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Objective: Prostate cancer is prevalent among older men. Although this

malignancy has a relatively low mortality rate, its aggressiveness is critical in

determining patient prognosis and treatment options. This study therefore aimed

to evaluate the effectiveness of a 2.5D deep learning model based on prostate

MRI to assess prostate cancer aggressiveness.

Materials and methods: This study included 335 patients with pathologically-

confirmed prostate cancer from a tertiary medical center between January 2022

and December 2023. Of these, 266 cases were classified as aggressive and 69 as

non-aggressive, using a Gleason score ≥7 as the cutoff. The subjects were

automatically divided into a test set and validation set in a 7:3 ratio. Before

pathological biopsy, all patients underwent biparametric MRI, including T2-

weighted imaging, diffusion-weighted imaging, and apparent diffusion

coefficient scans. Two radiologists, blinded to pathology results, segmented

the lesions using ITK-SNAP software, extracting the minimal bounding rectangle

of the largest ROI layer, along with the corresponding ROIs from adjacent layers

above and below it. Subsequently, radiomic features were extracted using

pyradiomics tool, while deep learning features from each cross-section were

derived using the Inception_v3 neural network. To ensure consistency in feature

extraction, intraclass correlation coefficient (ICC) analysis was performed on

features extracted by radiologists, followed by feature normalization using the

mean and standard deviation of the training set. Highly correlated features were

removed using t-tests and Pearson correlation tests, and redundant features

were ultimately screened with least absolute shrinkage and selection operator

(Lasso). Models were constructed using the LightGBM algorithm: a radiomic

feature model, a deep learning feature model, and a combined model integrating

radiomic and deep learning features. Further, a clinical feature model (Clinic-

LightGBM) was constructed using LightGBM to include clinical information. The

optimal feature model was then combined with Clinic-LightGBM to establish a

nomogram. The Grad-CAM technique was employed to explain the deep

learning feature extraction process, supported by tree model visualization
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techniques to illustrate the decision-making process of the LightGBM model.

Model classification performance in the test set was evaluated using the area

under the receiver operating characteristic curve (AUC).

Results: In the test set, the nomogram demonstrated the highest predictive

ability for prostate cancer aggressiveness (AUC = 0.919, 95% CI: 0.8107–1.0000),

with a sensitivity of 0.966 and specificity of 0.833. The DLR-LightGBM model

(AUC = 0.872) outperformed the DL-LightGBM (AUC = 0.818) and Rad-LightGBM

(AUC = 0.758) models, indicating the benefit of combining deep learning and

radiomic features.

Conclusion: Our 2.5D deep learning model based on prostate MRI showed

efficacy in identifying clinically significant prostate cancer, providing valuable

references for clinical treatment and enhancing patient net benefit.
KEYWORDS
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1 Introduction

Prostate cancer is the second most common malignancy among

men worldwide (1). As an age-related tumor, it has a high incidence

rate, but relatively low mortality (2). Low-grade prostate cancer

typically grows slowly, with minimal risk of dissemination, allowing

for active surveillance or localized treatment. However, high-grade

prostate cancer generally requires more aggressive and diverse

clinical management to control disease progression, prolong

survival, and improve patient quality of life (3).

Traditional imaging diagnosis of prostate lesions and

aggressiveness assessment relies predominantly on multiparametric

prostate MRI and the interpretation of the Prostate Imaging–

Reporting and Data System (PI-RADS) v2.1 (4). This includes

assessments of lesion size, signal intensity, enhancement patterns,

and invasion into the surrounding tissues (5). However, the complex

growth patterns of prostate cancer often leads to inter- and intra-

observer variability in classification (6). The Gleason score (7),

obtained via transrectal ultrasound or MRI-guided biopsy, is a key

indicator of prostate cancer aggressiveness. However, this system has

a relatively low sensitivity (8), and thus inflicts economic and

psychological burdens to patients. As such, there is an urgent need

for a non-invasive, rapid, and effective imaging tool to assess prostate

cancer aggressiveness.

