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1Department of Radiology, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research
Center for Imaging Medicine, Guangxi Clinical Key Specialty (Medical Imaging), Key Discipline
Development Program (Medical Imaging), Affiliated Cancer Hospital of Guangxi Medical University,
Nanning, China, 2Department of Nuclear Medicine, Guangxi Academy of Medical Sciences, People’s
Hospital of Guangxi Zhuang Autonomous Region, Nanning, China, 3Department of Nuclear Medicine,
Affiliated Hospital of Guilin Medical University, Guilin, China
Objective: This study aims to predict the early efficacy of induction

chemotherapy (ICT) in patients with locally advanced nasopharyngeal

carcinoma (LA-NPC) through habitat subregion analysis and multimodal MRI

radiomics techniques.

Methods: The study employed a retrospective design and included LA-NPC

patients who received ICT treatment between 2015 and 2019. The K-means

clustering algorithm was utilized to segment the tumor into five distinct habitat

subregions based on imaging features. A total of 2,153 radiomic features,

including geometric shape, intensity, and texture features, were extracted.

Feature selection was conducted using the maximum relevance minimum

redundancy (mRMR) method and the least absolute shrinkage and selection

operator (LASSO) technique. Elevenmachine learning algorithms were employed

to develop radiomics models based on the CE-T1WI and T2-FS sequences,

respectively. These models were evaluated using various predictive performance

metrics, including area under the curve (AUC), sensitivity, and specificity. Model

selection was based on comprehensive cross-validation performance and

AUC values.

Results: The study population comprised 76.63%males and 23.37% females, with

amean age of 42.60 ± 10.21 years. All patients had stage III to IVa nasopharyngeal

carcinoma, and the majority (92.39%) had non-keratinizing squamous cell

carcinoma. Habitat subregion analysis revealed that the volume features of a

specific subregion (Subregion 2) were significantly associated with patient

response to ICT (P = 0.032). The RF model built using radiomic features from

Subregion 2 demonstrated the best performance on the CE-T1WI sequence, with

an AUC of 0.921 in the training set and 0.819 in the testing set. On the T2-FS

sequence, the Random Forest (RF) model also exhibited high diagnostic

performance, with an AUC of 0.933 in the training set and 0.829 in the testing
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set. These results suggest that the RF model provides stable and reliable

predictive performance across different MRI sequences.

Conclusion:Habitat subregion analysis using multimodal MRI radiomics offers an

effective approach for the early identification of LA-NPC patients with poor

responses to induction chemotherapy. This method holds promise for

supporting clinical treatment decisions and achieving personalized medicine.
KEYWORDS
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1 Introduction

Nasopharyngeal carcinoma (NPC) is an aggressive cancer that

originates from the delicate mucosa in the upper throat, located

behind the nose. This type of cancer is notably prevalent in specific

geographic regions, particularly in Southeast Asia and southern

China, where it has become a significant public health concern. In

these regions, the most prevalent subtype of NPC is non-

keratinizing squamous cell carcinoma, accounting for over 95% of

all cases. This highlights the disease’s unique pathological

characteristics in these populations (1, 2). Furthermore, NPC

exhibits a pronounced regional clustering, with more than 75% of

the global incidence of this malignancy reported in Southeast Asia

and southern China, indicating a strong correlation between

geographical factors and the prevalence of this cancer (3, 4). The

tumor’s unique location and the subtle, nonspecific early symptoms

often lead to a diagnosis in 70% of patients at an advanced stage.

This complicates treatment options and worsens prognosis (5).

For patients suffering from locally advanced nasopharyngeal

carcinoma (LA-NPC), recent studies have shown that the

combination of induction chemotherapy (ICT) followed by

concurrent chemoradiotherapy significantly improves prognosis

when compared to chemoradiotherapy administered alone (6).

However, it is important to note that not all patients derive the

same level of benefit from ICT. Research, including a pivotal study

by Liu, shows that about 23% of NPC patients do not respond well

to ICT, highlighting the need for personalized treatment strategies

(7). Therefore, identifying sensitivity to ICT prior to the initiation of

treatment is critical for the development of personalized therapeutic

strategies that can enhance patient outcomes.

To address this challenge, researchers are using specific

quantitative parameters derived from functional MRI as

predictive tools to evaluate the effectiveness of chemoradiotherapy

in patients with LA-NPC (8, 9). However, these methodologies

often face limitations, as they tend to focus on analyzing specific

regions of interest (ROIs) within the tumor, thereby neglecting a

comprehensive assessment of the entire tumor and failing to

capture the full extent of intratumoral heterogeneity that may
02
influence treatment response. Additionally, functional MRI itself

presents several drawbacks, including prolonged scan times, high

costs associated with the technology, and the complex requirements

for post-processing the acquired imaging data.

