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Introduction: Pancreatic cancer (PC) is a lethal disease developing from either

exocrine or endocrine cells. Efforts to assist early diagnosis focus on liquid biopsy

methods, and especially on the detection of Extracellular Vesicles (EVs) secreted

from cancer cells in their microenvironment and accumulated in systemic

circulation. Multiple studies explore how EVs size, surface biomarkers or

content can determine their unique role and function in the recipient cell’s

gene expression, metabolism and behavior affecting cancer development. This

study aimed to develop a machine learning-driven (ML) pipeline utilizing clinical

variables and EV-based features to predict the presence of pancreatic tumors of

different nature (exocrine/endocrine) in patients’ plasma compared to patients

with benign lesions or age-matched non-oncological patients.

Methods: All available plasma samples (N=126) and variables were collected prior

to surgery. EVs were detected and characterized by flow cytometry-

immunostaining. Data including size and a unique set of biomarkers (CD45,

CD63 and EphA2) were combined with hematological/biochemical data and

processed under two use cases, each formulated as a 3-class classification

problem for patient risk stratification. The first use case aimed at classifying

patients as with benign lesions or exocrine/endocrine neoplasms. The second

use case aimed to distinguish patients with exocrine/endocrine neoplasms from

non-oncological patients. Various ML methods were applied, including Logistic

Regression, Random Forest, Support Vector Machines, and Extreme Gradient

Boosting. Evaluation metrics, as area under the receiver operating characteristic

curve (AUC-ROC), were computed, and Shapley values were utilized to determine

features with the greatest impact on the discrimination of outcome groups.

Results: Analyses identified hematological and biochemical features, among

significant predictors. Models demonstrated substantial accuracy and AUC-

ROC values based on plasma EVs subpopulations, which scored over 0.90 in
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accuracy of the Random Forest and XGBoost algorithms, presenting 0.96 +/-

0.03 accuracy in the first use case and 0.93 +/- 0.04 in the second.

Discussion: By leveraging advanced analytical ML-driven approaches and

integrating diverse data types, this study achieved significant accuracy, assisting

patient’s risk estimation and supporting the feasibility for early detection of

pancreatic cancer. Going beyond currently used biomarkers such as CEA, or

CA19.9, EV-based features represent an added value offering increased

diagnostic capacity.
KEYWORDS

pancreatic cancer, neuroendocrine neoplasms, extracellular vesicles, liquid biopsy, flow
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1 Introduction

Pancreatic cancer (PC) is a lethal disease manifesting as an

extremely aggressive neoplasia that develops from either exocrine or

endocrine cell populations within the pancreas. The most common

form of PC is pancreatic ductal adenocarcinoma (PDAC),

accounting for over 90% of cases. The second most common

form, pancreatic neuroendocrine neoplasms (pNENs), comprises

less than 5% of cases (1). Differentiating between PDAC and pNENs

can be challenging especially in atypical patterns, requiring specific

imaging techniques and expertise (2). Subtle clinical symptoms and

lack of sufficiently accurate screening tests result in delayed

diagnosis at the advanced stages of the disease, deterring the

option of surgical resection or successful treatment, leading to

very poor survival outcomes. Current predictions support that by

2030 PC will be the most fatal type of cancer in the gastrointestinal

tract and the second leading cause of cancer-related deaths (3, 4). At

the same time, the prevalence of incidental pancreatic cystic

neoplasms (pseudocyst, inflammatory cyst, mucinous neoplasm,

intraductal papillary mucinous neoplasm) as well as heterogeneous

and often unpredictable entities such as pancreatic neuroendocrine

neoplasms have increased dramatically during the last decades due

to advancements in cross-sectional imaging (5).

While significant research is dedicated to liquid biopsies owing

to their potential advantages for cancer diagnosis, prediction, and

surveillance, there is an increasing need for detection, validation,

assay optimization, and standardization of PC-specific biomarkers.

Microparticles as constituents of liquid biopsy, were initially

adopted as a term for describing the small membrane-bound

vesicles released from cells with a typical diameter ranging from

100nm to 1mm. Later, the term Extracellular vesicles (EVs) came

into play which encompasses a broader range of vesicles including

exosomes (30-150nm), microvesicles (150-1mm), apoptotic bodies

(50–5000 nm), migrasomes (500–3000 nm) and large oncosomes

(1000–10 000 nm) (6–8). This shift in terminology reflects an

evolving understanding of their complexity and diverse roles in
02
cell communication as well as an emerging need for standardization

in their study and application (9). EVs have gained increasing

interest because of their primary roles in the development and

progression of cancer and in modulating tumor growth and

metastasis. These nanosized membrane-bound vesicles, which are

secreted by cells (cellular or subcellular origin), carry a unique and

diverse array of proteins, DNA, miRNAs, and lipids, either on their

surface or within their lumen and they are found elevated in cancer

patients’ plasma (10, 11). Emphasis is currently given on how their

size, cell of origin, surface biomarkers, or content can determine

their unique role and function, with a great impact on the recipient

cell’s gene expression, metabolism, and behavior (12). Recent

studies have underscored the ability of EVs to modulate the

tumor microenvironment, contributing to cancer progression

through specific molecular signaling that promotes cell migration,

enhances tumor aggressiveness or initiates the formation of a

metastatic niche (13, 14).