With advances in artificial intelligence, deep learning has been

widely applied in the field of medical image analysis (9). Deep

learning, by mimicking the connections of human neurons, can

automatically learn and extract high-level image features from

large-scale imaging data, which are often undetectable to the

human eye. These features are applied to risk stratification and

treatment planning, thereby significantly enhancing diagnostic

accuracy and efficiency (10). In previous studies, 2D deep
02
learning and radiomics have been widely applied (11–13).

However, their limited ability to capture 3D spatial information

poses challenges in analyzing complex tumor structures.

Conversely, Unlike previous studies relying on 2D deep learning

or radiomics alone, our approach introduces a 2.5D deep learning

framework that partially captures 3D spatial information while

maintaining computational efficiency. Additionally, we integrate

radiomic features, deep learning, and clinical variables into a

nomogram, offering a more comprehensive tool for aggressiveness

assessment. This study aimed to integrate multiparametric prostate

MRI with advanced machine learning techniques to develop a novel

2.5D deep learning model, to enhance accuracy in prostate cancer

diagnosis and aggressiveness assessment to support clinical

decision-making.
2 Materials and methods

2.1 Patients

This retrospective study included prostate cancer patients

diagnosed at a tertiary medical center from January 2022 to

December 2023. All patients underwent preoperative

multiparametric MRI, with prostate cancer confirmed through

biopsy and postoperative pathological examination. The inclusion

criteria were as follows: patients who underwent preoperative

multiparametric prostate magnetic resonance imaging (MRI) with

confirmed pathological diagnosis of prostate cancer. The exclusion

criteria were as follows: lack of histological confirmation, severe

cardiovascular or circulatory disease, a prior history of cancer, poor

image quality, or biopsy within one month prior to MRI.

Ultimately, the MRI and clinical data from 335 patients were
frontiersin.org
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included, with patients categorized as high-aggressiveness (266

cases) or low-aggressiveness (69 cases) based on a Gleason score

threshold of ≥7. The data were split into training and test sets in a

7:3 ratio, with the test set used for model evaluation to ensure

validity and reliability. The patient inclusion and exclusion process

is presented in Figure 1.
2.2 Image acquisition

All patients underwent biparametric prostate MRI prior to

pathological biopsy, including T2-weighted imaging (T2WI),

diffusion-weighted imaging (DWI), and apparent diffusion

coefficient (ADC) measurements. MRI scans were performed

using a Philips 3.0T high-field strength MRI scanner to ensure

high-resolution imaging. All examinations followed the PI-RADS

v2.0 or v2.1 technical guidelines. Table 1 provides the details of the

MRI acquisition parameters.
2.3 Prostate pathology

Pathology results were obtained from pathology reports, with

two experienced uropathologists independently reviewing all slides

and performing grading according to the Gleason scoring system. In

cases of discrepancy, a third pathologist was consulted to achieve

consensus. In the present study, Gleason scores ≥7 were defined as

aggressive prostate cancer, while scores ≤6 were classified as non-

aggressive prostate cancer.
Frontiers in Oncology 03
2.4 Clinical data

Basic clinical data were collected, including age, prostate-

specific antigen (PSA) levels, and Prostate Imaging Reporting &

Data System (PI-RADS) scores. All data were extracted from the

patients’ medical records, with data on PSA levels taken from the

most recent test before MRI, and PI-RADS scores from radiology

reports. Data were entered into standardized tables and double-

checked for accuracy. Chi-square tests were used for categorical

variables. Baseline statistics were performed on all clinical

characteristics to ensure group consistency.
2.5 MRI data preprocessing

All MRI images were exported from the Picture Archiving and

Communication System (PACS) in DICOM format. Following

conversion to the NII format, all imaging data were resampled to

a fixed resolution with voxel spacing standardized to 1mm × 1mm ×

1mm. Next, the CT Hounsfield Units (HU) were normalized to a

range of -120 to 180, corresponding to a window width of 300 and

window level of 30. This standardization enhances robustness in

medical image analysis.
2.6 Radiomics workflows

2.6.1 Image segmentation and cropping
Two radiologists, blinded to the pathology results, used ITK-

SNAP (version 3.8.0, http://www.itksnap.org) to perform layer-by-
FIGURE 1

Flowchart showing patient inclusion and exclusion.
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layer segmentation of the region of interest (ROI) along the lesion