Given these challenges, radiomics has emerged as a promising

technology that extracts high-dimensional features from medical

images. This process transforms these features into quantitative

data, providing deeper insights into tumor characteristics (10–12).

This innovative approach has demonstrated significant potential for

identifying imaging biomarkers that can aid in the assessment of

tumors. However, traditional radiomics analyses typically assume

tumors are homogeneous. This assumption overlooks the

phenotypic heterogeneity present in different tumor regions,

limiting the effectiveness of the technique in capturing the full

complexity of nasopharyngeal carcinoma (13).

To address this limitation, a novel methodology known as

habitat subregion analysis has been introduced into the field of

oncology. This approach divides tumors into distinct subregions,

each containing voxel clusters that show similar imaging features.

This effectively characterizes and quantifies the complex

intratumoral heterogeneity that can significantly influence

treatment outcomes (14–16). Numerous studies have shown that

habitat subregion analysis has strong prognostic capabilities across

various cancers, such as breast, lung, and brain cancers (17–21).

This highlights its potential as a valuable tool in cancer diagnostics

and treatment planning. However, current predictive tools based on

functional MRI face challenges in capturing tumor heterogeneity.

Although some research has explored habitat subregion analysis

in NPC, its utility for predicting early responses to ICT in LA-NPC

has not been thoroughly investigated and requires further study (22,

23). This study is designed with the objective of developing and

validating a comprehensive habitat subregion radiomics model that

leverages multimodal MRI data to accurately predict the efficacy of

early ICT in patients diagnosed with LA-NPC. By achieving this

goal, we aspire to facilitate personalized treatment planning that is

tailored to the unique characteristics of each patient’s tumor,

ultimately aiming to enhance survival outcomes and improve the

quality of life for individuals battling this challenging disease.
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2 Materials and methods

2.1 Study population

This retrospective, single-center study included 265 patients

with LA-NPC who received ICT at the Affiliated Cancer Hospital of

Guangxi Medical University from January 2015 to June 2019. The

inclusion criteria were as follows: (1) histologically confirmed NPC

(stages III–IVa, as per the 8th AJCC staging system); (2) Karnofsky

Performance Status (KPS) of 70 or higher and Eastern Cooperative

Oncology Group (ECOG) score of 0–1; (3) age between 18 and 70;

(4) eligibility for both plain and contrast-enhanced MRI; (5)

imaging confirming the extent of primary lesions and lymph

node metastases; (6) normal liver and kidney function, no severe

hematological toxicity, and no major medical comorbidities; (7) no

previous surgical interventions for NPC; and (8) voluntary written

informed consent. The exclusion criteria included: (1) age over 70

years; (2) KPS below 70 or ECOG score above 1; (3) ineligibility for

ICT or concurrent chemoradiotherapy due to medical

contraindications; (4) prior radiotherapy to the head and neck;

(5) presence of metal implants (e.g., cardiac pacemakers, orthopedic

fixation devices), dentures, or prosthetics that may cause MRI

artifacts, which could significantly degrade image quality and

compromise tumor delineation; and (6) claustrophobia.
2.2 Chemotherapy protocol

Patients received two cycles of ICT comprising: (1) Docetaxel

(70 mg/m², based on TAX323/TAX324 trial protocols with dose

modification for tolerability) or albumin-bound paclitaxel (260 mg/

m², per NCCN guideline recommendations for head and neck

cancers) on Day 1; and (2) Cisplatin (40 mg/m² on Days 1 and 2,

adapted from the split-dose regimen in the DECIDE trial to

mitigate renal toxicity while maintaining cumulative dose

intensity of 80 mg/m² per cycle) (24, 25). Dosage adjustments

were permitted based on individual renal function, body surface

area calculation, and treatment-related toxicity monitoring.
2.3 Efficacy evaluation

In therapeutic efficacy evaluation for patients undergoing ICT,

two board-certified radiation oncologists with >10 years’ clinical

experience performed short-term treatment response evaluations

following Response Evaluation Criteria in Solid Tumors (RECIST)

version 1.1 (26). The assessment incorporated multimodal clinical

data encompassing imaging studies, nasopharyngoscopy results,

and presenting symptoms. Discrepancies between evaluators were

resolved through consensus discussion. Treatment outcomes were

stratified into four distinct categories: Complete Response (CR),

characterized by total resolution of all target lesions; Partial

Response (PR), defined as ≥30% reduction in the sum of target

lesion diameters from baseline; Progressive Disease (PD), indicating

≥20% increase in lesion diameter sums relative to nadir
Frontiers in Oncology 03
measurements; and Stable Disease (SD), representing disease

states fulfilling neither PR nor PD criteria. For comparative

analysis, CR cases comprised the complete response cohort,

whereas PR, SD, and PD cases were consolidated into the non-CR

group. All MRI analyses were conducted by certified radiologists

using standardized protocols to ensure interpretive consistency.