Up to date, many approaches have been adopted to obtain

valuable information on the physical properties and molecular

profile of EVs and analyze them on a single-particle level. One

approach is by immunostaining and flow cytometry for surface

marker confirmation. Common EVs biomarkers include

tetraspanins CD9, CD63, and CD81, while CD45 is frequently used

as a marker to exclude EVs derived from the hematopoietic system.

Furthermore, combinations of other biomarker profiles such as CK-

positive, Vim-positive, DAPI-negative, and CD45-negative/CD31-

negative in oncosome liquid-biopsy have been comprehensively

described through immunofluorescence protocols, correlating their

rare-event frequencies to metastatic colorectal cancer patient

outcomes (15). Although, several biomarkers have been described

enriched in PC-derived EVs, including Ephrins, Glypican-1 (GPC1)

and Mucins (MUC1, MUC4, MUC5AC), there is no consensus on a

universal lesion-derived specific biomarker (16). Ephrin type-A

receptor 2 (EphA2) was identified in 1990, and various in vitro

studies have described its role as a powerful oncoprotein that is highly

overexpressed in cancer cells and is sufficient to confer malignant
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potential on non-transformed epithelial cells in the surrounding

stroma or vasculature. It plays an important role in cell-cell

communication in endocrine pancreas, while its overexpression

correlates with poor prognosis in patients with PC (17, 18). Recent

evidence has shown that EphA2 expressed on the surface of EVs from

plasma, can be used to distinguish PDAC patients from healthy

subjects (19). Moreover, it was related to the development of

chemoresistance, since gemcitabine-sensitive cells become resistant

as a result of EphA2 transfer through exosomes from gemcitabine-

resistant PC cells (20).

The limitations of traditional diagnostic tools, which often rely on

imaging techniques and biomarker detection with limited sensitivity

and specificity for early-stage disease, make it difficult to diagnose

pancreatic cancer at a very early-stage. These tools struggle to identify

subtle molecular signatures or distinguish PC from benign lesions. A

potential technique to improve the sensitivity and specificity of PC

diagnosis is the targeted analysis of cancer-related EVs. To enhance

early diagnosis, EV-based characteristics, such as protein expression,

have been used in several studies, occasionally in conjunction with

conventional tumor markers or clinical aspects to identify potential

biomarkers. While machine learning (ML) methods have been widely

adopted for the diagnosis of various other types of cancer, there is

notable lack of studies applying these techniques specifically to EV-

associated proteins for PC diagnosis. However, advanced statistical

methods have been employed to classify PC patients from individuals

with benign conditions and healthy controls, with high accuracy

(21–24).

In the modern era of Personalized Medicine, the implementation

of artificial intelligence (AI) models is slowly growing into

standardized practices for tumor detection and classification, which

could improve early diagnosis, prognosis, overall survival, and

response to therapy predictions. The present study aimed to

combine EV features derived from FCM-immunostaining as liquid

biopsy method, with novel statistical approaches to distinguish

patients with exocrine tumors or endocrine neoplasms from

patients with benign lesions or non-oncological patients. The

current approach whose innovation lies in its sensitivity and

accuracy all the way from features collection to ML algorithms,

paves the way towards the adoption of minimally invasive systems

with enhanced efficiency in clinical practice.
2 Materials and methods

2.1 Patient enrollment

Study cohort included 126 plasma samples from patients with

exocrine tumors (pancreatic ductal adenocarcinoma n=72, endocrine

neoplasms (neuroendocrine tumors and neuroendocrine

carcinomas) n=12, benign lesions (Serous Cystadenoma,

Pseudocysts, PANIN, IPMN, Mucinous Cystic Pancreatic

Neoplasms) n=16, as well as age-matched non-oncological patients

n=26. For the purpose of the study, 2ml of blood was collected in

EDTA coated tubes (BD vacutainers) from each patient prior to

surgical intervention after a typical fasting period of at least 12 h.
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2.2 Clinical data collection

Demographic and hematological data were obtained from patients’

clinical records. All patients or their legal representatives provided

written informed consent for review of their data for research purposes.

Part of the plasma samples analyzed were from the “Pancreas”

REDCap biobank (blood and tissue samples) approved by the Ethics

and Deontology Committees of Aretaieion Hospital (237/10-7-2020)

and of Hippokrateio General Hospital of Athens (34/14-7-2020). The

current study was conducted in accordance with the Declaration of

Helsinki and approved by the Ethics and Deontology Committee of

Aretaieion Hospital (488/20-02-2023).
2.3 Extracellular vesicles – based features
collection

Collected plasma was differentially centrifuged: samples were

spun down consecutively at 400g-1200g-10,000g to remove any

remaining cells or cell debris. The supernatant was aliquoted and

stored frozen at -80°C until use for downstream analysis. EVs were

detected and characterized by flow cytometry (BD FACSLyric™ Flow

Cytometry System). Centrifuged patients’ plasma (50ml) was thawed
and diluted to a final volume of 400ml 1× PBS filtered through a 0.02

