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Using baseline MRI radiomics to
predict the tumor shrinkage
patterns in HR-Positive,
HER2-Negative Breast Cancer
Lijia Wang1†, Yongchen Wang2†, Li Yang1*, Jialiang Ren3,
Qian Xu1, Yingmin Zhai1 and Tao Zhou2*

1Department of Medical Imaging, The Fourth Hospital of Hebei Medical University, Shijiazhuang,
Hebei, China, 2Department of Breast Cancer Center, The Fourth Hospital of Hebei Medical University,
Shijiazhuang, China, 3Department of Pharmaceuticals Diagnostics, GE HealthCare, Beijing, China
Introduction: This study aimed to develop and validate a predictive model for

tumor shrinkage patterns in hormone receptor-positive, HER2-negative (HR

+/HER2-) breast cancer patients undergoing neoadjuvant chemotherapy (NAC).

Methods: A retrospective analysis was conducted on 227 HR+/HER2- breast

cancer patients with a desire for breast conservation, examining their

clinicopathological characteristics, traditional MRI features, and radiomics

features. Patients were divided into training and validation cohorts in a 7:3

ratio. Tumor shrinkage patterns were classified into Type I and Type II based

on RECIST 1.1 criteria. A clinical model was established using Ki67 quantification

and enhancement pattern. Radiomics features were extracted and analyzed

using machine learning algorithms, including Logistic Regression (LR), Support

Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF). A combined

clinical-radiomics model was also developed.

Results: The clinical model achieved an area under the curve (AUC) of 0.624 in

the training cohort and 0.551 in the validation cohort. The RF radiomics model

showed the highest predictive performance with an AUC of 0.826 in the training

cohort and 0.808 in the validation cohort. The combined clinical-radiomics

model further improved prediction accuracy, with an AUC of 0.831 in the training

cohort and 0.810 in the validation cohort.

Conclusion: Radiomics features based on baseline MRI significantly enhance the

prediction of tumor shrinkage patterns in HR+/HER2- breast cancer patients.

This approach aids in the early identification of patients likely to benefit from

breast-conserving surgery and facilitates timely treatment adjustments.
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Introduction

Breast Cancer has ranked first in the incidence of malignant

tumors among women worldwide for ten consecutive years. In

2023, there were over 2.3 million new cases and more than 670,000

deaths worldwide seriously threatening the health and lives of

women (1). Breast at present, the research hotspots of breast

cancer still lie in the differentiation of benign and malignant BC

(2) and the evaluation of treatment efficacy, etc. Neoadjuvant

chemotherapy (NAC) has emerged as a crucial treatment

modality for locally advanced breast cancer (LABC), especially in

triple negative and human epidermal growth factor receptor 2

(HER2) positive BC, by reducing tumor burden, decreasing tumor

stage, and increasing the possibility of breast-conserving surgery (3,

4). Typically, patients who achieve a complete response (CR) or

exhibit a simple centripetal shrinkage pattern after NAC are more

likely to meet the negative margin requirements for breast-

conserving surgery. Conversely, centripetal shrinkage

accompanied by satellite lesions or fragmentation may result in

positive margins or an increased recurrence rate (5). Hormone

receptor (HR)-positive and human epidermal growth factor

receptor 2 (HER2)-negative (HR+/HER2-) breast cancer accounts

for 65-70% of BC cases (6). Compared to other molecular subtypes,

patients with HR+/HER2- BC have lower rates of achieving

pathologic complete response (pCR) and objective response after

NAC, making it challenging for some patients to benefit from NAC

(7). Therefore, early and accurate prediction of tumor shrinkage

patterns in HR+/HER2- BC patients after NAC is critical for

ensuring patients benefit from NAC with the goal of breast

conservation while avoiding overtreatment and ineffective therapy.

Magnetic resonance imaging (MRI) is currently widely

acknowledged and utilized by clinicians due to its exceptional soft

tissue resolution and multifunctional imaging sequences. A single

scan can provide the following critical information: the exact size,

three-dimensional morphology, and spatial distribution

characteristics of breast tumors; the anatomical relationship

between the tumor and surrounding structures (e.g., pectoral

muscles and skin); dynamic enhancement patterns; and the

degree of restricted diffusion of water molecules, among others.