This stratification system enables systematic investigation of

therapeutic response heterogeneity and prognostic implications.
2.4 MRI scanning protocol

MRI scans were performed within three days before the ICT

and again after the second ICT cycle, which took place 21 to 24 days

later. A 1.5T Siemens MAGNETOM AVANTO or a 3.0T GE

DISCOVERY MR750 with a 16-channel head and neck coil was

utilized. The imaging sequences included diffusion-weighted

imaging (DWI), diffusion kurtosis imaging (DKI), intravoxel

incoherent motion (IVIM), and dynamic contrast-enhanced MRI

(DCE-MRI). Additionally, contrast-enhanced T1-weighted imaging

(CE-T1WI) and T2-weighted imaging (T2-FS) were exported for

analysis. MRI parameters were as follows: for the 1.5T MRI, CE-

T1WI (TR/TE = 885 ms/19 ms; matrix = 256 × 256) and T2-FS (TR/

TE = 6760 ms/91 ms; matrix = 768 × 696); for the 3.0T MRI, CE-

T1WI (TR/TE = 4748 ms/65 ms) and T2-FS (TR/TE = 682 ms/10

ms). The slice thickness was 5 mm, the interslice gap was 1 mm, and

the field of view (FOV) was 374 mm × 240 mm. Contrast

enhancement was achieved using gadoterate meglumine at a

dosage of 0.2 mL/kg.
2.5 MRI image preprocessing and lesion
segmentation

Before delineating the volume of interest (VOI), we

preprocessed the MRI images with ITK-SNAP software (version

3.8.0, http://www.itksnap.org), which involved voxel resampling,

bias correction for MRI field strength, and Gaussian denoising.

Voxel resampling standardized all images to a voxel size of 1 × 1 × 1

mm³ to achieve isotropy, thereby maintaining rotational invariance

during texture feature computation. The primary lesions of NPC

observed on T2-FS and CE-T1WI images were used as the basis for

delineating the VOI. A junior radiologist with five years of

experience in head and neck cancer diagnosis performed three-

dimensional manual segmentation of the VOI using ITK-SNAP

software. The VOI, delineated based on the NPC primary lesions,

encompassed the entire tumor across each contiguous slice of T2-FS

and CE-T1WI images while avoiding cystic and necrotic areas

(focal high-signal areas on T2-FS or low-signal areas on CE-

T1WI). Subsequently, a senior radiologist with 25 years of

experience in head and neck cancer diagnosis randomly selected

T2-FS and CE-T1WI images from 30 cases and redelineated the

VOI using the same method and software to assess inter-observer

consistency by calculating the intraclass correlation coefficient

(ICC). Local features of voxels from the entire tumor region of
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interest were extracted using tools from the “Onekey” platform

(OKT-gen-roi-rad-features), and the K-means unsupervised

algorithm was employed for clustering analysis of all samples,

with clustering effectiveness typically evaluated using inter-cluster

and intra-cluster distances.

(1) The Calinski-Harabasz score, also known as the variance

ratio criterion, is used to measure the cohesion and separation of

clusters. This score evaluates clustering quality by comparing

within-cluster variance and between-cluster variance. The

calculation formula is as follows:

CH =
Between − cluster dispersion
within − cluster dispersion

� n − k
k − 1

Where (n) is the total number of samples, (k) is the number of

clusters, the between-cluster variance indicates the degree of

separation between different clusters, and the within-cluster

variance reflects the tightness within clusters. A higher CH value

indicates greater between-cluster differences, higher within-cluster

tightness, and better clustering performance.

(2) The Silhouette Coefficient is a metric that measures the

similarity of clustering results, taking into account the similarity of

each sample to other samples in its cluster as well as the similarity to

the nearest cluster. The calculation formula is as follows:

s(i) =
b(i) − a(i)

max(a(i), b(i))

Where (a(i)) is the average distance from the sample to other

samples in the same cluster, and (b(i)) is the average minimum

distance from the sample to samples in other clusters. The

Silhouette Coefficient ranges from [-1, 1]. A coefficient close to 1

indicates good clustering, close to 0 indicates that the sample is on

the boundary, and close to -1 indicates incorrect clustering.