edges on axial T2WI, combined with DWI sequences and ADC

images. For patients with multiple lesions, only the lesion with the

highest PI-RADS 2.1 score was segmented. Next, the minimum

bounding rectangle of the largest ROI slice and two adjacent slices

above and below were cropped. Missing slices were further filled

with symmetric counterparts. To ensure consistency in feature

extraction, an inter-rater consistency check was first conducted.

After one month, the radiologists re-segmented randomly selected

images from 20 patients to assess the intra-rater consistency. Deep

learning features with an intraclass correlation coefficient (ICC) >

0.8 were selectively retained. This approach ensured the stability

and reliability of segmentation results, providing a robust data

foundation for further analysis and model development. Figure 2

presents the detailed workflow of the study.
2.6.2 Feature extraction and filtering
Radiomic features were extracted from segmented ROIs using

pyradiomics (version 3.0.1), adhering to the rigorous standards set

by the Imaging Biomarker Standardization Initiative (IBSI). A total

of 1,834 features were extracted and categorized into four groups:

first-order statistical, shape, texture, and filter-based high-order

features. Each feature category captures distinct tumor attributes

across various dimensions: first-order features describe the basic

pixel intensity statistics, shape features reflect ROI geometry,

texture features quantify local intensity patterns and relationships

in grayscale images, and high-order features uncover complex

spatial information via filters such as wavelet transforms. Figure 3

presents the specific feature distribution.

First, a grid search was conducted on the training set data to

determine the optimal deep learning network, Inception_v3, for

feature extraction. Then, the 2D deep learning features were

extracted from each MRI slice. Subsequently, adjacent slice

information was integrated through feature fusion to construct a

partially 3D spatial representation as 2.5D deep learning features.

This method retained the computational efficiency and data

requirements of a 2D model, while enhancing the ability to

capture tumor spatial relationships through multilayer image

integration. This efficient and accurate feature extraction method

offers an innovative approach for prostate cancer imaging analysis.

All features were normalized using the mean and standard

deviation of the training set to ensure consistent feature scaling,

thereby avoiding biases during model training. In the statistical

analysis, a t-test was initially applied to identify the features

significantly associated with prostate cancer aggressiveness. A

significance threshold of p < 0.05 was applied, retaining only

features meeting this criterion for further analysis. Next,

Pearson’s correlation tests were applied to assess feature

correlations, with a threshold of 0.9 to remove highly correlated

features and avoid multicollinearity effects in the model. Finally,

Lasso regression with L1 regularization was applied for redundant

feature selection, effectively identifying the most predictive features

and automatically removing redundant ones. To ensure robust

feature selection, the Lasso regularization parameter (l) was

determined through 10-fold cross validation, selecting the optimal
T
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parameter to maintain the model’s generalizability. This feature

selection process strictly followed statistical and machine learning

optimization principles, aiming to improve predictive performance,

while minimizing the risk of overfitting.

2.6.3 Model construction and evaluation
In this study, all of the enrolled patients were randomly assigned

to the training and testing sets in a 7:3 ratio, thereby ensuring the

independence of model training and validation. The study extracted
Frontiers in Oncology 05
radiomic and 2.5D deep learning features based on T2WI images.

Following rigorous selection, models were constructed using the

LightGBM algorithm: one based on radiomic features (Rad-

LightGBM), one on deep learning features (DL-LightGBM), and a

combined model integrating both feature types (DLR-LightGBM).

