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Predicting overall survival in
glioblastoma patients using
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of treatment efficacy and
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Introduction: Glioblastoma (GBM), the most aggressive primary brain tumor,

poses a significant challenge in predicting patient survival due to its

heterogeneity and resistance to treatment. Accurate survival prediction is

essential for optimizing treatment strategies and improving clinical outcomes.

Methods: This study utilized metadata from 135 GBM patients, including

demographic, clinical, and molecular variables such as age, Karnofsky

Performance Status (KPS), MGMT promoter methylation, and EGFR

amplification. Six machine learning models—XGBoost, Random Forests,

Support Vector Machines, Artificial Neural Networks, Extra Trees Regressor,

and K- Nearest Neighbors—were employed to classify patients into predefined

survival categories. Data preprocessing included label encoding for categorical

variables and MinMax scaling for numerical features. Model performance was

assessed using ROC-AUC and accuracy metrics, with hyperparameters

optimized through grid search.

Results: XGBoost demonstrated the highest predictive accuracy, achieving a

mean ROC-AUC of 0.90 and an accuracy of 0.78. Ensemble models

outperformed simpler classifiers, emphasizing the predictive value of metadata.

The models identified key prognostic markers, including MGMT promoter

methylation and KPS, as significant contributors to survival prediction.
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Conclusions: The application of machine learning to GBM metadata offers a

robust approach to predicting patient survival. The study highlights the potential

of ML models to enhance clinical decision-making and contribute to

personalized treatment strategies, with a focus on accuracy, reliability,

and interpretability.
KEYWORDS

machine learning, prognostic biomarkers, explainable AI, survival prediction, clinical
decision support, personalized medicine, predictive modeling
1 Introduction

Glioblastoma (GBM) remains the most aggressive and fatal

primary brain tumor in adults, with a median survival of just 15

months despite advancements in surgical, radiotherapeutic, and

chemotherapeutic interventions. This stark prognosis is driven by

GBM’s inherent heterogeneity and resistance to treatment, making

precise prognostic assessments critical yet elusive (1). Traditional

methods often fail to fully capture the intricate biological and

clinical interplay that shapes patient outcomes, paving the way for

innovative computational approaches to address this gap (2).

Machine learning (ML) has introduced a transformative

perspective in predicting GBM survival by leveraging

multidimensional data. Recent advancements in ML enable the

integration of diverse inputs, such as genetic markers, epigenetic

profiles, and clinical variables, into predictive models (3). These

systems have moved beyond conventional tools, offering

individualized survival estimates that reflect the complexity of

GBM biology. Multimodal approaches have proven especially

impactful, synthesizing molecular data with imaging and clinical

parameters to deliver nuanced, patient-specific insights (4).

Radiomics, a rapidly evolving field, has further enhanced

survival prediction by unlocking the potential of standard

imaging techniques. Through the extraction of high-dimensional

features fromMRI scans, radiomics reveals patterns linked to tumor

progression and microenvironment characteristics (5). When

combined with deep learning, these features have become

powerful prognostic indicators, offering an unprecedented level of

precision and interpretability. Such approaches are not only

predictive but also uncover new biological connections, linking

imaging characteristics to molecular and clinical outcomes (6).

In parallel, machine learning models have demonstrated the

ability to address challenges related to data variability and

interpretability. By leveraging advanced algorithms, these models

can effectively identify key survival factors and achieve robust

predictive accuracy. This approach has facilitated the

identification of critical variables, offering actionable insights to

support the development of tailored treatment strategies (7).

Despite these advances, challenges remain, including data

imbalance and the need for broader validation across diverse
02
cohorts. Innovative solutions, such as data augmentation and

transfer learning, are actively addressing these barriers, pushing

the boundaries of what ML can achieve in clinical settings (8).