(3) The Davies-Bouldin Index (DBI) is another metric for

assessing clustering quality, focusing on the compactness and

separation of clusters. The calculation formula is as follows:

DBI =
1
ko

k

i=1

max

i ≠ j

si + sj

d(ci, cj)
Frontiers in Oncology 04
Where (k) is the number of clusters, si and sj represent the average
within-cluster distances of clusters (i) and (j), and (d(c_i, c_j)) is the

distance between the centroids of clusters (i) and (j).

In summary, considering the Calinski-Harabasz index,

Silhouette Coefficient, and Davies-Bouldin Index, the clustering

scheme with (K=5) is the most ideal, providing a good balance

between compactness and clustering separation. This ultimately

segments the tumor into five habitat regions: Tumor Habitat 1

(Habitat 1, H1), Habitat 2 (H2), Habitat 3 (H3), Habitat 4 (H4), and

Habitat 5 (H5), as detailed in Figure 1.
2.6 MRI feature extraction

We used the PyRadiomics package in Python 3.10 to effectively

extract radiomic features from tumor regions in MRI images. This

package allows us to extract radiomic features from three sub-regions

in three sequences: T1-weighted contrast-enhanced imaging, fluid-

attenuated inversion recovery, and fractional anisotropy, resulting in

nine total regions. These features can be classified into three

categories: geometric shape, intensity distribution, and texture

patterns. Geometric shape features describe the tumor’s three-

dimensional morphology, intensity features represent the first-order

statistical distribution of voxel intensities within the tumor, and

texture features characterize intensity patterns, including second-

order and higher-order spatial distributions.

To extract texture features, we utilized several methods: the

Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length

Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), Gray

Level Dependence Matrix (GLDM), and Neighborhood Gray Tone

Difference Matrix (NGTDM), each designed to capture different

aspects of image texture. In each patient’s MRI single sequence, a

total of 2,153 features will be extracted from each region,

comprising 14 geometric shape features, 18 first-order intensity

features, 75 texture features, and additional first-order and texture

features derived from filtering transformations.

These features are utilized to quantify various dimensions of the

tumor, thereby revealing its characteristics and properties. For a
FIGURE 1

Evaluation of habitat analysis indicators. (A) Calinski-Harabasz index; (B) Silhouette Coefficient; (C) Davies-Bouldin Index.
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detailed introduction to the features, please refer to the official

PyRadiomics website (https://pyradiomics.readthedocs.io/en/

latest/features.html).
2.7 Radiomic feature selection, model
construction, and statistical analysis

Patients were randomly divided into a training set and a testing

set in a 7:3 ratio. The consistency of observers, both between and

within them, was measured using the ICC. Radiomic features were

considered stable if the ICC exceeded 0.75. Feature selection was

conducted using two methods: Maximum Relevance Minimum

Redundancy (mRMR) and Least Absolute Shrinkage and

Selection Operator (LASSO). To prevent overfitting, the feature

selection process utilized 10-fold cross-validation along with

parameter tuning. Comparisons of categorical variables between

groups were conducted using the chi-square test (c² test). The

discriminative ability of all models in the training and testing sets

was evaluated using the area under the ROC curve (AUC),

sensitivity, specificity, positive predictive value, and negative

predictive value. The AUC values of all models in the training

and testing sets were compared using the DeLong test. The

calibration performance of the models was assessed using the
Frontiers in Oncology 05
Hosmer-Lemeshow (H-L) test, and the clinical utility of the

models was evaluated using clinical decision curves. A P-value of

less than 0.05 was considered statistically significant (Figure 2).
3 Results

3.1 Clinical baseline characteristics of LA-
NPC patients

Among the 265 enrolled patients with LA-NPC, 90 patients

(40.0%) were classified in the CR group, while 175 patients (60.0%)

were classified in the non-CR group. Random assignment for the

training and testing sets showed no significant differences in clinical

factors between the two groups (P > 0.05 for all) (Table 1).
3.2 Establishment and efficacy of the
radiomic model for habitat analysis

3.2.1 Habitat sub-region analysis
Figure 3 presents an example of habitat analysis from the second

sub-region of a NPC lesion. It highlights the statistical differences in

partition volumes between the CR and non-CR groups. The results
FIGURE 2

Workflow diagram of this study.
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TABLE 1 General Information and Clinicopathological Characteristics of Patients in the Training and Testing Cohort.

