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There are few well-established biophysical mechanisms by which external

magnetic fields can influence the biochemistry of molecules in living systems.

The radical pair mechanism is arguably the most promising. In this mini-review I

summarize the characteristics of radical pairs in a way that may be useful to those

engaged in the field of magneto-oncology. The intention is to help researchers

decide whether an observed biomedical magnetic field effect could have its

origin in radical pair biochemistry. Armed with a physically plausible interaction

mechanism, it may be possible to devise and refine a theoretical model and

thereby iteratively optimise therapeutic protocols. Such an approach may also

help identify experimental artefacts
KEYWORDS

radical pair mechanism (RPM), spin chemistry, electron spin, magnetobiology, magnetic
field effects (MFE)
Introduction

Magnetic nanoparticles, guided to specific locations by external magnetic fields, have a

variety of applications in cancer treatment. They can deliver drugs or genetic material,

produce localized heating (magnetic hyperthermia), enhance immune cell activation, and

help visualise tumours (magnetic resonance imaging and magnetic particle imaging). The

magnetic fields involved are typically stronger than 10 millitesla and the fundamental

physics – magnetic forces, radiofrequency heating, spin relaxation, and so on – is well

understood. By contrast, the primary interaction mechanisms behind strategies that do not

involve nanoparticles are often obscure. The problem is that the energy with which even a

1 tesla magnetic field interacts with a single molecule is a great deal smaller than the energy

of the naturally occurring random fluctuations in atomic positions and molecular

orientations (1). Even for paramagnetic molecules like free radicals, we can expect that

any magnetic field effect on the rates or yields of (bio)chemical reactions should be

overwhelmed by thermal noise. No matter how efficient any subsequent amplification

mechanisms may be, there can be no magnetic field effect if the primary signal-to-noise

ratio is less than one (2).

However, a well-established interaction mechanism does exist for which this

thermodynamic argument is irrelevant: the radical pair mechanism (3–10). Over the last

fifty years, it has been used, often quantitatively, to account for hundreds of laboratory

studies of magnetic field effects on free radical reactions. Although convincing examples in
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biology have been scarce, there is no reason why the mechanism

could not operate in living systems (11), for instance in the

magnetic compass of migratory birds (12–17).

My purpose in writing this article is to summarize the

characteristics of the radical pair mechanism in a way that might

be useful to those working in the field of magneto-oncology. The

intention is to help researchers decide whether an observed

biomedical magnetic field effect could have its origin in radical pair

biochemistry. Armed with a physically plausible interaction

mechanism, it may be possible to devise and refine a theoretical

model and thereby iteratively optimise therapeutic protocols. It may

also help avoid experimental artefacts, [of which magnetobiology

(18–30) seems to havemore than its fair share (11)] and allow in silico

investigation of features of the interaction mechanism that do not

readily lend themselves to experimental study. In the course of this

primer, little attempt will be made to explain the spin physics
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underlying the radical pair mechanism – that can be found

elsewhere (3, 9, 31, 32) and in some of the articles cited below. The

text starts with a brief summary of the mechanism itself, continues

with descriptions of its various manifestations, and ends with a few

concluding remarks. Some basic quantitative aspects of the

mechanism are summarized in the Supplementary Material.
Radical pair mechanism

Radicals are molecules that contain an unpaired electron whose

spin angular momentum (or simply, spin) is associated with a

magnetic moment (33–35). In simple terms, the origin of magnetic

field effects on pairs of radicals can be understood by reference to

Figure 1a. The two unpaired electrons, one in each radical, can be in

either singlet (S) or triplet (T) states depending, roughly speaking, on
FIGURE 1