This study builds on these novel developments, harnessing

advanced ML methods to create predictive models that

incorporate diverse data modalities. By addressing existing

limitations and enhancing interpretability, this work aims to

improve survival predictions and contribute to a more

personalized approach to GBM management.
2 Background

GBM is a highly aggressive brain tumor with poor outcomes,

presenting unique challenges for accurate prognosis and treatment

planning. Traditional approaches often struggle to account for the

complex biological and clinical variability inherent to GBM,

necessitating advanced methodologies to improve survival

predictions (9). ML has emerged as a promising tool to address

these gaps, leveraging diverse datasets to provide more personalized

and precise prognostic insights.
2.1 Advances in machine learning for GBM
prognosis

The use of radiomics, a field focused on extracting detailed

imaging features, has significantly enhanced the prognostic

capabilities of ML. By analyzing high-dimensional data from MRI

scans, radiomics enables models to detect subtle patterns related to

tumor behavior and patient outcomes (10). For example, ML

models incorporating imaging-derived metrics, such as texture

and shape features, have demonstrated considerable accuracy in

predicting survival times. These approaches are especially valuable

for their non-invasive nature and ability to complement existing

clinical evaluations (11).

Beyond imaging, molecular profiling has emerged as a critical

component in GBM prognosis. Genomic and transcriptomic data

have proven essential for identifying key survival markers, such as

MGMT promoter methylation and IDH mutation status. The
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integration of molecular data into ML frameworks has facilitated

more nuanced stratifications of patient outcomes, offering insights

that align closely with tumor heterogeneity (12). Multi-omics

approaches, which combine molecular, proteomic, and clinical

information, further enhance predictive accuracy by capturing a

holistic view of the disease (13).

Multimodal frameworks that combine radiomic, molecular, and

clinical data have demonstrated exceptional potential for survival

prediction. Ensemble learning algorithms, such as gradient boosting

and random forests, excel in synthesizing disparate data types to

uncover predictive patterns. These models are particularly effective

in handling data variability and prioritizing key survival factors,

making them reliable tools for GBM prognosis (14).
2.2 Addressing challenges in ML
applications

Despite the advancements, several obstacles remain in applying

ML to GBM prognosis. One of the most pressing issues is class

imbalance , where long- term surv iva l ca tegor ies are

underrepresented in datasets (15). Techniques such as Synthetic

Minority Oversampling (SMOTE) have been employed to address

this imbalance, enhancing model robustness and improving

predictions for minority classes. Additionally, the interpretability

of complex ML models poses a challenge for clinical adoption (16).

Emerging tools like SHapley Additive exPlanations (SHAP) and

Local Interpretable Model-agnostic Explanations (LIME) are

bridging this gap by elucidating the contributions of individual

features to model predictions, fostering greater trust and usability in

clinical contexts (17, 18).
2.3 Relevance of current study

This study aims to build on these advancements by integrating

molecular, and clinical data into an advanced ML framework to

improve GBM survival predictions. By addressing challenges such

as data imbalance and interpretability, this research seeks to develop

robust, transparent models that are both accurate and clinically

applicable. The results aim to contribute to more personalized

approaches in GBM management, advancing the integration of

ML into routine oncology practice.
3 Data description

3.1 Data Collection and Filtering

The dataset for this study began with 17 columns,

encompassing various clinical, demographic, molecular, and

treatment-related variables. To refine the dataset, we focused on

patients who underwent surgical resection and had either
Frontiers in Oncology 03
radiotherapy or chemotherapy as part of their treatment. After

applying these inclusion criteria, the final cohort consisted of 135

patients. This carefully filtered dataset provided a robust foundation

for analyzing survival outcomes and training machine

learning models.
3.2 Dataset overview

The dataset includes features essential for understanding

glioblastoma prognosis, grouped into the following categories:

1. Demographic Features:
Age: The patient ’s age at diagnosis, recorded as a

continuous variable.

Gender: A categorical variable (male/female), converted into

numerical format for analysis.
2. Clinical Features:
Karnofsky Performance Status (KPS): A score that evaluates

the patient’s physical ability and functional independence.

Overall Survival (OS): The primary outcome variable,

categorized into five survival classes:
• 0–2 months

• 3–8 months

• 9–18 months

• 19–24 months

• More than 24 months

3. Treatment Details:
Radiotherapy: Indicates whether the patient received

radiotherapy. Chemotherapy: Indicates whether the

patient underwent chemotherapy.