Additionally, MRI facilitates a comprehensive evaluation of regional

lymph node status (8). Radiomics, by deeply mining a large number

of imperceptible features within traditional imaging, can screen for

high-dimensional features with high stability and reproducibility to

establish predictive models based on different clinical problems.

Existing studies have applied radiomics to BC molecular subtyping

(9), lymph node status (10), and NAC efficacy evaluation (11). At

present, some studies attempt to combine MRI with radiomics to

predict the contraction pattern of tumors after neoadjuvant therapy

for breast cancer. However, these studies either classified the

contraction patterns of tumors into complex types 4-5, or failed

to distinguish the subtypes of breast cancer. However, studies

specifically targeting the simple tumor shrinkage patterns after

NAC in HR+/HER2 BC patients who are insensitive to

chemotherapy are limited (12).
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This study aims to retrospectively analyze the clinicopathological

characteristics, traditional MRI features, and radiomics features of

HR+/HER2- cancer BC patients to identify features independently

associated with tumor shrinkage patterns post-NAC and establish a

predictive model. The goal is to identify patients who can undergo

breast-conserving surgery post-shrinkage and those with poor

shrinkage patterns early, to adjust treatment strategies in a

timely manner.
Materials and methods

Study participants

This study was approved by the Ethic Committee of the Fourth

Hospital of Hebei Medical University (2022037). The requirement

for informed consent was waived by the Ethics Committee of the

Fourth Hospital of Hebei Medical University because of the

retrospective nature of the study.

We retrospectively analyzed the medical records of breast

cancer patients who received NAC treatment and surgical

resection at our center. Inclusion criteria were: (1) female patients

with a desire for breast conservation, diagnosed with invasive breast

cancer by core needle biopsy, and confirmed as HR+ (ER or PR

positive)/HER2- by immunohistochemistry (IHC) or fluorescence

in situ hybridization (FISH) with no distant metastasis; (2)

complete clinical data; (3) All MRI examinations were scheduled

before needle biopsy, complete breast MRI examinations before and

after NAC; (4) received at least six cycles of NAC before surgery,

and complete pathological data post-surgery. Exclusion criteria

included patients with bilateral breast cancer and those with

breast cancer during pregnancy. Patients were randomly divided

into a training cohort and a validation cohort in a 7:3 ratio (13, 14).
MRI image acquisition

All patients underwent dynamic contrast-enhanced MRI (DCE-

MRI) of the breast before and after NAC. The examinations were

performed using a GE Hde 1.5T superconducting MRI scanner with

an 8-channel breast coil, with patients in the prone position. The

MRI protocol included axial T1-weighted images without fat

suppression (TR/TE 360/7 ms, field of view [FOV] 32 cm, matrix

192×192 mm, thickness 5 mm), T2-weighted images with fat

suppression (TR/TE 8240/80 ms, FOV 32 cm, matrix 320×240

mm, thickness 5 mm), diffusion-weighted imaging (DWI) (b=0,

800; TR/TE 6500/85 ms, thickness 5 mm, matrix 128×128 mm), and

apparent diffusion coefficient (ADC) mapping. Gadolinium

contrast agent (Gadodiamide, Omniscan®, GE Healthcare) was

administered via a high-pressure injector into the antecubital vein

at a dose of 0.1 mmol/kg and a rate of 2.5 ml/s, followed by a 10 ml

saline flush at the same rate. Dynamic contrast-enhanced scans

were performed starting 18 seconds after injection of the contrast
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agent (VIBRANT: TR/TE 5.6/2.4, matrix 320×288 mm, thickness 2

mm, 61 s/phase, 1 pre-contrast and 7 post-contrast phases).
Determining shrinkage patterns