Variables

Training Set
- Over-
view

(n=184)

Training
Set - CR
Group
(n=56)

Training Set -
Non-CR
Group
(n=128)

P Value

Testing Set
- Over-
view
(n=81)

Testing Set
- CR
Group
(n=34)

Testing Set-
Non-CR
Group
(n=47)

P Value

Age 42.60 ± 10.21 42.55 ± 9.03 42.62 ± 10.72 0.965 43.54 ± 11.00 43.62 ± 9.75 43.49 ± 11.93 0.959

Gender 0.095 0.272

male 141 (76.63) 38 (67.86) 103 (80.47) 61 (75.31) 23 (67.65) 38 (80.85)

female 43 (23.37) 18 (32.14) 25 (19.53) 20 (24.69) 11 (32.35) 9 (19.15)

Clinical Stage 0.332 0.5

III 53 (28.80) 18 (32.1) 35 (27.34) 23 (28.40) 11 (32.35) 12 (25.53)

IVa 131 (71.20) 38 (67.90) 93 (72.66) 58 (71.60) 23 (67.65) 35 (74.47)

Body
Mass Index

22.33 ± 3.25 21.62 ± 2.85 22.65 ± 3.37 0.048 22.76 ± 3.07 22.55 ± 2.67 22.91 ± 3.35 0.6

WHO
Classification

0.095 0.463

Differentiated
non-

keratinous
carcinoma

14 (7.61) 1 (1.79) 13 (10.16) 11 (13.58) 3 (8.82) 8 (17.02)

Undifferentiated
non-

keratinous
carcinoma

170 (92.39) 55 (98.21) 115 (89.84) 70 (86.42) 31 (91.18) 39 (82.98)

EBV-DNA (IU/
ml) (%)

0.506 0.691

<5000 120 (65.22 39 (69.64) 81 (63.28) 54 (66.67) 24 (70.59) 30 (63.83)

≥5000 64 (34.78) 17 (30.36) 47 (36.72) 27 (33.33) 10 (29.41) 17 (36.17)

White Blood
Cell Count
(×109/L)

7.35 ± 1.97 7.32 ± 2.34 7.37 ± 1.80 0.575 6.76 ± 1.66 6.90 ± 2.00 6.65 ± 1.37 0.969

Hemoglobin
(g/L)

136.43 ± 16.17 133.50 ± 19.24 137.72 ± 14.52 0.157 138.17 ± 14.76 135.41 ± 17.11 140.17 ± 12.62 0.279

Platelet Count
(×109/L)

284.60 ± 72.11 288.20 ± 67.13 283.02 ± 74.39 0.741 278.33 ± 75.57 274.21 ± 78.87 281.32 ± 73.81 0.679

NE 5.31 ± 1.60 5.32 ± 1.86 5.31 ± 1.47 0.968 4.96 ± 1.47 5.36 ± 1.49 4.67 ± 1.39 0.036

Lymphocyte
Ratio

2.29 ± 0.93 2.16 ± 0.75 2.35 ± 0.99 0.344 2.26 ± 0.95 2.27 ± 0.94 2.24 ± 0.97 0.863

Albumin 39.11 ± 3.39 38.33 ± 3.75 39.46 ± 3.17 0.02 39.49 ± 2.85 39.24 ± 2.58 39.67 ± 3.05 0.51

Family History 0.689 1.0

No 153 (83.15 48 (85.71) 105 (82.03 72 (88.89) 30 (88.24) 42 (89.36)

Yes 31 (16.85) 8 (14.29) 23 (17.97) 9 (11.11) 4 (11.76) 5 (10.64)

Smoking History 0.55 0.331

No 104 (56.52) 34 (60.71) 70 (54.69 56 (69.14 26 (76.47) 30 (63.83

Yes 80 (43.48) 22 (39.29) 58 (45.31) 25 (30.86) 8 (23.53) 17 (36.17)

T Stage 0.075 0.167

T1 7 (3.80) 2 (3.57) 5 (3.91) 4 (4.94) 2 (5.88) 2 (4.26)

T2 63 (34.24 22 (39.29) 41 (32.03 27 (33.33) 12 (35.29) 15 (31.91)

(Continued)
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show a significant difference in volume distribution in habitat sub-

region 2 between the CR and non-CR groups (P = 0.032). This

suggests that the volumetric characteristics of specific habitat sub-

regions are linked to early treatment responses.

3.2.2 Related omics features
Based on the habitat sub-region analysis results, imaging

features from the sub-region 2 were extracted. Following

Spearman correlation analysis and Lasso dimensionality

reduction, optimal features for each group were identified,

resulting in 7 features from the CE-T1WI sequence and 10

features from the T2-FS sequence. Detailed information regarding

these features is present ed in Figure 4.
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3.2.3 Predictive performance of different models
This study created two radiomic models using the selected

optimal features: the CE-T1WI sequence habitat model and the

T2-FS sequence habitat model. We conducted a comprehensive

comparison of various machine learning models, assessing their

performance on training and testing sets using metrics like

accuracy, AUC, sensitivity, specificity, and precision.