Additionally, a clinical feature model (Clinic-LightGBM) was

constructed using the LightGBM algorithm to incorporate clinical

data in the analysis. Finally, the top-performing feature model was

combined with Clinic-LightGBM to develop a nomogram
FIGURE 2

Overview of the study workflow.
FIGURE 3

(A, B) Ratio of the different radiomics features.
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integrating multi-source features and clinical variables to predict

individual patient risk probabilities, to provide a quantitative tool to

enhance individualized accuracy in prostate cancer diagnosis and

support clinical decision-making.

For model evaluation, the area under the receiver operating

characteristic (ROC) curve (AUC) was first calculated to quantify the

model’s overall classification performance. Additionally, the model’s

accuracy, sensitivity, and specificity were calculated to comprehensively

assess its performance on the test set. To further validate the model’s

clinical applicability, decision curve analysis (DCA) was conducted to

measure the net benefit across different thresholds, to assess themodel’s

potential contribution to clinical decision-making. To compare the

performance differences between models (deep learning model, clinical

feature model, and combined model), DeLong’s test was applied to

statistically assess the significance of AUC differences, thereby ensuring

reliability in performance comparisons.
2.7 Statistics

All statistical analyses were performed using Python 3.7.12, with

the LightGBM machine learning algorithm implemented via Scikit-

learn version 1.0.2. The Shapiro-Wilk test was subsequently applied

to assess the normality of clinical features in binary variables, and

depending on the normality distribution, either the t-test or Mann-

Whitney U test was used for significance assessment. Chi-square

tests were applied for categorical variables. Finally, univariate

regression analysis was conducted on all clinical features to

identify those with p < 0.05.
2.8 Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM) was

employed in this study to interpret the feature extraction process of

the deep learning model. Grad-CAM is a widely used technique that

generates heatmaps, highlighting regions of input images critical to

model predictions, and thereby providing a visual interpretation of

deep learning models. Specifically, we applied Grad-CAM

visualization to the third-to-last layer, the final convolutional layer

of the Inception_v3 model, to identify spatial regions associated with

malignancy or aggressiveness. The heatmaps visually reveal the deep

learning model’s decision-making process, addressing the “black-

box” issue commonly associated with deep networks. By overlaying

the Grad-CAM heatmaps onto the original MRI images, we were able

clearly observe the regions with the greatest influence on model

output, thereby allowing us to evaluate if these areas align with

known pathological features of prostate cancer.
2.9 Tree model visualization

In this study, tree model visualization techniques were applied

to interpret the model constructed using the LightGBM algorithm,
Frontiers in Oncology 06
an efficient, decision tree-based gradient boosting algorithm with