Surgical Resection: Indicates whether the patient had a surgical

procedure to remove the tumor.
4. Molecular Biomarkers:
MGMT Promoter Methylation: A binary marker associated

with the tumor’s sensitivity to treatment.

EGFR Amplification: A binary marker linked to tumor growth

and progression.
Features for Machine Learning Models

From the dataset, a selection of key features was made to train

machine learning models effectively:
• Demographic Data: Age and gender.

• Clinical Features: KPS score and categorized overall survival

as the target variable.
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• Treatment Information: Whether the patient received

radiotherapy, chemotherapy, or surgical resection.

• Molecular Markers: MGMT promoter methylation and

EGFR amplification.
This selection captures a holistic view of each patient, ensuring

that the models are equipped to analyze the multifaceted factors

influencing glioblastoma outcomes.
3.3 Data preparation

To prepare the data for machine learning, several preprocessing

steps were implemented:
• Categorical Encoding: Variables like gender and molecular

biomarkers were converted into numerical values for

compatibility with ML algorithms.

• Normalization: Continuous variables such as age, KPS

score, and imaging features were normalized to ensure all

inputs had comparable scales.

• Classification of Survival: The overall survival variable was

divided into discrete categories, enabling classification-

based machine learning methods.
3.4 Final dataset characteristics

The final dataset comprised 135 patients with selected features

spanning demographic, clinical, molecular, and imaging data. This

dataset provided the basis for developing machine learning models

aimed at accurately predicting survival outcomes and aiding in

personalized treatment strategies for glioblastoma patients.
4 Data preprocessing

In the dataset derived from the clinical study on glioblastoma, an

essential preprocessing step involved converting all textual or

categorical variables into numeric formats. This transformation was

accomplished using label encoding, a technique where each unique

text value in a column is assigned a numerical label. This process

included encoding variables that describe medical interventions, like

types of surgery or chemotherapy, as well as genetic features such as

MGMT promoter methylation status and EGFR amplification.

Additionally, the numerical variables in the dataset, specifically

age and Karnofsky Performance Status (KPS), underwent scaling

using the MinMax method. This method transforms the data into a

specified range, for us 0 to 1, by subtracting the minimum value of

each feature and then dividing by the range of the feature. The

formula for MinMax scaling is:

Scaled Value =
Original Value −Minimum Value
Maximum Value −Minimum Value
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Scaling is an important method in data preprocessing because it

brings uniformity to different features, ensuring that no feature

dominates others in magnitude, which can affect the performance of

many machine learning models. Second, it improves the

convergence speed of the algorithm because most machine

learning algorithms perform better when the numerical input

values vary similarly.

By normalizing the data across the entire dataset through these

methods, the processed data becomes more suitable for predictive

modeling, enhancing the efficiency and accuracy of the machine

learning models developed from this dataset. These steps ensure

that the data analysis is robust, providing reliable insights into the

treatment outcomes and potential prognostic factors in

glioblastoma patients.
4.1 Data preparation and survival analysis
framework

In the clinical dataset focusing on glioblastoma, the primary

outcome of interest is OS, which quantifies the duration a patient

lives following their diagnosis. This target variable is pivotal for

assessing the efficacy of various treatments and for making

predictions about patient prognosis.

The dataset categorizes Overall Survival into five distinct classes

based on the number of months a patient survives post-diagnosis,

starting with the 0-2 months range, followed by 3-8 months, then 9-

18 months, 19-24 months, and finally, more than 24 months.

These classes enable the machine learning models to handle

survival data as a categorical variable, which simplifies the modeling

of survival distributions across different patient groups.

The training set of the dataset reveals a distribution of patients

across the survival classes, with 7 patients in Class 0 (0-2 months),

37 patients in Class 1 (3-8 months), 46 patients in Class 2 (9-18

months), and 2 patients each in Class 3 (19-24 months) and Class 4

(more than 24 months).

This distribution helps in understanding the model’s learning

capacity across a varied range of survival outcomes, although it

highlights an imbalance in the dataset with fewer representatives in

the longer survival categories.

The test set, used to evaluate the performance of the predictive

model, showing 5 patients in Class 0 (0-2 months), 16 patients in

Class 1 (3-8 months), 16 patients in Class 2 (9-18 months), 2

patients each in Class 3 (19-24 months) and Class 4 (more than

24 months).