(a) The simplest radical pair reaction scheme. S and T are the singlet and triplet forms of the radical pair. The orange arrows represent the oscillatory
interconversion of S and T by hyperfine and Zeeman interactions. S and T react spin-selectively to form singlet and triplet products, PS and PT,
respectively. (b) Schematic time-dependence of radical-pair and product states. Starting in the singlet state, S and T interconvert coherently while
reacting to give PS and PT, as in scheme (a). The quantum beat frequencies are typically in the megahertz to gigahertz range depending on the spin
interactions of the two electrons. The populations of the products build up to their final levels, FS and FT, where FS +FT = 1. (c) Schematic changes
in the yield of a reaction product, DF = F(B0) −F(0), induced by a static external magnetic field of strength B0. Using the notation X → Y, where X is
the initial spin state of the radical pair and Y is the reaction product, this figure is appropriate for S → PT [reaction schemes (a) and (d) (ii)] and T → PS

[(a) and (d) (i)]. The sign of DF is inverted for S → PS [(a) and (d) (i)] and T → PT [(a) and (d) (ii)]. The values of B0 on the horizontal axis give an
impression of the magnetic fields at which the various features normally occur for organic radicals with effective hyperfine interactions ≈ 1 mT and
Dg ≈ 0.001. The left-hand side shows the behaviour expected for radical pairs with short-lived (red) and long-lived (blue) spin coherence. For the red
line, B1=2 is the magnetic field at which DF equals half its value at the plateau (in this case when B0 ≈ 30 mT). The right-hand side shows two

possible effects of the Dg mechanism (green). Effects of exchange and dipolar interactions have been ignored. Dg is defined in the Supplementary
Material. (d) Alternative radical-pair reaction schemes. (i) S reacts spin-selectively to form PS while S and T react non-selectively to give a product
PST. (ii) T reacts spin-selectively to form PT while S and T react non-selectively to give a product PST. (e) Schematic field-dependence of the reaction
yield for a radical pair with a strong exchange interaction. Using the notation in (c), this figure is appropriate for S → PT [reaction schemes (a) and (d)
(ii)] and T → PS [(a) and (d)(i)]. The extremum occurs when B0 = 2J where J is the strength of the exchange interaction. (f) Schematic spin energy-
levels of a radical pair in a static magnetic field (i) weaker and (ii) stronger than the hyperfine, exchange and dipolar interactions. nHFC is the
maximum resonance frequency in a weak static field, determined mainly by hyperfine interactions. nL is the Larmor frequency, determined by the
strong Zeeman interaction. (g) Schematic B0-dependence of the reaction yield with and without a weak 150 MHz time-dependent field B1. The
resonance appears when B0 = 150/28 = 5.4 mT.
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whether their spins are mutually aligned antiparallel (↑↓) or parallel
(↑↑), respectively. The reactivity of this pair of radicals is subject to

spin-selection rules: S-pairs are formed from S-state reactants, and

react to give S-state products, and similarly for T-pairs (Figure 1a).

Following spin-selective formation, the S and T states interconvert

coherently, typically at megahertz or gigahertz frequencies depending

on the spin interactions of the two electrons (Figure 1b) (14). An

external static, radiofrequency, or microwave magnetic field acting on

the two electrons (Zeeman interactions) can alter the extent and

timing of S↔T interconversion and hence the probabilities that the

pair reacts to form the singlet (PS) or the triplet (PT) product

(Figures 1a, b). Competition between the two pathways means that

an increase in the final yield (FS orFT) of one product is matched by

a decrease in that of the other. In reality, the pattern of S↔T

“quantum beats” is considerably more complex than shown in

Figure 1b because each electron spin has (hyperfine) interactions

with the spins of several atomic nuclei (e.g. 1H and 14N) (36–38).

