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The integration of viral DNA into the human genome is a critical event in the

pathogenesis of various cancers. This process leads to genomic instability,

disrupts cellular regulatory mechanisms, and activates oncogenes or

inactivates tumor suppressor genes. Despite significant advancements in

genome sequencing technologies, there remains a notable lack of

computational tools, particularly web-based applications, specifically designed

for viral integration analysis and visualization. To address this gap, we present

virusPlot, a web server with the following functional modules: (i) automatic

retrieval of virus genome sequences and their annotation; (ii) visualization of

virus integration locations and read counts through a graphical representation

that links viral and host genome integration sites, facilitating the interpretation of

integration patterns; (iii) analysis of virus integration hotspots using Fisher’s exact

test; and (iv) integration of various functions into an interactive web platform via

shinyapp. VirusPlot efficiently processes and visualizes integration data from

viruses and host genomes, providing researchers with an intuitive and user-

friendly analytical tool that simplifies the complexity of virus integration analysis.
KEYWORDS

viral integration, genomic visualization, hotspot analysis, computational biology,
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1 Introduction

Viral insertion into the host genome is a critical event in the viral life

cycle of several viruses associated with tumorigenesis (1, 2). Specifically,

viruses, such as human papillomavirus (HPV) (3, 4), hepatitis B virus

(HBV) (5), Epstein-Barr virus (EBV) (6), and Human T-cell leukemia

virus type 1 (HTLV-1) (7), are well-known for their oncogenic potential

through this mechanism. The integration of viral DNA can result in

genomic alterations that drive malignant transformation, contributing

to cancer development and progression (1, 8–12). Understanding the

molecular mechanisms of viral integration and its impact on cellular

pathways is essential for developing targeted therapies and preventive

strategies against virus-associated cancers.

Recent advances in genome sequencing methods have significantly

enhanced the detection of viral integration events in tumor genomes.

Whole Genome Sequencing (WGS) provides a comprehensive view of

the entire tumor genome and allows for the identification of viral

integration sites across the genome (3, 13–15). Capture sequencing

involves the enrichment of viral sequences and their adjacent host

sequences before sequencing, which is highly effective for detecting

viral integration sites and mapping the integration landscape with high

sensitivity and specificity (14, 16, 17). The development of long-read

sequencing technologies offers the advantage of reading longer DNA

fragments, which can span entire integration sites and provide more

accurate mapping of integration events (18–21). This method is

particularly useful for resolving complex integration events and

structural variations.

Additionally, tools such as isling (22) and Vseq-Toolkit (23)

have been developed for viral integration analysis, along with other

tools benchmarked in these studies, providing a foundation for

comparative assessments.

Viral integration events are complex and require sophisticated

algorithms to accurately detect and interpret insertion sites within the

host genome (9). These events can vary significantly in their genomic

context, integration frequency, and impact on gene regulation,

necessitating specialized tools for comprehensive analysis (1, 3, 9, 14).

Currently, most available tools for viral integration analysis are

either standalone software or scripts requiring a high level of

bioinformatics expertise to operate (24–26). These tools often demand

substantial computational resources and can be challenging for

researchers without advanced programming skills. Furthermore,

effective visualization tools are lacking, which are essential for

interpreting the results of viral integration studies, allowing researchers

to explore integration sites, their genomic contexts, and potential effects

on gene expression and genome stability.

The absence of user-friendly, web-based platforms limits

accessibility and hinders the widespread adoption of viral

integration studies in the broader research community. To address

this, we have developed virusPlot, an all-in-one analysis and

visualization software. Key features of virusPlot include the

automatic retrieval of virus genome sequences and annotation

information, a visualization tool that represents viral integration

events by connecting integration sites in the host genome with

corresponding positions in the viral genome, and virus integration
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hotspot analysis using Fisher’s exact test to help identify possible