strong capabilities for handling large-scale and sparse datasets. Tree

model visualization focuses on two aspects: displaying feature

importance and tracing individual sample decision paths. Feature

importance reflects the relative contribution of each input variable

to the model’s predictions, thereby aiding in the identification of

features critical to the model’s decision-making. Additionally, the

visualization of decision paths reveals how the model incrementally

reaches classifications or predictions. For example, for one specific

patient, we are able to trace the model’s decisions at each tree node

based on specific feature values, thereby culminating in the

prediction outcome. This decision path visualization provides

clinicians with intuitive decision support, and offers a more

transparent model interpretation, helping to build user trust in

the model’s predictions.
3 Results

3.1 Patient characteristics

Data from 335 eligible patients were included in the study,

comprising 266 and 69 cases of aggressive and non-aggressive

prostate cancer, respectively. Statistical tests showed no significant

differences in age, PSA levels, maximum tumor length, or PI-RADS

2.1 scores between groups in either the training or test sets (P >

0.05), indicating unbiased grouping. Clinical baseline statistics

across groups are presented in Table 2. In this study, we

conducted a comprehensive univariate analysis of all clinical

features, calculating each feature’s odds ratio (OR) and associated

p-value. Variables with clinical significance (p < 0.05) were included

in the subsequent clinical feature model.
3.2 Feature extraction and filtering

A rigorous feature selection process was applied to the extract

core features from different types of initial feature sets for model

construction. Specifically, 11 features were selected from amongst

1834 radiomic features, 41 from 6144 deep learning features

(generated by combining 2048-dimensional features across three

slices), and 26 from the combined feature set. Additionally, four

clinical features (PSA level, maximum tumor length, age, and PI-

RADS 2.1 score) were included. Multistep statistical analyses and

machine learning methods ensured that the selected features were

significant in differentiating prostate cancer aggressiveness. By

combining statistical tests and dimensionality reduction

algorithms, we were able to remove feature redundancy, and

minimized the risk of overfitting, thereby improving model

generalizability and predictive stability. Through this optimized

feature selection strategy, we were able to develop a model with high

predictive performance and interpretability, thereby providing a

scientific basis to assess prostate cancer aggressiveness. The feature

selection process is illustrated in Figure 4.
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3.3 Model construction and evaluation

In this study, all of the constructed models demonstrated high

classification performance on the training set (AUC > 0.8). In the test

set, the three models combining 2.5D deep learning and radiomic

features outperformed the clinical feature-only model (AUC = 0.757,

95% CI: 0.5726 - 0.9414). Among these, two models incorporating

2.5D deep learning features performed better than the radiomics-only

model. The DLR-LightGBMmodel achieved the highest classification

performance, with an AUC of 0.872 (95% CI: 0.7030 - 1.0000),

significantly outperforming both the DL-LightGBM (AUC = 0.818,

95% CI: 0.6659 - 0.9708) and the Rad-LightGBM (AUC = 0.758, 95%

CI: 0.5518 - 0.9641) models. These results indicate that combining

deep learning and radiomic features can significantly improve the

predictive power of models in assessing prostate cancer

aggressiveness, thereby allowing a more comprehensive evaluation.

Furthermore, the DLR-LightGBM model demonstrated exceptional

sensitivity and specificity on the test set, with values of 0.966 and

0.833, respectively, with specificity surpassing that of other models,

underscoring its value in evaluating prostate cancer aggressiveness.

The nomogram, a comprehensive model integrating imaging and

clinical features, also demonstrated strong predictive performance,

achieving an AUC of 0.919 (95% CI: 0.8107 - 1.0000), with a
Frontiers in Oncology 07
sensitivity of 0.966 and specificity of 0.833 (Table 3) (Figure 5). The

results of the DeLong test suggest that the nomogram’s classification

performance on the test set was almost significantly superior to the

DLR-LightGBM and Clinic-LightGBM models, indicating that the

nomogram holds substantial clinical utility in predicting prostate

cancer aggressiveness, thereby offering valuable guidance in clinical

decision-making. DCA further showed that the nomogram

maintained a high clinical net benefit across nearly the entire range

of risk thresholds. The Hosmer-Lemeshow (HL) test indicated strong

agreement between predicted and observed outcomes for the

nomogram (Figure 6). These findings highlight that the nomogram

not only outperforms other models in terms of accuracy and

calibration, but also has significant potential for application in

managing and decision-making for high-risk prostate cancer patients.
3.4 Grad-CAM evaluation

In this study, Grad-CAM visualization was applied to images

from 101 test-set patients to evaluate the activation of the deep

learning model in prostate cancer lesion areas. Additionally,

pathology specimens from 20 randomly selected patients were

retrospectively analyzed. Results showed that, highlighted areas in
TABLE 2 Clinical baseline characteristics of prostate cancer patients in different groups.