This distribution indicates how the model will be tested against

unseen data, offering insights into its generalized performance

across different survival times.
4.2 Models training

In the study focusing on glioblastoma patient survival, six types

of machine learning models were employed to predict outcomes.

These models include Artificial Neural Networks (ANN), Extra
frontiersin.org
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Trees Regressor (ETR), K-Nearest Neighbors (KNN), Random

Forest (RF), Support Vector Machines (SVM), and XGBoost

Regressor (XGBR). Each model brings a distinct approach to

handling the data and making predictions, leveraging their unique

strengths to potentially improve the accuracy of survival

time predictions.

All models underwent a fine-tuning process to optimize their

parameters, ensuring the best possible performance (Table 1). This

fine-tuning was performed using grid search, a systematic approach

to hyperparameter optimization. Grid search iteratively evaluates

combinations of hyperparameter values to identify the

configuration that delivers the best performance for each model.

The process ensures that the models are well-calibrated to the

dataset, avoiding underfitting or overfitting.
5 Results

We evaluated the performance of six machine learning

classifiers by analyzing their predictive accuracy and ROC-AUC

on the test set. All reported performance metrics, including ROC-

AUC and accuracy, were derived from the test set, ensuring the

evaluation reflects the models’ ability to generalize to unseen data.

The models were trained on the training set, and hyperparameters

were optimized using grid search to avoid overfitting (Table 2).

In this study, we evaluated the robustness and efficiency of six

machine learning classifiers by analyzing their ROC AUC scores

across multiple iterations, possibly obtained through cross-

validation or bootstrap resampling (Figure 1). This approach

helps to gauge the performance stability and effectiveness of each

classifier in predictive tasks.
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Figure 2 displays the ROC curves for XGBoost for predicting

survival across all five classes (0–2 months, 3–8 months, 9–18

months, 19–24 months, and more than 24 months) using one of the

evaluated models. The ROC curve illustrates the trade-off between

the true positive rate (sensitivity) and the false positive rate for each

survival class.

The best results were achieved using an XGBoost algorithm,

which attained an average ROC-AUC of 0.90 with a standard

deviation of 0.07 and an accuracy of 0.78 on the test data. The

next best outcomes were observed with an ET classifier, which

demonstrated an ROC-AUC mean of 0.82, a standard deviation of

0.19, and achieved an accuracy of 0.78. Following the XGBoost and

Ensemble Tree classifiers, the Support Vector Machine (SVM)

algorithm also showed promising results with a mean ROC-AUC

of 0.84 and a low standard deviation of 0.06, although its accuracy

on the test data was slightly lower at 0.63. The RF classifier, with a

mean ROC-AUC of 0.80 and a standard deviation of 0.12, achieved

an accuracy of 0.66, demonstrating robustness albeit with a bit more

variability in its performance compared to SVM.

The ANN model recorded a mean ROC-AUC of 0.73 and the

highest standard deviation of 0.15 among the classifiers, alongside

an accuracy of 0.68 on the test data, indicating less consistency in its

predictive ability. Lastly, the KNN algorithm, while it had a decent

mean ROC-AUC of 0.79 and a standard deviation of 0.14, showed

the lowest test accuracy of 0.54, suggesting it might not be as

effective in this particular setting compared to the other models

(Figures 3–5).

These findings highlight the efficacy of XGB and ET classifiers

in handling complex predictive tasks, with XGB slightly

outperforming others in terms of stability and overall performance.

To further assess model performance, we analyzed the

confusion matrices for both the training and test sets (Figures 6,

7). These matrices provide a detailed breakdown of how well each

classifier distinguishes between the five survival classes (0–2

months, 3–8 months, 9–18 months, 19–24 months, and

>24 months).
TABLE 1 Presents the optimized hyperparameter settings for each of the
six machine learning models used in this study.