All the relevant magnetic interactions of the two electrons –

with external magnetic fields (Zeeman), with nuclear spins

(hyperfine), and with each other (exchange and dipolar) – are

normally orders of magnitude smaller than the thermal energy, kBT

(Boltzmann’s constant times temperature, equivalent to 2.6 kJ

mol−1 at physiological temperature). An applied magnetic field

cannot therefore break chemical bonds or otherwise initiate new

(bio)chemical transformations. It can only modify the yields of

existing reactions. Uniquely, this is possible for radical pairs because

the electron spins couple so weakly to their surroundings. The non-

equilibrium spin states created by spin-selective reactions can

persist for times as long as a microsecond before the coherences

vanish and the S:T ratio reaches its equilibrium value of 1:3. A spin

relaxation time of ~1 ms gives enough time for an external magnetic

field stronger than ~100 µT to have a significant effect on the

quantum beats and therefore the reaction yields (39, 40). Radical

pairs with lifetimes in excess of 1 ms show very weak sensitivity to

magnetic fields because the spin correlation decays before any

products can be formed. Magnetic fields weaker than ~100 µT

would require improbably slow spin relaxation and are therefore

highly unlikely to produce significant effects in vivo unless there has

been evolutionary pressure to optimise the sensitivity.

More detailed introductory material can be found in ref (14).

which aims to “explain the chemical and physical aspects of radical-

pair magnetoreception to biologists and the biological and chemical

aspects to physicists”.
Static magnetic field effects

The most common manifestation of the radical pair mechanism

is the dependence of the yields of the reaction products on the

strength (magnetic flux density) of a static external magnetic field

(Figure 1c). Whether the yield is increased or decreased depends on

the properties of the radicals, the strength of the field, the initial spin

state (S or T), and which product (PS or PT) one looks at.

The shape of Figure 1c (appropriate for the reaction scheme in

Figure 1a and the slightly more complicated ones in Figure 1d) has
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three origins. In magnetic fields up to about 100 mT, S↔T

interconversion is dominated by the hyperfine interactions, and the

reaction yields usually have a sigmoidal field-dependence (41–44).

The “half-field” parameter, B1/2, is normally comparable to the

effective hyperfine interaction of the two radicals (defined in the

Supplementary Material), typically a few millitesla for organic

radicals (41, 45). Larger values of B1/2 are expected if one or both

radicals undergo rapid spin relaxation (46, 47). If the radicals are

long-lived and spin-relax sufficiently slowly, the reaction yields may

have an extremum known as the low field effect (31) which boosts the

sensitivity to magnetic fields weaker than B1/2 and flips the sign of the

effect. For stronger fields, S↔T interconversion is driven by the

difference in the Zeeman interactions of the two electrons with the

applied magnetic field (Dg mechanism) (48, 49). Finally (not shown

in Figure 1c), the rate at which spin coherence decays is sometimes

field-dependent such that strong magnetic fields give rise to further

changes in reaction yields (50).

If the radicals are not randomly oriented, the effect of a static

magnetic field may depend on its direction (51–53). This is thought

to be the basis of the magnetic compass sense of migratory

songbirds (12–14, 39). Exact reversal of the field direction should

have no effect on the spin dynamics whether the radicals are

oriented or not (54, 55).

The field-dependence of the reaction yields is profoundly

different when the exchange or dipolar interaction of the two

electrons is larger than the hyperfine couplings. Strong

interactions suppress the effects of weak magnetic fields and give

rise to a “2J resonance” when the Zeeman interaction matches the

exchange coupling (Figure 1e) (3, 56). Exchange interactions are

generally negligible for radicals separated by more than 1.0 to 1.5

nm; dipolar interactions have a longer range: ~1 mT at 1.4 nm; ~0.1

mT at 3.0 nm (57).
Low-frequency magnetic field effects
(< 1 MHz)

Radical pairs that show static magnetic field effects rarely have

lifetimes longer than 1 ms. This means that oscillating magnetic

fields with frequencies much below 1 MHz are effectively static as

far as the radical pairs are concerned (58, 59). As there is unlikely to

be any correlation between the phase of an external alternating field

and the instant at which radical pairs are formed, any observed

effect will be an average over a period of the time-dependent field.