Two radiologists (Readers 1 and 2, who have 5 and 13 years of

experience in breast MRI diagnosis, respectively) re-read the

routine breast MRI images, image features and clinical

information were recorded. Based on MRI imaging before and

after NAC, and according to the Response Evaluation Criteria in

Solid Tumors version 1.1 (RECIST 1.1), tumor shrinkage patterns

were classified into Type I and Type II shrinkage. Type I shrinkage

included complete response (CR) and concentric shrinkage. CR was

defined as no residual tumor visible on imaging. Concentric

shrinkage was defined as a residual solitary tumor with a longest

diameter reduction of ≥30% from baseline. All other shrinkage

patterns were classified as Type II shrinkage (Figure 1). The

determination of shrinkage patterns was independently performed

by two radiologists with 5 and 15 years of experience in breast MRI
Frontiers in Oncology 03
diagnosis, respectively. In cases of disagreement, a consensus was

reached through discussion.
Development of the clinical model

The clinical and pathological characteristics of the patients were

recorded, including age, menstrual status, tumor marker levels

(CEA, CA125, CA153), tumor size, presence of skin invasion,

presence of lymph node metastasis, estrogen receptor (ER) and

progesterone receptor (PR) status, HR and HER2 status, and Ki67

quantification and grading. All pathological features were based on

pre-NAC core needle biopsy results, evaluated by qualified and

experienced oncology pathologist. Traditional imaging features

included tumor morphology, tumor longest diameter, tumor

margins, enhancement pattern, type of time-signal intensity curve

(TIC), early enhancement rate, and ADC value. The formula for

calculating the early enhancement rate was as follows:

Early   enhacement   rate =
(SIpost − SIpre)

SIpre
� 100%
FIGURE 1

Schematic representation of breast tumor responses after NAC. (A) shows the baseline tumor. Post-NAC responses are categorized into Type I and
Type II shrinkage. Type I shrinkage includes: (B) complete response: where no residual tumor is visible. (C) Simple concentric shrinkage: where the
tumor mass decreases in size while maintaining its original shape. Type II shrinkage includes: (D) Tumor fragmentation: The tumor splits into
multiple discontinuous lesions, while maintaining approximately the same overall extent (E) Concentric shrinkage with satellite lesions: The tumor
mass contracts inward as a whole, with residual lesions remaining in the periphery. (F) Stable: where there is no significant change in tumor size.
(G) progression: where there is an increase in tumor size.
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Where SIpre and SIpost were the tumor signal intensities before

and at the second post-contrast phase (120 seconds after

injection), respectively.

Univariable and multivariable analyses were performed on the

clinical and pathological characteristics and traditional imaging

features to identify independent predictive factors associated with

tumor shrinkage patterns, and to establish the clinical model.
Development of the radiomics model

Semi-automated 3D tumor segmentation was performed on the

first post-contrast axial images using Slicer software (version 5.6.1,

https://www.slicer.org). Initial segmentation was conducted by a

junior radiologist and subsequently reviewed and refined by a

senior radiologist to ensure accuracy. Prior to feature extraction,

images underwent preprocessing, including linear interpolation

resampling to 1×1×1 mm³ voxel size, z-score normalization of

image intensities, and discretization to 5 gray levels. Radiomic

features were extracted using the PyRadiomics package,

encompassing morphological features, first-order statistical

features, texture features, and higher-order filtered features. The

feature selection process was as follows (1): each feature underwent

univariate analysis using the Mann-Whitney U test, retaining

features with P<0.05to ensure significant differences between

tumor shrinkage patterns; (2) spearmancorrelation coefficients

were calculated between features, and features with r >0.8 were

removed to avoid multicollinearity; (3) The Boruta algorithm was

employed to select the most predictive features through iterative

analysis of feature importance scores (15) (4).a 5-fold cross-

validation procedure exclusively within the training set

(Supplementary Figure S1).