mm syringe filter. The custom kit for the evaluation of EVs (BD

626267, 25) was combined according to manufacturer’s suggestion

with Trucount™ Tubes (BD Biosciences) for quantification, whereas

sizing was determined using the Rosetta Calibration Beads mix and

software (Exometry Inc., Amsterdam, Netherlands) which allow as

previously described, for correct report of EV diameter based on their

refractive index and the FCM configuration, (26). The following

membranous antibodies were used for specific staining: CD45

(PerCp-Cy5.5 Mouse Anti-Human CD45;BD564105), CD63 (PE

Mouse Anti-Human CD63 BD 556020), and EphA2 (BV421

Mouse Anti-HumanEphA2; BDOptiBuild 748144). The BD custom

Kit is based on an APC emitting lipophilic cationic dye that diffuses

through the plasma membranes, and Phalloidin FITC as a probe to

stain damaged particles. Analysis was performed on dye-positive/

phalloidin-negative events (intact EVs) focused on three size groups

of approximately: 2mm, 3mm and 5mm. Dye positive events were first

evaluated for CD45 to identify hematopoietic-derived EVs. Then

CD45-negative (CD45-) or CD45 positive (CD45+) events were gated

to define CD63 positive (CD63+) and/or EphA2-positive events

(EphA2+). The threshold was set according to manufacturer’s

instructions, and the flow rate was medium. A series of quality

controls was performed including buffer-only and singles-stained

controls which confirmed the absence of detectable events and thus

background interference.
2.4 Model establishment – problem
formulation

In the current study a flexible ML pipeline was implemented to

develop data-driven models for PC diagnosis, leveraging supervised
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learning analysis and histological groups as defined in our dataset. The

histological categories for the classification problem under study were

the (i) benign epithelial lesions, (ii) exocrine tumors and (iii) endocrine

neoplasms. Non-oncological patients were also included in the analysis.

To achieve study’s objective, all variables available prior to surgery

along with EV-based features extracted from FCM analysis, were

included in the models as potential predictors (Table 1).

Two different clinical use cases were defined based on the

lesion’s histopathology, each formulated as a 3-class classification

problem. Both use cases were applied to FCM data for identifying

potential predictors towards PC diagnosis according to the

histological groups defined. In the first use case, the classes

included patients with benign lesions, exocrine tumors and

endocrine neoplasms. In the second use case, the classes

comprised of non-oncological patients, patients with exocrine

tumors or endocrine neoplasms. The distribution of the classes

for the two use cases are presented in Tables 2, 3.
2.5 Machine learning analysis

2.5.1 Data pre-processing and handling of
missingness

Specific data preparation techniques were applied to obtain a

representation of the raw feature vectors that are better suited for

the estimators to be used in the cross-validation scheme proposed in

this study. The scikit-learn library (27) for ML in Python (28) was

used for building the proposed flexible and comprehensive pipeline.
Frontiers in Oncology 04
To create a complete dataset for additional analysis, features

(mostly patient’s clinical data) having over 30% missing values

were removed from the original dataset. For the imputation of the

remaining missing values within the dataset, the nonparametric k-

NN imputer was applied. The chosen k-value parameter was k=5.

The imputation was achieved using the most frequent value within

k neighbors for discrete features and mean/mode for continuous

variables. A distance function was used to compute how similar two

instances were. The default Euclidean distance function provided by

the k-NN imputer of the sklearn package was used (27). In addition,

the selection of k-value was based on feature similarity and the

selection process is known as parameter tuning, which is important

for higher accuracy. To apply the k-NN imputer, prior

normalization of the data was required to ensure that all features

were mapped to the same range as different scales of data can

generate biased replacements for the missing values (29, 30). For the

normalization part the scikit-learn’s MinMaxScaler was used, which

scales features to have values between zero and one (31).

2.5.2 Feature selection
Feature selection was conducted using the scikit-learn meta-

transformer, called SelectFromModel (32). SelectFromModel is a

meta-transformer that can be applied to any estimator that, after

fitting, gives significance to each feature using a callable function or

a particular attribute. In the present study, the RF algorithm was

employed for assigning weights in each feature to rank them

according to their relative importance. In tree-based models,

feature importance is typically computed based on how much

each feature contributes to reducing impurity (e.g., Gini impurity

or entropy) or decreasing the loss function. Specifically, in Random

Forest, a feature’s importance score is determined by the total

reduction in impurity across all trees in the forest. To identify the

most important predictors that contribute to risk prediction of PC

diagnosis, the ranking of feature importance scores along with the
TABLE 1 Description of the features from the FCM data files, including
the total number of features utilized in the current analysis for the
patients in each use case and the subsequent supervised
learning analysis.

Type Features

Demographics Sex, Age

Hematological White blood count (WBC), Red blood count (RBC),
Hemoglobin (HGb), Hematocrit (HCT), Mean Corpuscular
Volume (MCV), Mean Corpuscular Hemoglobin (MCH),
Mean corpuscular hemoglobin concentration (MCHC), Red
cell distribution width (RDW), Platelets, Mean Platelet Volume
(MPV), Nucleated red blood cells (NRBC), Platelet
Distribution Width (PDW)

Biochemical Glucose, Urea, Creatinine, Potassium, Sodium, Calcium,
Magnesium, Serum Glutamic-Oxaloacetic Transaminase
(SGOT), Serum Glutamic Pyruvic Transaminase (SGPT), LDH,
Alkaline phosphatase, Gamma-Glutamyl Transferase (gGT),
Amylase, Total Bilirubin, Direct Bilirubin, Total protein,
Albumin, High-sensitivity C-reactive protein (hsCRP),
Prothrombin Time, international normalized ratio (INR),
Activated partial thromboplastin time (APTT), Hepatitis B
surface antigen (HBsAg), Fibrinogen

Histology and
Lesion- based

non-oncological, benign, malignant exocrine tumors,
endocrine neoplasms

FCM data CD45 to exclude EVs origin from the hematopoietic system,
CD63, member of the tetraspanin family, highly enriched
within EV membranes, EPHA2 as a potential biomarker for
pancreatic cancer diagnosis as well as combinations of
those markers
TABLE 2 Distribution of the three classes of the first use case of the
FCM analysis.

