitary macroadenoma consistency

achieved an accuracy of 0.833 and an AUC of 0.862. In contrast,

prediction models developed by Cuocolo et al. (11) (using T2

images) and Su et al. (23) (using DWI, b=2000 s/mm²) reported

higher AUCs of 0.99 and 0.91, respectively, indicating superior

diagnostic performance to our model. Several factors may explain

this performance difference. First, our study included a larger

cohort (133 patients) compared to Cuocolo et al. (89 patients)

and Su et al. (50 patients). Second, while the prior studies relied on

subjective intraoperative surgeon assessment of tumor consistency

(despite initial training), our methodology used Masson staining of

pathological sections for classification (18), providing a more

objective and accurate standard. Furthermore, regarding imaging

sequences, CET1 may offer a more realistic depiction of pituitary

macroadenomas than DWI.

We evaluated the stability of three models (T2, CET1,

combined) across different field strengths (1.5T and 3.0T) and

MRI vendors. The T2-based model demonstrated significantly

higher stability than either the CET1 or combined models. We

posit that two interrelated factors—field strength-dependent signal

heterogeneity and vendor-/field strength-dependent differences in
Frontiers in Oncology 08
contrast enhancement behavior—likely contributed to this

phenomenon, particularly affecting the integrated nature of the

combined model.
4.1 Field strength-dependent signal
heterogeneity

Fundamental physical differences between 1.5T and 3.0T scanners

significantly impact signal-to-noise ratio (SNR), contrast-to-noise ratio

(CNR), and spatial resolution. While 3.0T generally offers higher SNR

enabling finer texture resolution (24), it also introduces greater

susceptibility artifacts, spatial inhomogeneity, and B1 field

inhomogeneity. Radiomic features, especially texture descriptors (e.g.,

GLCM, GLRLM, GLSZM), are inherently sensitive to these variations

in image acquisition physics (25, 26). This non-biological, acquisition-

driven heterogeneity disrupts the stability and reproducibility of

radiomic features across field strengths (27). Consequently, the

model weights optimized on the training data (potentially dominated

by one field strength) may misrepresent feature-tumor biology

relationships in the other field strength subgroup, leading to

performance degradation in stratified testing (28).
FIGURE 8

After applying SMOTE, the ROC curves of the three models on the test set.
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FIGURE 9

After applying SMOTE, the calibration curves of the three models on the training set.
FIGURE 10

After applying SMOTE, the calibration curves of the three models on the test set.
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4.2 Vendor/field strength-dependent
contrast enhancement behavior

Gadolinium-based contrast enhancement kinetics and appearance

in pituitary macroadenomas are influenced by complex interactions

between tumor biology (e.g., vascularity, permeability) and technical

factors. Crucially, relaxivity (R1) of gadolinium chelates is field-
Frontiers in Oncology 10
strength dependent (29), and vendor-specific implementations of

pulse sequences (e.g., saturation pulses, flip angle optimization,

parallel imaging) further modulate signal dynamics during contrast

uptake (30). Our combined model relies heavily on radiomic features

extracted from post-contrast T1-weighted sequences (e.g.,

firstorder_Minimum, firstorder_MeanAbsolute, glcm_JointEntropy),

which encode information about enhancement intensity and
FIGURE 11

After applying SMOTE, the DCA curves of the three models on the training set.
FIGURE 12

After applying SMOTE, the DCA curves of the three models on the test set.
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heterogeneity. Systematic differences in the apparent enhancement

patterns—driven by field strength (e.g., different T1-weighting at

1.5T vs 3.0T) and vendor-specific image reconstruction algorithms—

can alter these feature values without reflecting true biological

differences (31). The combined model, seeking synergy between

clinical factors (e.g., hormone status) and radiomic phenotypes, may

inadvertently learn spurious correlations between clinical variables and

these acquisition-biased enhancement features. When applied to data

from a different scanner type or field strength, these learned

associations fail, degrading model performance (32). The combined

model, however, aims to leverage complementary information. If the

radiomic component introduces unstable, acquisition-dependent

signals (as described above), the integration process can amplify

noise rather than biological signal in heterogeneous test sets (33).