Using the selected radiomic features, models were constructed

with the following machine learning algorithms: Logistic Regression

(LR), Support Vector Machine (SVM), Decision Tree (DT), and

Random Forest (RF). The model with the best predictive

performance was chosen as the optimal radiomics model,

producing radiomics scores (Rad-score). A combined clinical-

radiomics model was developed by performing multivariate

stepwise logistic regression analysis on the independent predictive

factors from the clinical model and the Rad-score.
Statistical analysis

Statistical analysis was conducted using SPSS software (version

21.0) and R software (version 4.2.0). Categorical variables were

analyzed using the chi-square test or Fisher’s exact test, and

continuous variables were analyzed using independent sample t-

tests or Mann-Whitney U tests, depending on the normality of the

data distribution. The performance of the models was evaluated and

compared using receiver operating characteristic (ROC) curves and

the DeLong test. Calibration performance was assessed using

calibration curves, and clinical net benefit was evaluated using
Frontiers in Oncology 04
decision curve analysis (DCA). A two-tailedP<0.05 was

considered statistically significant.
Result

Patient characteristics

A total of 227 patients were included in this study, with a mean age

of 49.78 ± 10.93 years (range 23–72 years). After NAC, 122 patients

(53.7%) exhibited Type I shrinkage, including 12 cases of imaging CR,

while 105 patients (46.3%) exhibited Type II shrinkage. Patients were

randomly divided into a training cohort (N=160) and a validation

cohort (N=67) in a 7:3 ratio. There were no statistically significant

differences in clinicopathological characteristics and traditional

imaging features between the training and validation cohort.
Clinical model

Univariable analysis of the training cohort data revealed that

differences in the presence of skin invasion, Ki67 quantification, and

enhancement pattern between the Type I and Type II shrinkage

groups were statistically significant (all p<0.05) (Table 1).

Multivariable stepwise regression analysis indicated that Ki67

quantification was an independent predictive factor for tumor

shrinkage pattern (Table 2). Therefore, a clinical model predicting

tumor shrinkage patterns after NAC in HR+/HER2- breast cancer

was established based on Ki67 quantification and enhancement

pattern. The area under the curve (AUC) for this clinical model was

0.624 (95% CI: 0.539-0.709) in the training cohort and 0.551 (95%

CI: 0.412-0.689) in the validation cohort.
Radiomics model

A total of 1688 radiomics features were extracted. After feature

selection, 5 key features remained (Figure 2). Heatmap evaluation of

the correlations among these features showed no strong

correlations, as indicated by the Spearman correlation coefficient,

suggesting no multicollinearity among the features (Supplementary

Figure S2). Predictive models were constructed using four machine

learning algorithms—Logistic Regression (LR), Support Vector

Machine (SVM), Decision Tree (DT), and Random Forest (RF)—

based on these 5 radiomics features. The predictive performance of

each model is summarized in Table 3 and Figure 3. The RF model

exhibited the best predictive performance, with an AUC of 0.826

(95% CI: 0.764-0.888) in the training cohort and 0.808 (95% CI:

0.706-0.910) in the validation cohort. Therefore, the RF algorithm

was ultimately used to construct the radiomics model for predicting

tumor shrinkage patterns after NAC in HR+/HER2- breast cancer.

A combined model was developed based on Ki67 quantification,

enhancement pattern, and Rad-score, (Supplementary Figure S3)

and a visual nomogram was created for individualized prediction.
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The diagnostic threshold was set at 0.38according to the maximum

value of Youden’s index. A predicted value of<0.38 was classified as

Type I shrinkage, while a value ≥0.38 was classified as Type II

shrinkage (Figure 4). The AUC of the combined model in the

training cohort was 0.831 (95% CI: 0.770-0.891) and 0.810 (95% CI:

0.709-0.911) in the validation cohort (Table 4, Figure 5).
Comparison of different model
performance

In both the training and validation cohort, the AUCs of the

radiomics model and the combined model were significantly

higher than that of the clinical model (all p<0.05). This method, also

known as a sensitivity analysis, determines the contribution of

each feature by measuring the decrease in model performance
TABLE 1 Univariable analysis of clinicopathological characteristics
between Type I and Type II shrinkage groups.

Characteristics

Type
I shrinkage

Type
II shrinkage P

N=86 N=74

Age

M [Q1;Q3] 50 [41;59] 51 [42;58] 0.858

Menstrual

Postmenopausal 36 (41.860%) 34 (45.946%) Ref.