Target
class

Histology type Number
of samples

Class 0 Patients with benign lesions 16

Class 1 Patients with
endocrine neoplasms

12

Class 2 Patients with exocrine tumors 72
TABLE 3 Distribution of the three classes of the second use case of the
FCM analysis.

Target
class

Histology type Number
of samples

Class 0 Non-oncological patients 26

Class 1 Patients with
endocrine neoplasms

12

Class 2 Patients with exocrine tumors 72
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computed elbow plots were analyzed across all available features of

the dataset (Supplementary Figures 1, 2 in Supplementary Material

A). Based on this knowledge, we selected the top 30 features that

had the highest importance scores, while the remaining ones

provide minimal additional information. Hence, the maximum

number of features to be selected by the estimator for subsequent

analysis was set to 30. Considering the large number of initial total

features derived from both FCM measurements and clinical data,

the rationale behind this selection was their association with disease

detection. In addition, the Recursive Feature Elimination (RFE)

method was also applied as an alternative way to test the feature

selection process and hence the performance of the models. The

feature selection scheme, in the present pipeline, was applied only

on the training phase of the dataset to avoid the rather common

issue of data leakage.

2.5.3 Tumor identification with ML algorithms
2.5.3.1 Model training and validation

To avoid the rather common problem of model overfitting in

ML models, a 5-fold cross-validation scheme was applied in the

training dataset with hold-out data kept for model testing. On this

basis, the validation of the model was performed in cases that were

not part of the training phase. This approach helps to minimize

misclassifications during the training phase while also reducing

generalization errors. Furthermore, the trained models were applied

to an external subset of data for validation. This dataset was derived

from additional patients’ samples (N=38) which were collected and

processed in the clinical laboratory following the same methodology

with the training dataset, so that any variation due to sample

handling would be eliminated. Specifically, samples derived from

patients with all the different pathologies were selected exclusively

for the validation phase: 11 non-oncological patients, 4 patients

with benign lesions, 21 patients with exocrine tumors, 2 patients

with endocrine neoplasms. This subset included new, “unseen”

samples to assess the model’s performance and predict the class of

the new patients (i.e. non-oncological, with benign lesions, exocrine

tumors or endocrine neoplasms) which were not used during the

training phase.

Hyperparameter tuning was applied to every estimator using the

grid search procedure for identifying the best performing model with

optimized parameters. This approach involved defining a parameter

grid for each algorithm and evaluating various hyperparameter

combinations through exhaustive research. A detailed overview of

the best hyperparameter values selected for each model is provided in

Table 4. For LR, the “C” parameter controls the regularization

strength, while the “l1” ratio determines the balance between L1

and L2 regularization when using elastic net (ENET). Since the

current dataset is approaching a high-dimensional setting, ENET

was applied to mitigate the issue of overfitting and multicolinearity.

In RF, the “max_depth” parameter limits the tree depth to prevent

overfitting while the parameters “min_samples_leaf” and

“min_samples_split” control tree growth. The parameter

“n_estimators” determines the total number of trees in the model.

For SVM, the “gamma” parameter influences data point impact, and

the “kernel” parameter defines the transformation function. In
Frontiers in Oncology 05
XGBoost, “learning_rate” parameter controls step size for updates,

“max_depth” manages tree complexity, and the “n_estimators”

parameter defines the number of boosting rounds. These

hyperparameters were fine-tuned to optimize model performance,

balance interpretability and reproducibility while minimizing

overfitting, supporting a rigorous approach to multi-class

classification problems.

2.5.3.2 Classification and evaluation of model
performance

To build the composite estimator according to the proposed

cross-validation scheme on the training dataset, several ML

algorithms were applied, namely Logistic Regression (LR), the non-

parametric kernel-based model Support Vector Machine (SVM), the

ensemble model Random Forest (RF), and Extreme Gradient Boost

(XGBoost). Python programming language was used with the scikit-

learn ML library (33), for the design and development of a flexible

ML-based pipeline for PC diagnosis. Class imbalance handling was

addressed based on oversampling functions of the Imbalanced-learn

library (34). Over-sampling generates new samples in the classes

which are under-represented by random sampling with replacement

of the current available samples.

The following metrics were calculated to assess the performance

of the classification models: precision, recall (true positive rate), and

accuracy. The Receiver Operating Characteristic (ROC) curve was

also computed to represent the trade-off between the false negative

and false positive rates for every possible cut-off. The weighted One-

vs-Rest (OvR) AUC scores while also the pairwise AUC scores were

calculated. The OvR AUC score considers each class separately by

treating it as a binary classification problem against all other classes,

with the final score being an average weighted by class distribution.

Hence, OvR offers a broader view of overall class separability.

Pairwise AUC scores provide a measure of how well a classifier

distinguishes between individual class pairs, offering insights into

class separability, ranking consistency, and potential weaknesses in

multi-class classification settings (35).

Explainable AI analysis was conducted using SHAP values to

determine the key features influencing model predictions (36). A

SHAP plot is a graphical representation of SHAP values The
TABLE 4 The optimal parameters based on the Grid Search procedure
for each classification model.