integration hotspot regions. Importantly, virusPlot integrates all these

functions into an interactive web platform via shinyapp, expanding

accessibility to users without technical or computational skills. The

integration of interactive, web-based visualization tools can

significantly enhance the ability to communicate findings, generate

hypotheses, and facilitate collaborative research.
2 Methods and functions

We have developed virusPlot, an R package that offers a

comprehensive suite of tools for analyzing and visualizing virus

integration into the host genome. The user interface and back-end

of virusPlot are built using Shiny. Analysis results are displayed on

the web page and can be downloaded in various formats, including

PDF, PNG, EPS, TXT, and HTML (for more details, refer to the

website help pages). The workflow and typical output schema are

illustrated in Figures 1–4. Detailed functions and operations for

each module are described below.
2.1 Automatic retrieval of virus genome

The virusPlot package includes two key functions for retrieving

virus genome data: get_virus_genom and get_virus_annotation.

The get_virus_genom function automates the process of

obtaining viral genomic sequences from the National Center for

Biotechnology Information (NCBI) database. By leveraging NCBI’s

extensive repository, this function provides users with accurate and

up-to-date viral sequences for their research. Complementing this,

the get_virus_annotation function retrieves gene annotation

information for the obtained viral genomes, which is essential for

understanding the functional roles of various viral genes and their

potential impact on the host organism.
2.2 Quality control

To ensure the robustness of the input data analysis, we have

incorporated a rigorous quality control mechanism. This

mechanism allows users to apply filters based on two adjustable

parameters: minimum read number and p-value threshold. For

example, users can set a minimum read number (e.g., ≥10 reads) to

exclude low-confidence breakpoints supported by insufficient reads,

and a p-value threshold (e.g., p < 0.05) to ensure statistical

significance. These parameters can be fine-tuned based on the

specific characteristics of the dataset, such as sequencing depth or

experimental design.

We have observed that adjusting these parameters has distinct

effects on the dataset:
• Increasing the minimum read number threshold improves

the confidence of the retained breakpoints but may reduce
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FIGURE 2

HPV integration in oropharyngeal cancer. (A) Strudel plot of HPV16 integration information. (B) The HPV16 integration hotspot analysis of the HPV16
genome. (C) The HPV16 integration hotspot analysis of the host genome.
FIGURE 1

Screenshot of the virusPlot web tool. This package encompasses four main functionalities: (i) Automatic retrieval of virus genome information, (ii)
Virus integration information visualization, (iii) Virus integration hot spots analysis, hot spots refer to genes with a statistically significant number of
viral integration events, identified using Fisher’s exact test or Chi-square test, and (iv) a user-friendly web application interface (shinyapp).
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Fron
the overall number of breakpoints available for

downstream analysis.

• Tightening the p-value threshold enhances statistical rigor

but might exclude potentially relevant breakpoints with

weaker statistical signals.
2.3 Virus integration
information visualization

A novel visualization approach, the strudel plot, has been

developed within the virusPlot package to graphically represent

the complex integration patterns of viruses within host genomes.

The strudel plot is a multi-faceted structure that effectively displays

integration sites, viral genome breakpoints, and the correspondence

between host integration sites and viral breakpoints. The plot is

organized into five distinct components:
I. Viral Genome Retrieval: Presents the sequence and

annotated information of the viral genome.
tiers in Oncology 04
II. Viral Integration Sites: Illustrates the positions of viral

integration sites along with the number of associated reads.

III. Integration Breakpoints: Maps the breakpoints in both

the viral and host genomes.

IV. Host Integration Sites: Shows the positions of integration

sites in the host genome along with their respective

read counts.

V. Host Gene Hotspots: Identifies the host genes that are

hotspots for viral integration.
VirusPlot analyzes viral integration breakpoints irrespective of

the completeness of the viral genome at the site. The analysis

supports both forward and reverse orientations of the virus and

incorporates rearranged fragments by identifying and visualizing

integration breakpoints on both the viral and host genomes.