Classifier Hyperparameters

ANN Hidden Layers:
- First layer: 32 neurons, ReLU activation
- Second layer: 32 neurons, ReLU activation Output Layer: 5

neurons, Softmax activation Optimizer: Adam
Loss Function: Categorical Crossentropy Epochs: 50
Batch Size: 16

SVM Kernel: ‘poly’

XGB Objective: binary:logistic Column Sample By Tree: 0.5 Learning
Rate: 0.1
Max Depth: 100
Alpha: 1
Number of Estimators: 50

RF n_estimators: 8

ETR n_estimators: 5

KNN n_neighbors: 30
The ANN model, for example, consists of two hidden layers with ReLU activation functions
and was trained using the Adam optimizer and categorical crossentropy loss. The XGBoost
model was fine-tuned with parameters such as a maximum tree depth of 100 and a learning
rate of 0.1, while simpler models like KNN and Random Forest used optimized settings for the
number of neighbors and estimators, respectively. These fine-tuned configurations ensure that
each model performs optimally when predicting glioblastoma patient survival outcomes.
TABLE 2 Provides a boxplot comparison of the Receiver Operating
Characteristic Area Under the Curve (ROC-AUC) performance for all
classifiers used in the study.

Classifier ROC - AUC Accuracy

ANN Mean: 0.73
Standard deviation: 0.15

0.68

SVM Mean: 0.84
Standard deviation: 0.06

0.63

XGB Mean: 0.90
Standard deviation: 0.07

0.78

RF Mean: 0.80
Standard deviation: 0.12

0.66

ET Mean: 0.82
Standard deviation: 0.19

0.78

KNN Mean: 0.79
Standard deviation: 0.14

0.54
ROC-AUC is a key metric for evaluating the predictive accuracy of machine learning models,
particularly for classification tasks involving imbalanced datasets.
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To understand the decision-making processes and feature

prioritization of the evaluated models, we applied SHAP analysis

to the KNN, XGBoost, and Extra Trees models. The SHAP

summary plots (Figures 8–10) provide a comprehensive

evaluation of the models’ interpretability, highlighting their

respective strengths and limitations.
Frontiers in Oncology 06
The KNN model (Figure 8) demonstrated limited feature

differentiation, reflecting its inherent weakness in handling high-

dimensional and imbalanced data. While KPS emerged as the most

influential feature, the lack of distinct separation among other

variables indicates that KNN struggled to assign proper weight to

important factors such as MGMT promoter methylation and
FIGURE 1

The boxplot highlights the variation in ROC-AUC scores for each classifier. XGB demonstrates the highest median ROC-AUC score with minimal
variability, followed by ET and SVM. In contrast, KNN exhibits higher variability and lower performance compared to other classifiers, suggesting
sensitivity to the dataset’s features.
FIGURE 2

The figure highlights the model’s performance in distinguishing between survival classes. The area under the curve (AUC) values for each class are
annotated in the legend. Class 0 achieves perfect discrimination with an AUC of 1.00, while intermediate survival classes show moderate
performance (e.g., Class 2 with an AUC of 0.89).
frontiersin.org
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radiotherapy. This deficiency is consistent with KNN’s frequent

misclassifications and its poor generalization to the test set. Given

its reliance on local data density and sensitivity to sparse

distributions, KNN is not well-suited for complex clinical datasets

like those involving glioblastoma patients. As such, we recommend
Frontiers in Oncology 07
that simpler models like KNN be replaced by ensemble-based

methods for tasks involving high-dimensional and heterogeneous

medical data.

In contrast, the XGBoost model (Figure 9) exhibited strong and

consistent feature prioritization, which explains its superior
FIGURE 3

The RF ROC curves display class-wise prediction accuracy, with Class 0 achieving the highest AUC of 1.00. Intermediate classes (e.g., Class 1 and
Class 2) demonstrate moderate predictive performance, with AUC values ranging between 0.81 and 0.82. The lower AUC for Class 3 (0.69) and Class
4 (0.71) indicates difficulty in distinguishing between these classes.
FIGURE 4

The KNN ROC curves indicate variability in the model’s performance across classes. Class 0 achieves a high AUC of 0.87, reflecting strong predictive
capability for short-term survival. However, other classes, such as Class 3 (AUC 0.79) and Class 4 (AUC 0.94), show modest improvements over
previous models.
frontiersin.org
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FIGURE 5