Feature_name Label=all Label=test Label=train P-value

PSA 56.26 ± 119.20 64.39 ± 118.80 52.75 ± 119.46 0.053

Age 70.03 ± 7.90 71.06 ± 7.62 69.59 ± 8.00 0.075

Tumor length 22.88 ± 13.80 22.74 ± 12.53 22.94 ± 14.34 0.736

pi_rads 0.626

1 10 (2.99) 1 (0.99) 9 (3.85)

2 40 (11.94) 11 (10.89) 29 (12.39)

3 88 (26.27) 28 (27.72) 60 (25.64)

4 62 (18.51) 21 (20.79) 41 (17.52)

5 135 (40.30) 40 (39.60) 95 (40.60)
FIGURE 4

(A) Coefficients of 10-fold cross validation. (B) Histogram of the Rad-score based on the selected features.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1539537
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1539537
the heatmaps significantly overlapped with the segmented lesion

regions in all 20 samples, demonstrating the model’s sensitivity and

accuracy in detecting tumor areas. Among these 20 samples, 19

displayed heatmap activation areas that matched prostate cancer-

diagnosed regions in pathology reports, with regions of high

activation correlating to blurred or absent gland structures and

abnormal cellular arrangement in pathology specimens. This result

indicates that Grad-CAM-generated heatmaps effectively highlight

key regions of model focus, aligning with actual lesion locations,

and enhancing the model’s interpretability. This visualization

analysis further validates the model’s effectiveness in identifying

prostate cancer in imaging, thereby providing valuable insights for

clinical diagnosis and future research (Figure 7).
3.5 LightGBM tree model visualization

In this study, LightGBM tree model visualization techniques

were employed to display the influence of different features in the
Frontiers in Oncology 08
model’s decision-making process. By analyzing the decision paths

in the tree model, we were able to intuitively track how individual

samples undergo split decisions in the prediction process, thereby

clarifying how the model makes sequential predictions based on

specific feature values. This approach allows us to identify and

quantify the relative contributions of each input feature to the

model’s prediction outcome, thereby helping us understand which

features play a critical role in classification decisions. Figure 8

illustrates the feature importance and decision paths for

DLR-LightGBM.
4 Discussion

Compared to previous approaches that relied solely on either

radiomics or 2D deep learning, we propose a novel 2.5D deep

learning model that integrates multi-slice MRI data to capture

partial 3D spatial context while maintaining computational

efficiency. Moreover, by integrating these features with clinical
TABLE 3 Prediction performance of the different models.

Signature AUC 95% CI Sensitivity Specificity PPV NPV Cohort

DL_LightGBM 0.995 0.9889 - 1.0000 0.989 0.948 0.983 0.965 Train

DLR_LightGBM 0.982 0.9680 - 0.9962 0.943 0.966 0.988 0.848 Train

Rad_LightGBM 0.899 0.8553 - 0.9421 0.864 0.776 0.921 0.652 Train

Clinic_LightGBM 0.822 0.7637 - 0.8801 0.602 0.879 0.938 0.421 Train

Nomogram 0.957 0.9308 - 0.9822 0.903 0.897 0.964 0.754 Train

DL_LightGBM 0.818 0.6659 - 0.9708 0.989 0.583 0.946 0.875 Test

DLR_LightGBM 0.872 0.7030 - 1.0000 0.966 0.833 0.977 0.769 Test

Rad_LightGBM 0.758 0.5518 - 0.9641 0.798 0.75 0.959 0.333 Test

Clinic_LightGBM 0.768 0.5845 - 0.9520 0.854 0.667 0.949 0.381 Test

Nomogram 0.919 0.8107 - 1.0000 0.966 0.833 0.977 0.769 Test
FIGURE 5

(A, B) ROC Curves of the different Models in each cohort.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1539537
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1539537
variables, we developed a nomogram model that demonstrated

superior predictive performance. This multimodal fusion strategy,

combined with interpretability analyses via Grad-CAM and tree-

based visualization, enhances model transparency and offers new

insights into prostate cancer aggressiveness assessment. The

comprehensive model achieved an AUC of 0.957 on the training

set and 0.919 on the testing set, outperforming any single model or

combined radiomics and deep learning models. This indicates the

joint model possesses strong generalizability and holds potential for

clinical application in non-invasive prostate cancer aggressiveness

assessment, particularly in screening and early intervention for

high-risk patients.