2.4 Virus integration hot spots analysis

Viral integration hotspots are pivotal for comprehending virus-

induced cancer mechanisms and for devising targeted therapies and

preventive strategies. Identifying these hotspots holds promise for
FIGURE 3

HPV integration in cervical cancer. (A) Strudel plot of HPV18 integration information. (B) The HPV18 integration hotspot analysis of the HPV18
genome. (C) The HPV18 integration hotspot analysis of the host genome.
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early detection, prognostic insights, and personalized treatment

approaches. In the virusPlot package, a robust analysis tool is

included for detecting viral integration hotspots within the host

genome. A gene is identified as a potential hotspot if the observed

number of integration sites significantly exceeds the expected count

by chance. This comparison, facilitated by both Fisher’s exact and

chi-square tests, offers valuable insights into the preferential

integration patterns of viruses, critical for deciphering viral

persistence mechanisms and pathogenesis. The expected number

of integration sites for each genomic region was calculated as

follows:

Excepted count  =  Total observed integrations 

� Region size (bp)
Total genome size (bp)

Statistical significance was determined using Fisher’s exact test

and Chi-square test by comparing the observed and expected

counts. The p-value threshold for significance was set at 0.05.
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The web-based version of VirusPlot processes viral integration

data using the hg38 human genome assembly by default. For users

of the R package version, the genome assembly can be customized

by specifying the TxDb parameter in functions such as

get_hot_gene and strudel_plot. This flexibility allows users to

work with data aligned to different genome versions, ensuring

compatibility with their specific datasets and annotations.
2.5 A user-friendly web
application interface

To make virusPlot widely accessible and easy to use, we’ve

integrated a shinyapp, providing a user-friendly web interface for

accessing all features without the need for coding. This web app

simplifies operations, requiring no local setup or specific hardware,

as all computations are cloud-based, ensuring compatibility across

different systems. Through practical case studies using our own data

and published HPV and HBV integration data in various cancers
FIGURE 4

HBV integration in liver cancer. (A) Strudel plot of HBV integration information. (B) The HBV integration hotspot analysis of the HBV genome.
(C) The HBV integration hotspot analysis of the host genome.
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(i.e., oropharyngeal cancer, cervical cancer and hepatocellular

cancer) (Figures 2–4), virusPlot has proven effective in displaying

integration sites and identifying hotspots, underscoring virusPlot’s

utility in simplifying the complex analysis of viral integration and

providing valuable insights into the genomic alternations and

regulatory disruptions associated with virus-related cancers.
2.6 A data security and privacy

VirusPlot employs multiple measures to ensure the security of

user data. All data transfers between the user and the server are

encrypted using HTTPS. Uploaded data is processed in-memory

without being stored permanently on the server, and all data is

automatically deleted upon completion of the analysis. The server is

hosted on a secure platform with firewalls and regular updates to

protect against vulnerabilities.
3 Case study

3.1 HPV integration in oropharyngeal
cancer (Data in this study)

Whole Exome & HPV capture sequencing (WEHS) was

performed on 20 head and neck cancer samples. We used the

Survirus software (24) to detect HPV16 integration information.

This analysis revealed 471 integration sites and 13,007 reads

encompassing these sites. The viral integration sites were evenly

distributed throughout the HPV16 genome but concentrated in

specific chromosomal regions of the host genome, such as chr17,

chr9, and chr15. The five genes with the highest number of viral

read insertions were CHMP6, RPTOR, LOC124904077, CD274,

and GDPGP1 (Figure 2A). Regarding the HPV16 genome, fewer

integration sites were observed in the E6 gene compared to random

occurrences, while no significant differences were noted for other

genes, and no hotspot integration genes were identified (Figure 2B).

In the host (human) genome, several hotspots for HPV16 insertion

were identified, including BMS1P23, CHMP6, EBMP1, OR4C46,

and RPTOR, compared to random occurrences (Figure 2C).
3.2 HPV integration in cervical cancer

Ma’s Lab conducted DNA sequencing on 39 cervical cancer

samples collected from Tongji Hospital in Wuhan and Jingmen No.