In evaluating the CE-T1WI sequence habitat model, Extra Trees,

Random Forest (RF), and LightGBM showed balanced and robust

performance. They achieved high AUC scores while maintaining

consistent sensitivity and specificity across both the training and

testing sets. These models exhibited strong generalization capabilities

with no apparent overfitting, rendering them suitable for practical
TABLE 1 Continued

Variables

Training Set
- Over-
view

(n=184)

Training
Set - CR
Group
(n=56)

Training Set -
Non-CR
Group
(n=128)

P Value

Testing Set
- Over-
view
(n=81)

Testing Set
- CR
Group
(n=34)

Testing Set-
Non-CR
Group
(n=47)

P Value

T3 64 (34.78) 12 (21.43) 52 (40.62) 28 (34.57) 15 (44.12) 13 (27.66)

T4 50 (27.17) 20 (35.71) 30 (23.44) 22 (27.16) 5 (14.71) 17 (36.17)

N Stage 0.728 0.706

N1 18 (9.78) 6 (10.71) 12 (9.38) 12 (14.81) 5 (14.71) 7 (14.89)

N2 79 (42.93) 26 (46.43) 53 (41.41) 35 (43.21) 13 (38.24) 22 (46.81)

N3 87 (47.28) 24 (42.86) 63 (49.22) 34 (41.98) 16 (47.06) 18 (38.30)
fro
FIGURE 3

Example of habitat analysis of nasopharyngeal carcinoma lesions in subregion 2 and results of intergroup comparisons. (A) The Calinski-Harabasz
score is defined as the ratio of the sum of squared inter-cluster distances to the sum of squared intra-cluster distances across all clusters;
(B) Example of subregion 2; (C) Comparison Table of CR and Non-CR Groups; (D) Bar graph comparing the CR and Non-CR groups. *p < 0.05, ns:
p > 0.05.
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applications. Conversely, the k-nearest neighbors (KNN) model

displayed significant discrepancies between training and testing

results, indicating poor generalization and potential overfitting.

Logistic Regression and Naive Bayes exhibited notable variations in

training and testing metrics but maintained good specificity, making

them appropriate for scenarios with high false positive requirements.

After evaluating the diagnostic performance of all machine

learning models, we selected RF as the final deployment model,

achieving AUC scores of 0.921 on the training set and 0.819 on the

testing set. This model demonstrated strong classification ability

while maintaining a balance between sensitivity and specificity.

Although Extra Trees and LightGBM performed well, RF exhibited

a slight advantage in stability and consistency. Consequently, RF was

selected as the final deployment model for the CE-T1WI sequence

habitat model, ensuring reliable results in practical applications due

to its optimal balance between diagnostic performance and

generalization capability (Figures 5A, B; Table S1).

In the T2-FS sequence habitat model, RF distinguished itself in

the comparison of diagnostic performance among all models and was

selected as the final deployment model. This model achieved AUC

scores of 0.933 and 0.829 on the training and testing sets, respectively,

demonstrating strong discrimination ability while maintaining

balance in sensitivity and specificity metrics. Although Extra Trees,

XGBoost, and Gradient Boosting performed well, RF had a slight

advantage in the stability and consistency of evaluation metrics. Thus,

we selected RF as the final deployment model for the T2-FS sequence

habitat model, ensuring reliable results in practical applications due

to its optimal balance between diagnostic performance and

generalization capability (Figures 5C, D; Table S2).
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3.2.4 Establishment of the optimal habitat model
Figure 6A presents the ROC curves for the training and testing

sets, assessing the classification performance of the RF model on

both datasets. The AUC for the training set was 0.925, while the

AUC for the testing set was 0.836, indicating satisfactory

performance of the model on the test set. Figures 6B, C show

the decision curve analyses for the training and test sets. These

analyses evaluate the model’s clinical net benefit at different

thresholds. These analyses help determine whether the model is

superior to treating or not treating all patients at different

treatment thresholds. The blue curve in the decision curve

represents the model’s net benefit; if it exceeds the “treat all

patients” or “do not treat patients” curves, it indicates that the

model performs better in practical applications at the

corresponding threshold. These curves evaluate the practical

application value of the model, particularly in developing

personalized treatment plans in clinical settings.