ML
models

Best parameters

First use case Second use case

LR {‘C’: 100, ‘l1_ratio’: 0.9’} {‘C’: 10, ‘l1_ratio’: 0.1}

RF {‘max_depth’: 10,
‘min_samples_leaf’: 1,
‘min_samples_split’: 2,
‘n_estimators’: 50}

{‘max_depth’: 10,
‘min_samples_leaf’: 1,
‘min_samples_split’: 5,
‘n_estimators’: 100}

SVM {‘gamma’: ‘scale’,
‘kernel’: ‘poly’}

{‘gamma’: ‘scale’,
‘kernel’: ‘poly’}

XGBOOST {‘learning_rate’: 0.01,
‘max_depth’: 6,
‘n_estimators’: 200}

{‘learning_rate’: 0.3,
‘max_depth’: 3,
‘n_estimators’: 200}
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features are positioned on the y-axis in a descending order of

importance, while the x-axis displays SHAP values, indicating the

degree of contribution of each feature towards the model’s

prediction. Below zero, the prediction is reduced, while above

zero, the prediction is increased for a specific class. Features

having a greater impact on model’s prediction (either positive or

negative), present a SHAP value away from zero. Each dot displays a

unique data point and its color corresponds to lower (e.g. blue

color) or higher (e.g. red color) numerical value. Accumulation of

higher values on the right side of the graph indicates that the feature

positively influences the prediction, suggesting that its increase

would benefit the model. Conversely, if higher values are

concentrated on the left, an increase in that feature will reduce

the prediction. Features displaying a mix of overlapping high and

low values (e.g. red and blue dots) suggest non-linear effects,

possibly interacting with other features and influencing

prediction outcomes.
3 Results

3.1 First use case

The 3-class classification problem of the first use case included

patients with benign lesions, exocrine tumors or endocrine

neoplasms. Various ML models were evaluated and their

performance in terms of mean and standard deviation of the 5-fold

cross validation is presented in Table 5. As demonstrated, the RF had

the best performance in this case, achieving high classification

accuracy. According to the respective confusion matrix

(Supplementary Figure 1 in Supplementary Material B) 72 out of

72 samples (100%) were correctly identified for classes 0 and 1

whereas for class 2, 64 out of 72 (89%) were correctly categorized.

Regarding the pairwise AUC scores, the model demonstrates

consistent and high AUC scores (0.98 across all class comparisons)
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with minimal variation. This suggests that RF performs equally well

across all class pairs, indicating balanced discriminative power among

the three classes. These results highlight the model’s robust capability

in categorizing the classes with consistent reliability across the

multiclass classification task.

The model was trained using a combination of EV-based features

as well as standard and PC-related biochemical features. The most

important features, ranked through the feature selection process, are

presented in Figure 1. Explainable AI was utilized to interpret the

results of the best performing algorithm, which in the present case

was RF. Most features selected following the feature selection process

were EV-based, and these features predominantly influence model’s

predictions as illustrated in the SHAP plot (Figure 2).

The most impactful feature was CD45- EVs, as it appeared at

the top of the plot with a wide spread of SHAP values, indicating a

strong influence on the model’s predictions. The percentages of

either the total CD45- EVs population, or its CD63 and EphA2

double positive subpopulation (CD45-/CD63+/EphA2+) were good

predictors. At the same time, EVs size alone, specifically EVs of 5mm
diameter without any additional biomarker appeared to represent

strong prognostic indicators. Additionally, the CD45-/CD63

+/EphA2+ subpopulations of different sizes had a significantly

impact in model’s output, as EVs in the range of 3mm and 5mm
with this molecular profile were key predictive features. The spread

of SHAP values for these features showed that their values

differentially impact model’s output.

Notably, conventional biochemical markers such as glucose, g-
GT, alkaline phosphatase, total bilirubin, and direct bilirubin were

among the top-ranked features. For instance, higher glucose levels

contributed more to the model output, indicating a higher

probability of classification into the positive class. In contrast,

features like prothrombin time and direct bilirubin showed a

smaller impact, as their values were centered around zero and

ranked lower, signifying minimal contribution compared to higher-

ranked features.
TABLE 5 Results of classifier’s evaluation for the first use case of the FCM analysis.

Evaluation Metrics Classifiers

LR (mean+/-SD) RF (mean+/-SD) SVM (mean+/-SD) XGBoost (mean+/-SD)

Balanced Accuracy 0.77 +/- 0.03 0.96 +/- 0.03 0.90 +/- 0.06 0.94 +/- 0.02

Precision Weighted 0.78 +/- 0.04 0.97 +/- 0.02 0.91 +/- 0.06 0.95 +/- 0.02

Recall Weighted 0.77 +/- 0.04 0.96 +/- 0.03 0.90 +/- 0.06 0.94 +/- 0.02

ROC OvR Weighted 0.86 +/- 0.06 0.98 +/- 0.01 0.94 +/- 0.05 0.99 +/- 0.00

Pairwise AUC-ROC
(class 0 and class 1)

0.95 +/- 0.00 0.98 +/- 0.01 0.99 +/- 0.01 0.99 +/- 0.01

Pairwise AUC-ROC
(class 0 and class 2)

0.83 +/- 0.00 0.98 +/- 0.01 0.94 +/- 0.00 0.98 +/- 0.00

Pairwise AUC-ROC
(class 1 and class 2)

0.87 +/- 0.00 0.98 +/- 0.01 0.97 +/- 0.01 0.99 +/- 0.00
frontiersin.org

https://doi.org/10.3389/fonc.2025.1540195
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Angelioudaki et al. 10.3389/fonc.2025.1540195
3.2 Second use case

The second use case of the FCM analysis classified non-

oncological patients and patients with exocrine tumors or

endocrine neoplasms. The evaluation of the different ML models

and their performance in terms of mean and standard deviation of

the 5-fold cross validation are presented in Table 6. All the

evaluation metrics were computed as averages across all classes.