2 People’s Hospital in Hubei Province, China, between 2007 and

2014 (14). Exfoliated cervical epithelial cells were collected using

cervical brushes. The high-throughput Viral Integration Detection

(HIVID) (27) was then applied to these samples to detect HPV18

integration information. This analysis identified 241 integration

sites and 48,603 reads including these sites. The viral integration

sites were evenly distributed across the HPV18 genome and

concentrated in specific chromosomal regions of the host

genome, such as chr8, chr11, and chr17. The five genes with the
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highest number of viral read insertions were CCAT1, PTRH2,

TGM2, MMP3, and NCOA7-AS1 (Figure 3A). In the HPV18

genome, the actual number of integration sites in the E7 and L2

genes was significantly higher than random, indicating hotspots for

integration, while the L1 gene had significantly fewer integration

sites than random (Figure 3B). In the host (human) genome,

multiple hotspots for HPV18 insertion were identified, including

BARX2, DNAJB8-AS1, MIR548BB, MIR603, and UBE4B,

compared to random occurrences (Figure 3C).
3.3 HBV integration in liver cancer

Wang’s Lab performed DNA sequencing on 138 hepatocellular

carcinomas (HCCs) collected at the Eastern Hepatobiliary Surgery

Hospital in Shanghai from 2009 to 2010 using high-throughput

viral integration detection (HIVID) method (28). This analysis

identified 546 integration sites and 13,242 reads encompassing

these sites. The reads containing viral integration sites were

primarily concentrated in the X gene of the HBV genome and on

chromosomes chr5, chr11, and chr19 of the host genome. The five

genes with the highest number of viral read insertions were

MIR4457, TERT, FGF4, SHANK2-AS1, and KM12B (Figure 4A).

Regarding the HBV genome, the actual number of integration sites

in the X gene was significantly higher than random, indicating

hotspots for integration, whereas the PreS1/PreS2/S and P genes

had significantly fewer integration sites than random (Figure 4B). In

the host (human) genome, multiple hotspots for HBV insertion

were identified, including TEAR, KMT2B, CCNE1, CCNA2, and

MIR4457, compared to random occurrences (Figure 4C).
4 Discussion

The virusPlot platform offers a comprehensive suite of tools and

workflows designed to simplify the analysis and visualization of

viral integration events within host genomes. Serving as an

visualization solution, virusPlot streamlines the process of

identifying integration hotspots and understanding the impact of

viral integration on cancer development. With its intuitive interface,

virusPlot enables researchers, including experimental biologists

without computational programming skills, to explore complex

viral integration patterns and gain valuable insights into virus-

associated cancers. By integrating multiple analytical approaches

and statistical tests, virusPlot enhances the analysis of viral

integration data, complementing traditional methods and

enabling more comprehensive investigations. As sequencing

methods continue to evolve and become more cost-effective, an

increasing number of viral-associated cancers and viral integration

events are expected to be uncovered (1, 20). This expanding dataset

of viral-related cancer genomes and integration sites will provide

valuable insights into the role of viruses in oncogenesis and facilitate

the development of targeted therapies and preventive strategies

against virus-associated cancers. We are committed to maintaining

the virusPlot platform and continuously updating it with new data
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and methods, ensuring its relevance and utility for the research

community over the coming years. Through its user-friendly

interface and powerful analytical capabilities, virusPlot aims to

accelerate discoveries in viral oncology and facilitate the

identification of novel cancer pathways and therapeutic targets.

To evaluate the usability of VirusPlot, we compared it with

other visualization tools commonly used for integration data, such

as Circos (29). Users reported that VirusPlot’s interactive interface

significantly reduced the complexity of generating visualizations,

compared to the manual configurations required by Circos.

Furthermore, VirusPlot provides integration-specific features,

such as the strudel plot and hotspot analysis, which are not

available in these general-purpose tools. Additionally, the web-

based accessibility of VirusPlot eliminates the need for local

installations, making it a more user-friendly and efficient tool for

analyzing viral integration data.

Future updates to virusPlot aim to expand its capabilities by

including support for additional genomic data types, such as RNA-

seq and long-read sequencing data. Planned features include new

visualization tools, such as circular diagrams and VCF diagrams,

which are currently under development. We also aim to integrate

more advanced statistical modules to accommodate complex

integration scenarios, such as those involving rearranged viral genomes.
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