Figure 7A presents the ROC curve of the RF model on the T2-

FS sequence. The AUC for the training set was 0.933, and the AUC

for the test set was 0.829, indicating that the model’s performance

on the T2WI sequence is similar to that of CE-T1WI, suggesting

that both imaging sequences possess comparable predictive

capabilities for patient responses. The DCA plots in Figures 7B, C

demonstrate that the RF model based on the T2-FS sequence

continues to provide a net benefit across different threshold

ranges, particularly showing significant benefits at lower

thresholds. Compared to the CE-T1WI sequence, the DCA curve

of T2-FS exhibits a similar trend, implying that models for both

sequences have substantial potential clinical application value.
FIGURE 4

Feature selection and feature importance distribution map of the second habitat region in the CE-T1WI and T2-FS sequences. (A) Cross-validation in
CE-T1WI; (B) Lasso regression path diagram IN CE-T1WI.; (C) Feature Importance in CE-T1WI; (D) Cross-validation in T2-FS; (E) Lasso regression
path diagram in T2-FS; (F) Feature Importance in T2-FS.
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4 Discussion

Emerging evidence substantiates the critical role of tumor habitat

heterogeneity in cancer pathophysiology and therapeutic resistance,

with multiple studies demonstrating spatial correlations between

microenvironmental features and clinical outcomes (27–29). This

body of research particularly highlights how distinct habitat

subdomains contribute to treatment refractoriness, potentially

accounting for suboptimal therapeutic responses and adverse

prognoses. Building upon these foundations, we developed a

multiparametric MRI-based radiomic habitat segmentation model

to predict early therapeutic responses in LA-NPC patients

undergoing ICT. Our methodology employed habitat segmentation

analysis to quantify tumor spatial heterogeneity, revealing statistically

significant associations between habitat-specific volumetric profiles

and treatment outcomes. Notably, habitat subdomain 2 exhibited

significant volumetric disparities between CR and non-CR cohorts

(P=0.032), suggesting microenvironment-driven chemotherapeutic

resistance mechanisms. Three plausible pathways explain this

spatial efficacy variation: (1) Differential vascular permeability

establishing intratumoral drug concentration gradients (30), (2)

Regional variations in tumor proliferation kinetics modulating
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chemosensitivity (31), and (3) Stromal compartmentalization

creating fibrotic sanctuaries that impede drug penetration (32).

Through a meticulous feature selection process, we extracted 7 and

10 optimal features based on the CE-T1WI and T2-FS sequences,

respectively. The constructed RF models exhibited high AUC values

on both the training and test sets, with CE-T1WI achieving values of

0.921 and 0.819, and T2-FS reaching 0.933 and 0.819. These

impressive results emphasize the potential of radiomic methods in

accurately predicting tumor responses, thereby paving the way for

more personalized and effective treatment strategies in oncology.

Our comprehensive comparison of 11 machine learning

algorithms revealed critical performance differences (Tables S1,

S2). While gradient boosting demonstrated competitive AUCs

(CE-T1WI: 0.863 training/0.905 testing; T2-FS: 0.909/0.833), it

exhibited greater variance between sequences. Similarly, SVM

showed sequence-dependent instability (CE-T1WI AUC 0.793 vs.

T2-FS 0.781 in training). The RF’s superior stability likely stems

from its inherent ensemble design - bootstrap aggregating reduces

variance while feature subspace sampling minimizes overfitting.

This dual randomization mechanism proved particularly effective in

handling our high-dimensional radiomic features while

maintaining generalizability across MRI sequences. Moreover,
FIGURE 5

Diagnostic performance of different models based on habitat radiomics in the CE-T1WI and T2-FS sequences. (A) Diagnostic performance of
different machine models in the CE-T1WI habitat radiomics training set; (B) Diagnostic performance of different machine models in the CE-T1WI
habitat radiomics test set; (C) Diagnostic performance of different machine models in the T2-FS habitat radiomics training set; (D) Diagnostic
performance of different machine models in the T2-FS habitat radiomics test set.
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FIGURE 6

Diagnostic performance of the habitat-based RF model constructed using the CE-T1WI sequence. (A) ROC curves for the training and test sets;
(B) DCA curve for the training set; (C) DCA curve for the test set; (D) Confusion matrix for the training set; (E) Confusion matrix for the test set.
FIGURE 7

Diagnostic performance of the habitat-based RF model constructed using the T2-FS sequence. (A) ROC curves for the training and test sets;
(B) DCA curve for the training set; (C) DCA curve for the test set; (D) Confusion matrix for the training set; (E) Confusion matrix for the test set.
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compared to single-tree models like XGBoost (test set AUC 0.919

vs. 0.929 for CE-T1WI vs. T2-FS), the forest architecture better

accommodated heterogeneous response patterns through multi-

tree consensus (33).

Previous studies have successfully utilized traditional radiomic

models to predict treatment outcomes in patients with NPC (12, 34).