The obtained results indicated that XGBoost outperformed the

other models, in accuracy and all other evaluation metrics. This

algorithm successfully discriminated 67 out of 72 samples (93%) of

the class 0, 72 out of 72 (100%) of class 1 and 62 out of 72 (86%) for

class 2 (Supplementary Figure 2 in Supplementary Material B).

While the OvR ROC AUC score is comparable to the first use case,

there is a significant decline in the pairwise AUC ROC score

between classes 0 and 2 (0.95 +/-0.00). As a result, XGBoost has

difficulty distinguishing between classes 0 and 2 than it does with

the other class pairs. In contrast, the highest pairwise AUC ROC

score for class 1 and class 2 suggests substantial distinction between

the two groups.

Top-ranked features used for the classification of the patients

were identified through the feature selection process (Figure 3). EV-

based features along with some biochemical parameters were

among the highly ranked features. The results of the explainable

AI analysis conducted with the top-performing algorithm, which in

this case was the XGBoost are presented in Figure 4.

Among the EV-based features the most impactful for the

model’s output were the EVs subpopulation of 2mm in size CD45

+/CD63+/EphA2+ and 5mm in size CD45-/CD63+/EphA2+. The

distribution of their values was more dispersed across positive and

negative SHAP values, indicating a less clear but still significant
Frontiers in Oncology 07
effect. Significantly impactful features and thus good predictors in

this case comprised the percentages of either the total CD45- EVs

population, or its CD63+/EphA2+ subpopulation, as well as the

2mm and 5mm sized EVs.

In this case, among biochemical parameters the most impactful

was glucose whose higher levels increased the model’s prediction.

Features like APTT, direct bilirubin, and alkaline phosphatase

showed clear trends with high or low values to influence the

model’s positive or negative output. Among the top features,

those that present the least impact on the model included MCH,

g-GT and CD45+ EVs.
3.3 Validation of model’s performance

The external validation process is critical for assessing the

model’s generalization ability to new unseen data. In the present

study an external validation set was obtained separately from the

dataset used within the training and testing phases to ensure that

the evaluation was unbiased and reflective of how the best model

would perform on new unseen data. Regarding the external

validation process’ assessment metric, we extracted the best-

performing model as a “pickle” object by following the guidelines

provided by the respective Python package (28). The results of the

external validation analysis are summarized in Table 7. The scores

in Table 7 refer to the model’s estimated performance on unseen

data. It is basically an estimate of accuracy of the model’s

performance on new unseen data. In the first case the results

indicated that the model performed well at identifying the

patients with exocrine lesions but struggled with accurate

categorization of patients with benign and endocrine lesions,
FIGURE 1

Ranking of the 30 most important features contributing to the model’s predictions of the first use case.
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FIGURE 2

SHAP plot illustrates the contribution of each feature to the predictions of the best performing algorithm of the first use case. High values (red dots)
on the right side of the graph suggest that the feature positively influences the prediction, indicating that increasing this feature would benefit the
model. High values on the left side suggest that an increase in that feature will lead to a decrease in the prediction.
TABLE 6 Results of classifier’s evaluation for the second use case of the FCM analysis.

Evaluation Metrics Classifiers

LR (mean+/-SD) RF (mean+/-SD) SVM (mean+/-SD) XGBoost (mean+/-SD)

Balanced Accuracy 0.82 +/- 0.04 0.93 +/- 0.03 0.86 +/- 0.02 0.93 +/- 0.04

Precision Weighted 0.82 +/- 0.04 0.93 +/- 0.03 0.88 +/- 0.02 0.94 +/- 0.03

Recall Weighted 0.82 +/- 0.04 0.93 +/- 0.03 0.86 +/- 0.02 0.93 +/- 0.04

ROC OvR Weighted 0.90 +/- 0.02 0.98 +/- 0.01 0.94 +/- 0.02 0.98 +/- 0.02

Pairwise AUC-ROC
(class 0 and class 1)

0.92 +/- 0.00 0.98 +/- 0.01 0.99 +/- 0.01 0.98 +/- 0.00

Pairwise AUC-ROC
(class 0 and class 2)

0.87 +/- 0.00 0.97 +/- 0.00 0.88 +/- 0.00 0.95 +/- 0.00

Pairwise AUC-ROC
(class 1 and class 2)

0.93 +/- 0.00 0.98 +/- 0.00 0.96 +/- 0.00 0.99 +/- 0.01
F
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probably due to class imbalances. In the second case, the model

showed robust performance on exocrine and non-oncological

samples, while the performance on endocrine samples remained

suboptimal. Despite these challenges, the best performing model

was deployed without requiring retraining to ensure consistent

performance on future data. Furthermore, only the most

significant predictors chosen by the best performing model were

added to the external validation dataset in order ensure accurate

prediction results, considering the significance of real-world

data distribution.
4 Discussion

Accurate differentiation of malignant precursors from their

benign counterparts is not always a straightforward decision,

while their treatment strategy involving a choice between

surveillance and surgery can be challenging (37). From the

viewpoint that some of the cysts can potentially be transformed

into PC, their surgical resection offers an effective preventive

measure for cancer and thereby improving patient survival.