Premenopausal 50 (58.140%) 40 (54.054%) 0.608

CEA

Normal 81 (94.186%) 70 (94.595%) Ref.

Abnormal 5 (5.814%) 4 (5.405%) 0.922

CA125

Normal 72 (83.721%) 63 (85.135%) Ref.

Abnormal 14 (16.279%) 11 (14.865%) 0.813

CA153

Normal 73 (84.884%) 60 (81.081%) Ref.

Abnormal 13 (15.116%) 14 (18.919%) 0.530

Skin invasion

No 80 (93.023%) 61 (82.432%) Ref.

Yes 6 (6.977%) 13 (17.568%) 0.044

Lymph node metastasis

No 7 (8.140%) 6 (8.108%) Ref.

Yes 79 (91.860%) 68 (91.892%) 0.999

ER

M [Q1;Q3] 90% [80%;90%] 90% [80%;90%] 0.153

PR

M [Q1;Q3] 60% [30%;80%] 55% [11%;80%] 0.806

HR

Single positive 10 (11.628%) 6 (8.108%) Ref.

Double positive 76 (88.372%) 68 (91.892%) 0.477

HER2

None expression 21 (24.419%) 15 (20.270%) Ref.

Low expression 65 (75.581%) 59 (79.730%) 0.540

Ki67quantification

M [Q1;Q3] 30% [20%;40%] 20% [20%;40%] 0.018

Ki67grading

<30% 8 (9.302%) 12 (16.216%) Ref.

≥30% 24 (27.907%) 27 (36.486%) 0.052

(Continued)
TABLE 1 Continued

Characteristics

Type
I shrinkage

Type
II shrinkage P

N=86 N=74

Tumor size

≤2cm 20 (23.256%) 10 (13.514%) Ref.

>2cm&≤5cm 56 (65.116%) 57 (77.027%) 0.100

>5cm 10 (11.628%) 7 (9.459%) 0.606

Tumor shape

oval 52 (60.465%) 35 (47.297%) Ref.

Irregular 34 (39.535%) 39 (52.703%) 0.099

Tumor diameter (cm)

M [Q1;Q3] 2.930 [2.330;3.815] 2.995 [2.305;3.723] 0.954

Tumor margin

Clear 18 (20.930%) 12 (16.216%) Ref.

Not circumscribed 68 (79.070%) 62 (83.784%) 0.457

Enhancement pattern

Homogeneous 12 (13.953%) 3 (4.054%) Ref.

heterogeneous 74 (86.047%) 71 (95.946%) 0.034

TIC type

Inflow type 2 (2.326%) 2 (2.703%) Ref.

Plateau type 27 (31.395%) 20 (27.027%) 0.791

Outflow type 57 (66.279%) 52 (70.270%) 0.933

Early enhancement rate

M [Q1;Q3]
134.5%
[110.2%;168.4%]

142.6%
[111.1%;180.7%]

0.304

ADC

M [Q1;Q3] 0.951 [0.810;1.067] 0.957 [0.863;1.090] 0.342
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(e.g.,AUC) when the values of that single feature are randomly

permuted. A feature is considered more important if permuting

its values leads to a larger drop in performance (Supplementary

Figure S4). Although the AUC of the combined model was slightly

higher than that of the radiomics model, the difference was not

statistically significant (all p>0.05) (Table 5). The combined model

demonstrated the best calibration performance in both the training set

(p=0.011) and the validation set (p=0.13) (Supplementary Figure S5).

Additionally, the clinical net benefit of the radiomics model and the

combined model were higher than that of the clinical model (Figure 6).
Discussion

HR+/HER2- breast cancer exhibits lower rates of pathologic

complete response (pCR) and objective response after NAC
Frontiers in Oncology 06
compared to other molecular subtypes of breast cancer. To ensure

patients benefit from NAC aimed at breast conservation, this study

developed and validated a model based on clinicopathological

characteristics, traditional MRI features, and radiomics features to

predict tumor shrinkage patterns after NAC in HR+/HER2- breast

cancer. The predictive performance of this model surpassed that of

the clinical model, suggesting its potential utility in early

identification of patients with poor shrinkage patterns and in

timely adjustment of treatment strategies.