However, these studies did not thoroughly investigate intratumoral

heterogeneity. Given the significant presence of tumor heterogeneity in

NPC (35), we conducted a comprehensive habitat sub-region analysis

to develop predictive models for early treatment responses. Habitat

analysis, as an emerging radiomic approach, has garnered increasing

attention in recent years for its potential in tumor evaluation. By deeply

analyzing the tumor microenvironment, habitat analysis can reveal

tumor heterogeneity and its relationship with clinical characteristics.

For instance, studies have demonstrated that volumetric features of

habitat sub-regions are closely associated with patient prognosis,

providing critical evidence for personalized treatment. Additionally,

habitat analysis enables the quantification of biological properties

across different tumor regions, aiding clinicians in better

understanding tumor behavior and optimizing therapeutic strategies.

Habitat sub-region analysis captures multidimensional tumor

information, including texture, intensity, biological characteristics,

and tumor behavior (13). To date, habitat sub-region analysis has

shown promising predictive value across various cancer types (21, 36,

37). Moreover, a study by Xu explored the application of habitat

analysis in predicting NPC prognosis, establishing a risk scoring model

based on PET-CT images, further demonstrating the clinical utility of

habitat analysis (22). In clinical diagnosis and treatment, MRI is

regarded as the gold standard imaging modality. Therefore, in this

study, we delineated sub-regions based on MRI images and

incorporated machine learning algorithms into the modeling process.

Consistent with previous findings, our results indicate that the habitat

sub-region model holds significant importance in predicting NPC

prognosis. Some studies have subdivided regions of interest into

intra-tumoral, peri-tumoral, tumor core, or surrounding edema

regions for habitat analysis (14, 38). These subdivisions are

specifically designed based on the unique characteristics of the cancer

under investigation. Our approach, through detailed segmentation of

tumor habitats, offers new perspectives on understanding tumor

biology and therapeutic responses. This aligns with current research

trends and underscores the importance of personalized treatment.

From a clinical perspective, habitat sub-region analysis provides a novel

entry point for individualized treatment. For patients with larger sub-

region 2 volumes, even when their clinical staging is similar to those

with favorable responses, intratumoral heterogeneity may result in

suboptimal ICT efficacy. In such cases, clinicians may consider

adjusting chemotherapy regimens (e.g., increasing drug dosage or

combining targeted therapies) or planning adjuvant treatment

strategies in advance. Additionally, dynamic monitoring of habitat

sub-regions may serve as an important complement to treatment

evaluation. For example, during ICT, continuous MRI scans to track
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volumetric changes in specific sub-regions could enable early

identification of treatment resistance, allowing timely intervention.

Habitat sub-region analysis has demonstrated predictive value

across various cancers. For instance, in glioblastoma, sub-regions

with active angiogenesis are significantly associated with shorter

patient survival (17); in lung cancer, heterogeneous sub-regions at

tumor margins have been shown to correlate with increased metastatic

risk (15). This study is the first to apply this approach to predicting

chemotherapy responses in NPC, further validating its cross-cancer

applicability. However, unlike other cancers, NPC’s unique

microenvironment, influenced by Epstein-Barr virus (EBV) infection,

may endow it with distinct characteristics (4). Future studies should

explore the molecular mechanisms of habitat sub-regions in

conjunction with virological markers, such as EBV-DNA load.

While our findings have significant implications, we must also

recognize several important limitations. Firstly, our sample size of 265

cases is statistically representative. However, its relatively small size may

limit the generalizability of the results. To strengthen future studies,

researchers should expand the sample size to include a broader and

more diverse patient population, which would provide more

comprehensive insights. Secondly, it is important to recognize that

this study is a retrospective analysis, which carries a risk of selection bias

thatmay skew the results. Therefore, conducting prospective studies will

be essential to validate our findings and to further explore the

applicability of habitat analysis across different types of cancer,

ensuring that the conclusions drawn are both reliable and applicable.

Future research should explore key areas to expand on our

findings. First, analyzing how different characteristics of habitat sub-

regions affect treatment responses could inform the development of

tailored therapies for individual patients. Second, exploring

comprehensive analyses that integrate multimodal imaging

techniques, such as PET/CT and MRI, could significantly enhance

predictive accuracy, allowing for more precise assessments of treatment

efficacy. Additionally, applying this model in clinical trials to assess its

practical utility in personalized treatment approaches will be an

important next step in translating our research into clinical practice.

In summary, this study highlights the remarkable potential of

radiomics in predicting the response of patients with LA-NPC to ICT.

The insights gained from this research not only provide a solid

foundation for the development of personalized treatment strategies

but also offer valuable guidance for future studies that aim to further

investigate the intricate relationship between tumor microenvironments

and treatment outcomes.
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