However, exposing patients to the morbidity and mortality of

unnecessary surgery remains a significant concern for many

clinicians and there is a lot of interest in novel methods for

classification of patients (37, 38). Liquid biopsy is among the

most promising recent advancements in cancer research. Initially,

the non-specific predictive potential of ‘exosomes’ count, and size

has been proposed to be important and useful for a future general

“first-level screening” of cancer risk. Logozzi et al. indicate the very

considerable predictive power of exosomes features in cancer and
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support further research on the relation of structure among non-

specific and specific exosome-based biomarkers (39).

The detection of subcellular particles such as EVs with increased

purity and yield is a complex function involving multiple factors

and pre-analytical variables such as the selection of patient’s plasma

over serum and the handling of samples to prevent platelet derived

microvesicles or lipoproteins which are also considered

confounding factors for EVs. Smaller species of lipoproteins such

as high density (HDL, 5–12 nm), low density (LDL, 18–25 nm)

which are of similar sizes with small EVs or larger species such as

very low-density lipoproteins (VLDL, 30–80 nm) or chylomicrons

(CM, 75–1200 nm, <0.930 g/cm3) can be found in high densities in

patients’ plasma (9, 40). To address this as well as reduce any

donor’s related variability, standardized sample collection

procedures, including patient fasting that has been described to

significantly reduce the amount of larger lipoprotein species, were

implemented (40). Blood was collected from participants just before

entering the operating room following a similar fasting period.

Furthermore, as confounding factors such as age and gender should

always be considered, in the present cohort attention was paid so

that participants were of similar age (41). Storage was also

standardized to ensure experimental reproducibility. Moreover,

the presence of EVs in a small number of patient samples has

already been validated using Western blot, which is commonly

employed as part of a multi-method approach to detect EV-

associated proteins (42).

The analytical approach implemented to detect and characterize

PC-derived EVs in the present study provided valuable information

to the ML model, qualifying it to discriminate with high accuracy

non-oncological patients, patients with benign lesions, or exocrine
FIGURE 3

Ranking of the 30 most important features contributing to the model’s predictions of the second use case.
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tumors or endocrine neoplasms. FCM variables provided estimates

of particle size by light scatter, concentration, plus a molecular

phenotyping of its targets via fluorescence. Despite its limitations

and challenges such as the antibody-dependent cost or finding a

universal standardization strategy, FCM is widely recognized as a

technology platform and the most viable technique for analyzing

and adequately describing EVs. Numerous data based on FCM were

collected to assist EVs characterization and their contribution to

liquid biopsy’s potential for cancer early detection (10, 43–45).

Previous studies investigating the diagnosis of PC through the

detection of EVs employed different approaches for EV isolation

and primarily relied on statistical analysis rather than ML of EV-

based biomarkers, as summarized in Table 8. Yoshioka et al.,

detected through ultracentrifugation EV-associated proteins as

potential biomarkers in a small dataset of PC patients, chronic

pancreatitis (CP) patients and healthy controls. Their findings

highlighted EV-associated GPRC5C and EPS8 as highly accurate
Frontiers in Oncology 10
biomarkers, with AUC values of 0.922 and 0.946 (21). Similarly,

Odaka et al. explored the diagnostic potential of EVs by analyzing

CD63+ EVs and platelet-derived EVs (CD41+ and CD61+) by

means of sandwich enzyme-linked immunosorbent assay (ELISA).

This approach yielded an AUC of 0.846 in distinguishing PC

patients from healthy controls (22). Moreover, Wei et al.

suggested the combination of EphA2 expression in exosomes with

carbohydrate antigens CA19.9 and CA242 in patients’ serum, as a

valuable biomarker (24). Additionally, exosomal surface proteins

GPC1, CD82 along with CA19.9 were tested in 76 participants as

potential biomarkers from Xiao et al., achieving a high AUC of

0.942 (23).

In the current, new to the field, ML approach, two alternative

methods i.e., (i) SelectFromModel and (ii) RFE—were used in the

feature selection process to determine which features were most

crucial for differentiating the different patient groups in each

scenario. The SelectFromModel meta-estimator was chosen as the
FIGURE 4

SHAP plot illustrates the contribution of each feature to the predictions of the best performing algorithm of the second use case. High values (red)
have a positive SHAP impact when are found on the right side of the plot, suggesting that an increase in feature’s value raises the model’s prediction.
Low values (blue) mostly cluster around negative SHAP values and reduce model’s prediction.
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main feature selection technique since it produced the most

representative results out of all. The accurate performance of this

technique can be attributed to its reliance on model-based

importance, which often provides a more direct measure of

feature relevance. To address the significant class imbalance in

the dataset, both oversampling and undersampling techniques were

tested. However, due to the dataset’s limited size and the extreme

imbalance between the classes, only oversampling yielded favorable

results. In terms of ML analysis all the algorithms that were tested

demonstrated good performance. The two best performing

algorithms, depending on the use case were XGBoost and the RF.