The figure shows that XGB and ET achieve the highest accuracy, with values close to 0.8, indicating robust predictive capabilities. In contrast, KNN
records the lowest accuracy at approximately 0.5, highlighting its limitations for this dataset. The figure underscores the overall reliability of tree-
based ensemble models compared to simpler classifiers such as KNN.
FIGURE 6

Training Confusion Matrices for Six Machine Learning Models. This figure presents the confusion matrices for six machine learning models (KNN,
Random Forest (RF), Support Vector Machine (SVM), XGBoost, Extra Trees (ET), and Artificial Neural Networks (ANN)) trained on glioblastoma patient
survival classification.
Frontiers in Oncology frontiersin.org08
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predictive performance. KPS was identified as the most critical factor,

followed closely by radiotherapy, age, and MGMT promoter

methylation. These results align with established clinical knowledge,

as higher KPS scores and positive MGMT promoter methylation are

associated with improved survival outcomes in glioblastoma patients.

The clear separation of SHAP values highlights XGBoost’s

capacity to integrate diverse clinical and molecular data,

effectively capturing non-linear interactions between features.

This ability to discern complex patterns and prioritize clinically

meaningful variables is a key factor behind its high accuracy and

generalization capability.

The Extra Trees model (Figure 10) performed comparably to

XGBoost, further validating the strength of ensemble-based models
Frontiers in Oncology 09
in this context. KPS once again emerged as the dominant feature,

underscoring its central role in survival prediction. The model

effectively leveraged other important variables, including age,

radiotherapy, and MGMT promoter methylation, demonstrating

its ability to capture both treatment-related and biological factors.

The differentiation among SHAP values shows that the Extra Trees

model can robustly identify key contributors to patient outcomes,

even in the presence of class imbalance and data heterogeneity. This

adaptability makes it a reliable tool for clinical decision support,

particularly when high interpretability and predictive performance

are required.

Overall, the SHAP analysis underscores the superiority of

ensemble-based methods like XGBoost and Extra Trees over
FIGURE 7

Test Set Confusion Matrices for Six Machine Learning Models. This figure displays the confusion matrices for six machine learning models (KNN,
Random Forest (RF), Support Vector Machine (SVM), XGBoost, Extra Trees (ET), and Artificial Neural Networks (ANN)) when tested on unseen data for
glioblastoma survival prediction. The matrices compare the true survival classes (y-axis) against the predicted labels (x-axis) for five
survival categories.
FIGURE 8

SHAP summary plot for the KNN model. The limited differentiation
of SHAP values across features highlights KNN’s weak ability to
prioritize key variables, contributing to its poor generalization and
frequent misclassifications.
FIGURE 9

SHAP summary plot for the XGBoost model. KPS is the most
influential feature, followed by radiotherapy, age, and MGMT
promoter methylation. The distinct separation of SHAP values
demonstrates XGBoost’s capacity to effectively prioritize important
prognostic factors.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1539845
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Onciul et al. 10.3389/fonc.2025.1539845
simpler models such as KNN. By effectively prioritizing clinically

significant features and accommodating complex interactions, these

models offer both high accuracy and interpretability—critical

components for integrating machine learning into personalized

glioblastoma treatment strategies. Future enhancements, such as

incorporating longitudinal patient data or multi-omics integration,

could further improve their predictive capabilities, ensuring even

greater clinical utility.
6 Discussions

This study delves into the application of advanced ML

techniques to predict OS in GBM patients, offering a

comprehensive integration of clinical, molecular, and treatment-

related data. Our findings illuminate the strengths of ML models in

capturing the complexity of GBM prognosis while identifying key

challenges and opportunities for refinement.
6.1 Model performance and insights

XGBoost emerged as the most robust model in our analysis,

achieving a mean ROC-AUC of 0.90 and an accuracy of 0.73. Its

ability to manage heterogeneous and non-linear data interactions

aligns with its established success in oncology applications.

Gradient boosting techniques, like XGBoost, have gained

recognition for their versatility in handling high-dimensional

datasets. For instance, studies integrating clinical, transcriptomic,

and radiomic data have demonstrated XGBoost’s capacity to

identify nuanced survival patterns, underscoring its adaptability

to complex datasets.