This underscores the paradox that combining data sources can reduce

robustness if one source (here, radiomics) lacks harmonization across

acquisition platforms (34).

This methodological choice carries substantial clinical implications:

Firstly, we adopted a more objective method for evaluating the texture

of pituitary macroadenomas, defining it by the expression level of

collagen within the tumor tissue. This represents the first time collagen
FIGURE 13

The ROC curves of the three models on the external validation set.
FIGURE 14

The ROC curves for different field strength.
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quantification has been used to define texture in radiomics model

predictions for pituitary macroadenomas. Secondly, we utilized

contrast-enhanced sequences for the first time in this context. While

these sequences are commonplace in the routine imaging evaluation of

pituitary macroadenomas, their application in radiomics texture

prediction is novel. It is well-established that fibrous components

within tumors exhibit delayed enhancement on contrast-enhanced

images. Previously employed sequences, such as T2-weighted images

(T2WI) and diffusion-weighted imaging (DWI), fail to adequately

capture the presence of these fibrous elements. Furthermore,

contrast-enhanced sequences effectively depict necrotic and cystic

components within the tumor. Undoubtedly, these components also

significantly influence pituitary macroadenoma texture. In addition, we

performed a first-ever stratified analysis of the constructed imaging

model. Given that different hospitals employ varying imaging

equipment for pituitary macroadenoma examinations, conducting

this stratified analysis helps identify more stable models. This

approach enhances the reproducibility of the radiomics model and

facilitates its practical application in real-world clinical settings.

The preoperative prediction of tumor consistency holds

significant potential to refine surgical strategies, particularly in

selecting optimal operative corridors. Our radiomic model may
Frontiers in Oncology 12
direc t ly influence dec is ion-making in the fo l lowing

clinical scenarios:

1. Endonasal Approach Selection (Mononostril vs. Binostril):

Predicted non-Fibrous Tumors: A mononostril transsphenoidal

approach is often sufficient for predominantly soft lesions. These

tumors can be efficiently aspirated or curetted through a single

naris, minimizing nasal trauma and reducing operative time.

Predicted Fibrous Tumors: Binostril endoscopic approaches

become preferable when firm consistency is anticipated. The

wider exposure facilitates bimanual microdissection, enhances

instrument maneuverability for piecemeal resection, and allows

safer dissection of adherent tumor capsules from neurovascular

structures (e.g., optic apparatus, cavernous sinus). Failure to

anticipate firm consistency via a mononostril corridor may lead

to incomplete resection or excessive traction injury.

2. Consideration of Transcranial Access: Predicted firm

consistency combined with specific anatomical factors may

warrant transcranial approaches (e.g., pterional, subfrontal): For

tumors exhibiting significant suprasellar extension (>3cm), a

potential fibrous capsule may create adhesions tethering the

tumor to critical structures like the optic chiasm or anterior

cerebral arteries. In these cases, a transcranial approach enables
FIGURE 15

The ROC curves for different vendor.
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direct visualization and sharp dissection of these adherent

interfaces. Similarly, in Knosp Grade 3–4 tumors invading the

cavernous sinus, a firm consistency elevates the risk of carotid

artery injury during transsphenoidal dissection. Here, a transcranial

or combined approach provides superior control for managing the

lateral compartments.

The present study also has certain limitations. Firstly, it was a

single-center retrospective study and the sample size included was

only 133. Secondly, there was a large difference in the number of

patients with non-fibrous and fibrous consistency, but this was

consistent with the actual clinical situation and the epidemiology of

pituitary macroadenoma. Last but at least, some of the cases we

included have a long history, and the degradation of collagen in the

pathological tissue may affect the qualitative judgment.

In conclusion, in the prediction of the consistency of pituitary

macroadenomas, radiomics models based on CET1 images

combined with T2 images have higher diagnostic efficacy than

models constructed from independent images. However, the

model constructed from independent T2 images was more stable

across different field strengths and vendors.
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