Preoperative prostate MRI scanning plays a critical role in

assessing prostate cancer and its aggressiveness. Although

traditional multiparametric MRI (mpMRI) combined with the PI-

RADS scoring system is widely used for diagnosis, its ability to

grade cancer aggressiveness is limited and prone to interobserver

variability. Further, prostate cancer typically appears as hypointense

regions on T2-weighted imaging (T2WI), which offers high soft-

tissue resolution, making it effective at distinguishing between
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benign and malignant lesions, as well as assessing tumor

aggressiveness (14). However, due to the heterogeneity and

irregular growth patterns of prostate lesions, manual lesion

segmentation is often time-consuming and resource-intensive

(15). Thus, the present study employed automated lesion

segmentation based solely on the T2WI sequence. Unlike prior

studies that segmented ROIs across multiple imaging sequences

(16–18), this study’s approach demonstrated high classification

efficacy. This further reduced the need for manual intervention,

simplified the training process, and validated the utility of T2WI in

prostate cancer diagnosis. Compared with previous studies

employing radiomic features or 2D deep learning models for

prostate lesion classification, the present study innovatively

integrated multilayer imaging data. Using a grid search, it

identified the Inception_v3 neural network as the optimal method

for feature extraction, constructing 2.5D deep learning features with

partial 3D information (19). This method outperforms traditional

2D feature extraction by better capturing the spatial structure and

heterogeneity of prostate cancer lesions, thereby enhancing model

performance and predictive accuracy. However, due to the “black-
FIGURE 6

(A) Different signatures’ decision curves on the test cohort. (B) Different signatures’ calibration curve on the test cohort. (C) Delong scores of
different signature.
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box” nature of deep learning models, interpreting the biological

significance of their features remains challenging (23). To address

this, we employed Grad-CAM visualization (20), using activation

maps to highlight key regions targeted during feature extraction.

Among these 20 samples, 19 displayed heatmap activation areas

that matched prostate cancer-diagnosed regions in pathology

reports, with regions of high activation correlating to blurred or

absent gland structures and abnormal cellular arrangement in

pathology specimens. This result indicates that Grad-CAM-

generated heatmaps effectively highlight key regions of model

focus, aligning with actual lesion locations, and enhancing the
Frontiers in Oncology 10
model’s interpretability. This visualization analysis further

validates the model’s effectiveness in identifying prostate cancer

in imaging, thereby providing valuable insights for clinical diagnosis

and future. In related research on prostate cancer aggressiveness by

Cai et al., Grad-CAM visualization was applied to label-only

prostate images, successfully localizing tumor regions (15). In the

present study, radiomic features were extracted using the

pyradiomics tool (version 3.0.1). Out of 1,834 radiomic features,

11 were selected, including one shape feature, two first-order

statistics features, four GLCM, three GLSZM, and one GLRLM

feature. The number of selected features suggests that GLCM
FIGURE 7

Grad-CAM heatmap.
FIGURE 8

(A) Histogram of the Rad-score based on the selected features. (B) LightGBM tree model decision diagram.
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features play a critical role in evaluating prostate cancer

aggressiveness. GLCM describes the spatial relationships between

pixels, providing detailed information on tumor texture, which can

help to differentiate tissue complexity. Aggressive prostate cancers

commonly exhibit more complex texture patterns, thereby

indicating potential correlations with GLCM features (21).

In the present study, we developed Rad-LightGBM, DL-

LightGBM, and DLR-LightGBM models, achieving AUCs of 0.758,

0.818, and 0.872 on the test set, respectively. Based on these results, we

integrated the DLR-LightGBM output score (rad-score) with clinical

features, including the PSA level, maximum tumor length, age, and PI-

RADS score, to construct a combined model. The combined model,

presented as a nomogram, achieved an AUC of 0.919 on the test set,

significantly outperforming the individual models. This result indicates

that integrating radiomics, 2.5D deep learning features, and clinical

characteristics provides a more comprehensive representation of

prostate cancer biology, thereby enhancing predictive accuracy.