The result of this averaging is that magnetic fields with frequencies

below ~1 MHz should have much smaller effects than a static field

of comparable strength. For example, in the presence of the Earth’s

magnetic field (~50 mT), a 1 µT-strength, 50 or 60 Hz magnetic field

is predicted to have a similar effect to that of a ~10 nT change in the

Earth’s field (58). The latter would be experienced by travelling

2.5 km towards or away from the geomagnetic north pole (58).

Similar conclusions apply to any frequency up to ~100 kHz.

Stronger time-dependent magnetic fields are expected to lead to

larger effects but still smaller than for a static field of

similar strength.
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High-frequency magnetic field effects
(> 1 MHz)

The situation is different for magnetic fields that vary during the

lifetime of a radical pair, i.e. for frequencies above ~1 MHz.

Magnetic field effects can be expected if the oscillation frequency

is in resonance with an S↔T interconversion frequency or,

equivalently, if it matches the energy gap between two of the spin

energy-levels of the radicals (60–63). Unless the time-dependent

field is very strong, non-resonant effects are extremely weak.

In a static magnetic field stronger than the hyperfine, exchange

and dipolar interactions, the dominant resonance frequency can be

calculated using the conversion factor of 28 MHz per mT, e.g.

2.8 GHz for a 100 mT static field (Figures 1f, g). This “Larmor-

frequency” resonance is strongest when the static and time-

dependent fields are perpendicular to one another and weakest

when they are parallel. A magnetic field effect specifically at the

Larmor frequency, with this dependence on the relative directions

of the two fields, can be used as a diagnostic test for the operation of

the radical pair mechanism (64).

By contrast, in weak static fields, comparable to or smaller than

the internal magnetic interactions, a specific resonance at the

Larmor frequency (e.g. 1.4 MHz for a 50 mT field) is not

normally expected (14, 65). The only exception to this is when

the exchange and dipolar interactions and the hyperfine

interactions in one of the radicals are all extremely small (an

unlikely event) (14, 66). For weak static fields, the maximum

resonance frequency corresponds to the separation of the highest

and lowest spin energy-levels (Figure 1f) (65), a prediction that has

been used to guide behavioural experiments on the orientation of

migratory songbirds exposed to radiofrequency magnetic fields

(67–71). There may also be changes in reaction yields for

frequencies comparable to the strengths of the internal magnetic

interactions, e.g. ~28 MHz for ~1 mT hyperfine couplings.
Magnetic isotope effects

Isotopic substitution changes the spin and magnetic moment of

a nucleus, and therefore its hyperfine interaction, leading to a

“magnetic isotope effect” (62, 72–74) quite distinct from the more

familiar mass, or kinetic, isotope effect. Like external magnetic

fields, isotopic substitution can increase or decrease reaction

yields depending on the initial spin state of the radical pair and

the spin state of the product. Other things being equal, the largest

magnetic isotope effects are expected when a non-magnetic nuclide

is replaced by a magnetic one, or vice versa, for example 12C→ 13C

(75) or 25Mg → 24Mg and/or 26Mg (76–78). The latter has been

suggested as a new way of selectively killing cancer cells (79, 80).
Chemical effects

The discussion so far has considered exclusively “geminate” (G)

radical pairs formed in spin-correlated S or T states from S or T
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photochemical reactions where the precursor is an electronically

excited S or T molecule and the radicals are formed by electron or

H-atom transfer or homolytic bond cleavage. However, there can

also be “F-pairs”, arising from the random encounter, e.g. by

diffusion in solution, of independently created radicals which

initially have uncorrelated electron spins. The spin correlation

required for magnetic field effects arises from subsequent spin-

selective reactions. F-pairs behave qualitatively like triplet G-pairs if

the S state reacts faster than the T state, and like singlet G-pairs if

the opposite is true (81, 82). The most common case is that S-pairs

react to form stable singlet-state products while T-pairs are

unreactive. Kinetic competition between the spin-selective

reaction of the S-pair and diffusive separation of both S- and T-

pairs [Figure 1d(i)] gives rise to the magnetic sensitivity.
Amplification mechanisms

There has been a number of suggestions of mechanisms that

could amplify small magnetic field effects [briefly reviewed in (58)].