Other models, such as SVM and ensemble approaches like ET

and RF, also demonstrated strong predictive power, with SVM

achieving a mean ROC-AUC of 0.84 and ET at 0.82. SVM’s ability

to perform well on smaller datasets is particularly relevant given the

limited cohort sizes often encountered in GBM research. Ensemble

methods excel in feature prioritization, providing interpretable

insights into key prognostic variables such as MGMT promoter
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methylation and KPS. These findings echo recent studies that

highlight ensemble models as vital tools for identifying clinically

actionable predictors in oncology.

Conversely, ANN and KNN showed limited predictive capacity.

While ANNs have shown promise in larger datasets due to their

ability to recognize intricate patterns, their performance can

falter with smaller, imbalanced datasets like ours. KNN’s

relatively poor performance, with an accuracy of 0.54, suggests it

may not be suitable for high-dimensional datasets with sparse or

unevenly distributed features. These results align with existing

literature emphasizing the limitations of these approaches in

specific contexts.
6.2 Innovations and methodological
contributions

A strength of this study lies in the rigorous preprocessing

methods employed, including label encoding and MinMax

scaling, which ensured uniformity across variables. By

categorizing OS into distinct survival classes, the study enabled a

more granular stratification of patients. This approach mirrors

recent advancements in predictive oncology, where discrete

outcome modeling enhances the precision of survival estimates.

The fine-tuning of hyperparameters across models further

underscores the methodological rigor. For instance, optimizing

parameters such as learning rates, tree depth, and kernel selection

significantly improved model accuracy. These strategies are

increasingly regarded as essential in developing reliable

predictive frameworks, as evidenced in contemporary GBM

prognosis research.
6.3 Challenges and limitations

Despite its strengths, the study faced challenges that are

emblematic of GBM research. The dataset’s class imbalance,

particularly among long-term survival categories, limited the

models’ ability to accurately predict outcomes for these

underrepresented groups. Addressing this imbalance requires

innovative solutions, such as synthetic data generation using

techniques like GANs or oversampling methods like SMOTE.

Recent studies utilizing synthetic data have shown promise in

enriching underrepresented classes while preserving the

underlying data distribution (19–21).

Another hurdle is the interpretability of complex ML models.

While algorithms like XGBoost deliver high accuracy, their “black-

box” nature limits transparency, which can impede clinical

adoption. Emerging tools such as SHAP and LIME offer potential

solutions by elucidating feature contributions, enabling clinicians to

trust and act upon model predictions. Incorporating these

interpretability frameworks into future iterations of our models

would bridge the gap between accuracy and usability.

Furthermore, the single-cohort nature of the dataset

necessitates external validation to ensure generalizability. Multi-
FIGURE 10

SHAP summary plot for the Extra Trees model. KPS is the dominant
feature, followed by age, radiotherapy, and MGMT promoter
methylation. The Extra Trees model demonstrates strong feature
differentiation, contributing to its robust predictive performance in
glioblastoma survival prediction.
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institutional collaborations and federated learning approaches,

which allow for model training across decentralized datasets while

preserving patient privacy, represent a promising avenue for

addressing this limitation. Such methodologies have shown great

potential in recent multi-center oncology studies.
6.4 Clinical implications and future
directions

The findings of this study highlight the transformative potential

of ML in GBM prognosis. Accurate survival predictions have

profound implications for patient care, from guiding

individualized treatment strategies to identifying candidates for

experimental therapies and optimizing resource allocation.

Models like XGBoost not only deliver precise predictions but also

underscore the prognostic value of variables such as MGMT

promoter methylation, age, and KPS, reinforcing their relevance

in clinical decision-making.

Future research should explore integrating longitudinal data to

enable dynamic survival predictions that evolve alongside patient

trajectories. Incorporating multi-omics data, such as proteomic and

epigenomic profiles, into ML pipelines could further refine

prognostic accuracy. Hybrid models that balance the

interpretability of simpler algorithms with the predictive power of

advanced techniques like gradient boosting could offer the best of

both worlds, ensuring both accuracy and clinical usability.
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