Compared with the study by Bertelli et al. (24), where a 2D deep

learning and radiomic fusion model achieved an AUC of 0.875, our

nomogram reached an AUC of 0.919, reflecting an enhanced

predictive performance. Unlike Bertelli et al., our model integrates

2.5D features, enabling the capture of partial 3D spatial context while

maintaining computational efficiency. Additionally, studies such as

Prata et al. (23) and Chaddad et al. (22) reported lower AUCs (0.804

and 0.65, respectively) for similar tasks, highlighting the performance

improvement our multimodal strategy offers. This multimodal feature

fusion strategy holds potential for providing more clinically practical

tools for prostate cancer aggressiveness assessment. Using DeLong’s

test, the combined model demonstrated significant superiority over

both the DLR-LightGBM and Clinic_LightGBM models in the

training set (P<0.05) and near-significant superiority on the test set

(P>0.05). In the test set, while the combined model still outperformed

other models, its superiority was only near-significant (P>0.05),

potentially due to the relatively small sample size of the test set.

Nonetheless, the combinedmodel achieved the highest AUC in the test

set, thereby demonstrating robust generalizability to unseen data.

Compared with other studies, such as those of Chaddad et al. (22),

which reported an AUC of 0.65 for prostate aggressiveness prediction

using T2WI and DWI, or Prata et al. (23), whose radiomic models

based on T2WI and ADC achieved AUCs of 0.681 and 0.774,

respectively, with 0.804 for the combined model incorporating

clinical variables, our study demonstrated superior predictive

performance. In the study by Bertelli et al. (24) using 2D deep

learning and radiomics, the best-performing model achieved an

AUC of 0.875. In our study, the combined model exhibited a

superior predictive performance, thereby confirming the advantage

of multimodal feature fusion in prostate cancer aggressiveness

assessment. By integrating the 2.5D deep learning model with the

T2WI sequence, this study provides a more precise and automated tool

for assessing prostate cancer aggressiveness. This approach has the

potential to improve preoperative evaluation accuracy, thereby

assisting physicians in achieving more accurate individualized risk

assessments and treatment decisions, ultimately enhancing patient

outcomes. Our nomogram could be integrated into clinical workflows

to enhance decision-making. For example, it could serve as a
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supplementary tool alongside PI-RADS scoring, helping radiologists

prioritize high-risk lesions for biopsy. In a hypothetical clinical

scenario, the model could be used to stratify patients into low- and

high-risk groups, with the latter undergoing targeted biopsy or

immediate intervention. This approach may reduce unnecessary

biopsies and improve diagnostic efficiency.

Overall, the present study demonstrates the advantages of

combining a 2.5D deep learning model with clinical features in

assessing prostate cancer aggressiveness, though some limitations

remain. First, this study used retrospective data, which may introduce

sample selection bias, and the single-center design limits the model’s

generalizability. The retrospective single-center nature of this study may

introduce selection bias and reduce the generalizability of the model to

broader populations. Overfitting could also occur due to the limited

diversity of the training data. Future work will include external

validation on multicenter cohorts to confirm robustness across

varying clinical settings and imaging protocols. Future studies should

be based on large-scale, multicenter datasets. Second, this study relied on

manual lesion segmentation, with accuracy therefore being dependent

on the operator’s experience and expertise. Variations among

annotators may lead to inconsistencies in segmentation results. In

future research, we plan to incorporate automated segmentation

techniques to enhance the accuracy and efficiency of prostate cancer

imaging analysis, to significantly reduce manual annotation time, and

improve the standardization of image preprocessing.
5 Conclusion

Overall, in this study, we successfully developed an effective tool

to evaluate prostate cancer aggressiveness by integrating prostate

MRI with a 2.5D deep learning model, thereby significantly

improving the accuracy and sensitivity of the assessment.

Although certain limitations remain, this model’s potential for

clinical application was preliminarily validated. Future efforts

should focus on multicenter studies and integrating multimodal

data to further optimize and expand the model’s applications,

thereby providing stronger support for precision medicine and

personalized treatment in prostate cancer.
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