One proposal is that a paramagnetic scavenger, reacting with one of

the constituents of a radical pair, could not only boost its sensitivity

to magnetic fields but also circumvent the detrimental effects of

rapid spin relaxation (83–86). Such a mechanism might allow

superoxide-containing radical pairs (see below) to be

magnetically sensitive.

A second possibility is that the chemical feedback and

autocatalysis that are features of oscillating chemical reactions

could permit small magnetically-induced changes in the kinetics

of radical pair intermediates to have a disproportionate effect on the

amplitude of the oscillations (87–94). Interestingly, it has been

proposed that related effects could arise in an intrinsically

oscillatory system of coupled mitochondria in cancer cells (95).
Concluding remarks

Magnetobiology has a vast literature, much of it beset by

conflicting, implausible or extravagant claims (11). That so many

reports of non-thermal biological magnetic field effects have been

attributed to the radical pair mechanism seems to owe more to the

scarcity of plausible alternatives than to solid experimental evidence of

radical pair biochemistry. Assignment of a magnetic field effect to the

radical pair mechanism is generally more convincing if the

experimental observations do not conflict with theoretical predictions.

The theoretical basis of the radical pair mechanism has become

well-established over the last 50 years, to the extent that upper limits

on the magnetic sensitivity of radical pair reactions can be estimated

quite reliably if enough is known, or can be inferred, about the

properties of the radicals involved (58, 71, 96–99). Such calculations

can help one decide whether an observed effect is likely to have a

radical-pair origin or, sometimes, whether it is likely to be an

experimental artefact.

An example of the utility of spin dynamics calculations is provided

by the (independently replicated) finding that migratory birds are
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prevented from orienting in the Earth’s magnetic field (~50 µT) when

exposed to astonishingly weak (~1-100 nT) radiofrequency (~1-100

MHz) magnetic fields (66–71, 100–103). Although evidence is

accumulating in support of the notion that light-induced radical pairs

(formed in cryptochrome proteins located in photoreceptor cells in the

birds’ retinas) could form the basis of the avian magnetic compass

sensor, it is still unclear whether they are sensitive enough to allow small

nocturnal migrants to derive a compass bearing with only starlight

available to initiate the radical-pair chemistry. It is much more a stretch

of the imagination to believe that this sensory mechanism could be

disrupted by time-dependent magnetic fields ~1000 times weaker than

the geomagnetic field. Computer simulations of realistic spin-systems

are being used to guide behavioural experiments by predicting which

radiofrequencies should and which should not cause the birds to be

disoriented (65, 71). The hope is that such a combination of theory and

experiment will reveal whether radiofrequency disorientation is an

informative side effect, an experimental artefact or, conceivably, a

biologically relevant phenomenon.

Finally, a brief comment on reactive oxygen species (ROS, e.g.

O• −
2 and OH•) and reactive nitrogen species (e.g. NO•), some of

which play crucial roles in cell signalling and oxidative damage.

Various ROS-related effects of static, time-dependent and even

hypomagnetic (i.e. << 50 mT) fields, have been discussed in the

context of the radical pair mechanism, with the emphasis on

superoxide (O• −
2 ) (15, 20, 104–115). A property shared by O•−

2 ,

OH•, and NO• is that they all spin-relax much more rapidly

(nanoseconds or faster) than the vast majority of organic radicals

(116, 117). As a consequence, extremely small magnetic field effects

can be expected for radical pairs containing these radicals, even for

very strong fields (118, 119). Any radical-pair effects on ROS levels

in living systems are much more likely to arise from upstream pairs

of slower-relaxing organic radicals (11).
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