Univariable and multivariable regression analyses of

clinicopathological characteristics and traditional MRI features

revealed that Ki67 quantification was the only independent predictor

of tumor shrinkage patterns after NAC in HR+/HER2- breast cancer.

This finding is consistent with previous studies (11, 16, 17). Ki67 is a

key marker for evaluating cellular proliferation activity, and its levels

tend to rise with increasing tumor malignancy. It plays an important
TABLE 2 Multivariable analysis results of the clinical model and the combined model.

Variable
Clinical model Combined model

b OR (95%CI) P b OR (95%CI) P

Intercept -0.626 0.392 -3.017 <0.001

Ki67quantification -2.113 0.121 (0.016-0.789) 0.032 -2.196 0.111 (0.009-1.176) 0.076

Enhancement pattern 1.216 3.375 (0.997-15.455) 0.072 0.479 1.615 (0.400-8.236) 0.523

Rad-score 7.041 1142.914 (127.805-14940.097) <0.001
FIGURE 2

Violin plots of the radiomics features. The distribution of five key radiomics features in the good and bad shrinkage groups after NAC. (A–E) represent
different radiomics features, highlighting their respective distributions and variations between the two groups of Type I and Type II shrinkage.
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role in determining treatment plans and assessing prognostic risk in

breast cancer. Theoretically, higher tumor proliferation activity

correlates with greater sensitivity to cytotoxic drugs. Many studies

suggest that patients with high Ki67 expression achieve better NAC

outcomes (18–20). In this study, the Ki67 quantification was higher in

the Type I shrinkage group compared to the Type II shrinkage group

(30% vs. 20%).

Additionally, the proportion of tumors with homogeneous

enhancement was higher in the Type I shrinkage group than in the

Type II shrinkage group (13.953% vs. 4.054%). However, multivariate

stepwise regression analysis indicated that homogeneous enhancement

was not an independent predictor of tumor shrinkage patterns, possibly

due to the limited sample size in this study. Uneven distribution of

tumor cells and stroma, intra-tumoral hemorrhage, necrosis, and cystic

changes are the main causes of heterogeneous enhancement, indicating

significant tumor heterogeneity. This heterogeneity suggests differential

responses to treatment within various tumor regions, leading to less

ideal centripetal shrinkage patterns (21). Conversely, tumors with
Frontiers in Oncology 07
homogeneous enhancement exhibit lower heterogeneity, indicating

similar treatment responses across tumor regions, thus more likely

resulting in centripetal shrinkage patterns (22). Incorporating

enhancement patterns into the clinical model improved its

predictive performance.

Our results indicate that there are few clinicopathological and

traditional MRI features with predictive value, and the predictive

performance of the clinical model is suboptimal, with AUCs of 0.624

and 0.551 in the training and validation cohort, respectively. This

suggests that current clinical routine examination techniques have

limited value in predicting tumor shrinkage patterns after NAC in HR

+/HER2- breast cancer. Radiomics, by deeply mining information

contained in traditional imaging, can provide high-throughput, highly

reproducible features that more accurately and objectively reflect tumor

heterogeneity compared to traditional imaging (23). In this study, the

radiomics model achieved AUCs of 0.826 and 0.808 in the training and

validation cohort, respectively, while the combined model achieved

AUCs of 0.831 and 0.810 in the training and validation cohort,
TABLE 3 Predictive performance of radiomics models constructed using four machine learning algorithms.