While XGBoost generally outperforms RF in accuracy, it can be

more sensitive to overfitting, especially if hyperparameters are not

carefully tuned (46). Conversely, RF might provide a faster and

more straightforward solution in cases of smaller datasets or

simpler tasks as in this case. The external validation process,

which is critical for assessing the model’s generalizability to new,

unseen real-world data, produced high scores, corroborating the

robust accuracy achieved during model training. However, the

model demonstrated difficulty in discriminating between patients

with exocrine tumors, endocrine neoplasms and some benign

lesions, likely due to the small number of patients with endocrine

and benign histopathology compared to patients with exocrine

tumors as a result of disease incidence.

The biological interpretation of the output indicates that the

detection of larger vesicles (FCM; ~2mm – ~3mm – ~5mm)

constitute an efficient and accurate way to reflect the medical

status of PC patients, scoring over 0.90 in accuracy of the RF and
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XGBoost algorithms (i.e., 0.96 +/- 0.03 accuracy in the first use case

and 0.93 +/- 0.04 in the second use case) as well as the other

evaluation metrics (Tables 5, 6), further highlighting the

importance of circulating EVs. Special attention should be given

to the selected triplet of markers CD45, CD63, EphA2 that proved

to add adequate information about the molecular profile of EVs

contributing to the distinction between PC patients and patients

with benign lesions or non-oncological patients. This approach and

its output stand out compared to other studies which test

combinations of more than three protein biomarkers on EVs

without significantly enhancing precision or accuracy (47). EVs

subpopulations such as CD63+ EphA+ EVs were previously

described to be significantly over expressed in PC cell-lines

compared to normal pancreatic cell line as well as in PC patient

serum, with high diagnostic potential when combined with the

traditional CA19.9 (AUC 0.958, P ¼ 0.0007) (48). Moving one step

further, in the current study the high impact of CD45- EVs values

and its subpopulations was mostly observed in the first use case that

assist the classification of patients with benign lesions, exocrine

tumors or endocrine neoplasms. Conversely, in the second use case,

where non-oncological patients were included CD45- EVs

subpopulations presented with a smaller impact.

Finally, parameters derived from the hematological and

biochemical analysis of patients’ serum such as Prothrombin

time, Red blood cell (RBC), Red cell distribution width (RDW),

Mean Corpuscular Volume (MCV), Mean Platelet Volume (MPV),

platelets, and activated partial thromboplastin time (APTT) were

identified as important features in the model, which coincides with

the nature of neoplastic process and the fact that PC is characterized

by the dissemination of tumor-derived microvesicles, high tumoral

expression of tissue factor and activation of leukocytes which all

promote hypercoagulability and increased platelet activation (49,

50). Moreover, increased levels of serum bilirubin, alkaline

phosphatase, and g glutamyl transferase (gGT) are often observed

as obstructive jaundice is a usual symptom of PC (50). These

frequently nonspecific features were recognized as playing an

important role in the second use case surpassing most of the EVs

based features in significance, with impactful contribution to the

model’s ability to discriminate among non-oncological patients and

patients with exocrine tumors or endocrine neoplasms. Still, 5mm in

size CD45-/CD63+/EphA2+ EVs population remained among the

top three predictors.
5 Conclusion

In conclusion, this study further supports the great potential of

physical properties and molecular profile of EVs to substantially

inform and guide clinical decisions with the assistance of a ML

algorithm, as an innovative, rapid, and efficient method. The ML

algorithm with its capacity to discriminate among patients with

different pathologies, either exocrine tumors or endocrine

neoplasms, non-oncological patients or patients with benign cysts

could represent a valuable tool for clinicians and their patients to

improve PC detection at a treatable stage.
TABLE 7 Results of the external validation process.

Analyses External Validation Scores

First use case 0.77

Second use case 0.80
TABLE 8 Previous studies with EV-based biomarkers.

First
Author,
Year

Biomarkers Technique Dataset

Yoshioka et al.,
2022 (21)

EV-associated proteins Statistical
analysis

PC: 54, CP:
22, HC: 32

Odaka et al.,
2022 (22)

EVs (CD63+-EVs) or
platelet-derived EVs (CD41
+- and CD61+-EVs)

Statistical
analysis

PC: 39,
HC: 39

Wei et al.,
2020 (24)

Expression of serum Ephrin
type-A receptor 2 in
exosomes (Exo-EphA2), CA
19.9 and CA 242

Statistical
analysis

PC: 204,
PBD:75,
HC: 74

Xiao et al.,
2020 (23)

Exosomal surface protein
glypican-1 (GPC1),
exosomal cluster of
differentiation 82 (CD82),
and serum carbohydrate
antigen 19.9 (CA19.9)

Statistical
analysis

76
participants
CP, Chronic pancreatitis; HC, healthy controls; PBD, pancreatic benign disease.
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Clinical application of non-invasive and effective biomarkers for

early detection of PC remains an open issue. Despite the existing

difficulties in the preanalytical standardization of the EVs related

analysis the presented findings support liquid biopsy’s potential for

early detection and monitoring of cancer offering a way to personalize

treatments in a fast-evolving landscape. Increasing the patient’s cohort

and repeating the measurements during patients follow up should

further substantiate the results and the accuracy of the algorithm in

each use case. In parallel, given the absence of instruments of higher

resolution and low limits of detection that would effectively

discriminate EVs of smaller size (e.g. exosomes or microvesicles),

the fact that large EVs provide highly valuable information for PC

early diagnosis, allows a more affordable algorithm in everyday clinical

practice and urge for the thorough biological characterization of these

large EVs, as it could further contribute to our understanding of EVs

role in PC development and progression.
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