Model

Training cohort Validation cohort

AUC
(95%CI)

Accuracy
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

AUC
(95%CI)

Accuracy
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

LR
0.643
(0.558-0.729)

0.619
(0.539-0.694)

0.662
(0.500-0.770)

0.581
(0.372-0.698)

0.689
(0.562-0.817)

0.657
(0.531-0.768)

0.645
(0.290-0.839)

0.667
(0.361-0.778)

SVM
0.654
(0.569-0.739)

0.625
(0.545-0.700)

0.716
(0.514-0.825)

0.547
(0.372-0.640)

0.746
(0.628-0.865)

0.657
(0.531-0.768)

0.710
(0.387-0.968)

0.611
(0.444-0.806)

DT
0.676
(0.607-0.746)

0.650
(0.571-0.724)

0.419
(0.259-0.530)

0.849
(0.729-0.915)

0.632
(0.515-0.748)

0.642
(0.515-0.755)

0.419
(0.213-0.580)

0.833
(0.601-0.952)

RF
0.826
(0.764-0.888)

0.762
(0.689-0.826)

0.905
(0.669-0.959)

0.640
(0.430-0.733)

0.808
(0.706-0.910)

0.746
(0.625-0.845)

0.806
(0.516-0.935)

0.694
(0.389-0.861)
FIGURE 3

ROC curves of radiomics models constructed using four machine learning algorithms. (A) the training cohort, (B) the validation cohort. The curves illustrate
the predictive performance of models developed with Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF)
algorithms .RF curve shows best balance of sensitivity/specificity, LR and SVM show intermediate performance, DT shows high specificity but poor sensitivity.
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respectively. The predictive performance of both the radiomics model

and the combinedmodel surpassed that of the clinical model. Although

the AUC of the combined model was slightly higher than that of the

radiomics model, the difference was not statistically significant,

indicating that clinicopathological characteristics and traditional

imaging features contributed little to enhancing the model’s

predictive performance. Multivariable analysis also showed that the

contributions of Ki67 quantification and enhancement pattern in the

combined model were low (both p>0.05).
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Although first-order features provide information on the gray-level

distribution of the volume of interest, they do not describe information

related to the relative positions of the various gray levels of the volume

of interest. The five retained radiomics features in our study included

one first-order feature and four texture features. Texture features

mainly reflect the spatial distribution patterns of voxels and their

correlation in the plane or in a certain direction, providing a

quantitative representation of tumor heterogeneity, which

significantly contributed to the predictive model (24).
FIGURE 4

A 69-year-old female with right breast cancer and a Ki67 quantification of 20%, and a 40-year-old female with right breast cancer and a Ki67
quantification of 40%. (A) A 69-year-old female, the baseline axial contrast-enhanced MRI image, indicating a mass in the right breast (arrow) with
heterogeneous enhancement. (B) A 69-year-old female, the nomogram, which predicts a risk value less than the threshold (0.38), indicating Type I
shrinkage. (C) A 69-year-old female, the post-NAC MRI image, confirming Type I shrinkage. (D) A 40-year-old female, the baseline axial contrast-
enhanced MRI image, indicating a mass in the right breast (arrow) with heterogeneous enhancement. (E) A 40-year-old female, the nomogram,
which predicts a risk value greater than the threshold (0.38), indicating Type II shrinkage. (F) A 40-year-old female, the post-NAC MRI image,
displaying centripetal shrinkage with satellite lesions, confirming Type II shrinkage.
TABLE 4 Predictive efficacy of clinical models, imaging histology models, and combined models.

Model

Training cohort Validation cohort

AUC
(95%CI)

Accuracy
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

Accuracy
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

Accuracy
(95%CI)

Clinical
0.624
(0.539-0.709)

0.581
(0.501-0.659)

0.703
(0.560-0.830)

0.477
(0.331-0.605)

0.551
(0.412-0.689)

0.537
(0.411-0.660)

0.742
(0.500-0.903)

0.361
(0.111-0.580)

Radiomics
0.826
(0.764-0.888)

0.762
(0.689-0.826)

0.905
(0.669-0.959)

0.640
(0.430-0.733)

0.808
(0.706-0.910)

0.746
(0.625-0.845)

0.806
(0.516-0.935)

0.694
(0.389-0.861)

Combined
0.831
(0.770-0.891)

0.756
(0.682-0.821)

0.865
(0.622-0.946)

0.663
(0.535-0.744)

0.810
(0.709-0.911)

0.701
(0.577-0.807)

0.774
(0.581-0.968)

0.639
(0.479-0.861)
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FIGURE 5

ROC curves of the clinical model, radiomics model, and combined model. (A) The ROC curves for the training cohort. (B) The ROC curves for the
validation cohort. The diagnostic efficacy of the RF model in the training group and the validation group was slightly higher than the clinical model,
but both were much higher than the combined model.
TABLE 5 Comparison of clinical, imaging histology, and combined model AUCs.

Cohort
AUC (95%CI) P P P

Clinical (1) Radiomics (2) Combined (3) (1vs2) (1vs3) (2vs3)

Training 0.624 (0.539-0.709) 0.826 (0.764-0.888) 0.831 (0.770-0.891) <0.001 <0.001 0.617

Validation 0.551 (0.412-0.689) 0.808 (0.706-0.910) 0.810 (0.709-0.911) 0.004 0.001 0.905
F
rontiers in Oncology
 09
FIGURE 6

Decision curve analysis (DCA) curves for the clinical model, radiomics model, and combined model. The net benefit is plotted against the threshold
probability for each model, comparing the performance of the different models. (A) The DCA curves for the training cohort. (B) The DCA curves for
the validation cohort.
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There are some limitations to our study. Firstly, as a single-center,

small-sample, retrospective study, there are inherent limitations. To

mitigate selection bias, we applied strict, predefined inclusion and

exclusion criteria to a consecutive cohort of patients. Furthermore, we

ensured data integrity by only including patients with complete clinical,

imaging, and pathological records, thus avoiding the need for data

imputation. However, we acknowledge that this design has limited

control over confounding variables. Therefore, the results need to be

validated by multi-center, large-sample, prospective studies to confirm

the robustness and generalizability of our model. Secondly, while the

tumor shrinkage patterns were determined by two experienced

radiologists through independent review followed by a consensus

discussion to ensure accuracy, a formal quantitative metric for inter-

rater reliability, such as the Kappa statistic, was not calculated. Future

prospective studies should include such an analysis to formally validate

the reproducibility of the classification criteria. Thirdly, the study aimed

to predict tumor shrinkage patterns before NAC and considered the

convenience of model use. Therefore, we only analyzed radiomics

features from the initial phase of baseline MRI enhancement.

Extracting features from multiple phases of enhancement or multiple

sequences, such as DWI, might improve the model ’s

predictive performance.

Conclusion

In conclusion, our study confirms that radiomics features based

on baseline MRI can help early and accurately predict tumor

shrinkage patterns after NAC in HR+/HER2- breast cancer

patients, who generally have a lower response rate to NAC. This

can assist in predicting the feasibility of breast conservation and

timely adjustment of treatment strategies.
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5-fold cross-validation procedure boxplot. Distribution of performance
metrics (AUC, Sensitivity, Specificity) for each model across the 5 folds of

cross-validation.

SUPPLEMENTARY FIGURE 2

Heatmap of the correlations between radiomics features. The Spearman
correlation coefficients among the five selected radiomics features.
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SUPPLEMENTARY FIGURE 3

Whether it is the training set or the validation set, RAD-SCORE can effectively
distinguish the regression patterns of tumors after neoadjuvant

chemotherapy. a: score-box-RF-train; b: score-bar-RF-train; c: score-box-
RF-test; d: score-bar-RF-test.

SUPPLEMENTARY FIGURE 4

Feature Importance Analysis. Bar plot showing the results of the permutation

feature importance analysis for the five radiomic features used in the final
Frontiers in Oncology 11
Random Forest model. The “Overall” importance score on the x-axis
represents the model’s mean sensitivity to the permutation of each feature.

SUPPLEMENTARY FIGURE 5

Calibration curves of the clinical model, radiomics model, and combined model. The

observed event percentages are plotted against the predicted event percentages for
eachmodel. TheHosmer-Lemeshow (HL) test values for eachmodel are also indicated,

demonstrating the calibration performance of themodels. (A) The calibration curves for
the training cohort. (B) The calibration curves for the validation cohort.
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