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Purpose: Ferroptosis, an iron-dependent form of regulated cell death (RCD), has

been proven to affect the response to antineoplastic therapies. However, little is

known about the role of ferroptosis in chemotherapy and immune checkpoint

inhibitor (ICI) therapy responses, as well as the molecular subtype identification

of triple-negative breast cancer (TNBC).

Methods:We performed unsupervised clustering to stratify patients with TNBC in

the Fudan University Shanghai Cancer Center (FUSCC) TNBC cohort into distinct

ferroptosis-related subtypes according to the expression of eight ferroptosis-

related genes (FRGs): EMC2, FTH1, HMOX1, LPCAT3, NOX4, SOCS1, BAP1, and

ISCU. We conducted Gene Ontology (GO) analysis and gene set variation analysis

(GSVA) to characterize the immune phenotype and enriched pathways of the

distinct subtypes of TNBC. We constructed the FerrScore model to identify the

most promising candidate compounds and predict ICI therapy benefits for

patients with TNBC.

Results: We identified two distinct ferroptosis-related subtypes with different

overall survival (OS). Patients in cluster 1 exhibited better OS, which had a

phenotype of a “hot” tumor with abundant immune cell infiltration and higher

expression of immune checkpoints compared to cluster 2. We screened

everolimus as the most promising candidate drug for patients with high

FerrScore referring to comprehensive factors including CMap score,

experimental evidence, and clinical trial status. Further, we confirmed that

FerrScore was a potentially powerful metric to predict anti-PD-L1, anti-PD-1,

and anti-PD-1 + CTLA-4 ICI therapy benefits.
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Conclusions: Ferroptosis reprogrammed the tumor microenvironment (TME)

and classified patients into distinct subgroups with significantly different OS.

FerrScore was a potentially powerful metric to screen candidate compounds and

predict ICI therapy benefits for patients with TNBC, which prioritized clinical

treatment strategies.
KEYWORDS

ferroptosis, triple-negative breast cancer, molecular subtype, immunotherapy,
chemotherapy
Background

Triple-negative breast cancer (TNBC), the most aggressive

group of breast cancer with a high degree of intra-tumoral

heterogeneity, accounts for approximately 15%–20% of all

invasive breast tumors (1). TNBC is characterized by the absence

of progesterone receptor (PR), estrogen receptor (ER), and human

epidermal growth factor receptor 2 (HER-2) expression (2) with a

median overall survival (OS) rarely exceeding 12 to 18 months in

advanced cancers (3). Despite substantial aggressive therapeutic

strategies that have been applied to clinical therapy, such as surgery,

radiotherapy, chemotherapy, and immunotherapy, breast cancer

has surpassed lung cancer as the leading cause of cancer-related

death in women worldwide according to the Global Cancer

Statistics 2020 (4). Chemotherapy remains a mainstay in the

clinical treatment of unresectable TNBC in accordance with the

2022 version of the Chinese Society of Clinical Oncology (CSCO)-

TNBC guidelines (5). Multiple studies have shown that

immunotherapy increases the sensitivity of tumor cells to

chemotherapy (6). In-depth studies and analysis about how

chemotherapy and immunotherapy are used are therefore

urgently needed for guiding the clinical therapy of TNBC.

Molecular subtype classification is essential for understanding

cancer biology and guiding precision therapy (7, 8), particularly in

TNBC (9). First, Lehmann identified six TNBC subtypes with unique
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gene expression profiles and ontologies, including two basal-like (BL1

and BL2), mesenchymal (M), mesenchymal stem-like (MSL), luminal

androgen receptor (LAR), and immunomodulatory (IM) subtypes, by

cluster analysis to guide therapeutic decision (10). Subsequently,

Lehmann refined TNBC molecular subtypes from six into four

tumor-specific subtypes (LAR, BL1, BL2, and M) (11). Afterward,

Professor Powel stratified TNBC into four distinct subtypes—basal-like

immune-activated (BLIA), basal-like immunosuppressed (BLIS), LAR,

and mesenchymal-like (MES)—by RNA and DNA profiling analyses

(12, 13). However, these findings do not actually rewrite the clinical

practice guidelines and improve the outcome of patients with TNBC.

Immediately after, Professor Zhimin Shao classified TNBC into four

subtypes—BLIS, MES, LAR, and IM subtypes—according to genomic

and transcriptomic profiles and proposed Fudan University Shanghai

Cancer Center (FUSCC) subtype-based precision therapeutic strategies

(14). Recently, Shao’s group identified three distinct metabolomic

subgroups to further advance the understanding and precision

therapy of TNBC (15). Although a large number of molecular

subtyping approaches were proposed to serve as references for

precision therapy, there still remained some limitations and

bottlenecks due to the high intra-tumoral heterogeneity of TNBC.

Therefore, a new classification system study is still an exciting focus for

TNBC in the future.

Ferroptosis, an iron-dependent form of regulated cell death

(RCD), has been proven to affect the response to radiotherapy,

chemotherapy, and immunotherapy of tumors (16). Previous

studies have suggested that breast cancer cells were more sensitive

to ferroptosis resulting from CD44-dependent iron endocytosis,

which promoted the activity of iron-dependent demethylases to

upregulate epithelial–mesenchymal transition (EMT) pathway-

related genes (17). Especially, the human TNBC cell line (MDA-

MB-157) is more sensitive to RSL3 (ferroptosis activator)-triggered

ferroptosis for the high expression of ACSL4 (18). Published studies

have uncovered that TNBC is enriched in ferroptosis-related gene

signature and co-inhibition of BET and that proteasome induced

ferroptosis in all major TNBC subtypes (BL1/2 and M/MSL), while

targeting BET and CXCR2 induced tumor cell apoptosis in

mesenchymal TNBC subtype (19). Recent research has revealed

the potential roles of ferroptosis in TNBC (20–22). Ferroptotic

tumor cell-derived damage-associated molecular patterns (DAMPs)
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triggered inflammation-related immunosuppression and immune

landscape reshaping in the tumor microenvironment (TME), thus

contributing to tumor growth (23). In addition, the latest research

indicated that ferroptotic cancer cells recruited T cells, NK cells, and

macrophages, thereby turning “cold” tumors into “hot” phenotypes

by activating antitumor immune responses (24). The above

illustrates ferroptosis as a promising direction for precision

therapy of TNBC. Ferroptosis-related signatures have been

applied to the molecular subtyping of several cancer types, for

instance, pancreatic ductal adenocarcinoma, lung adenocarcinoma,

and hepatocellular carcinoma (25–27). Further interrogating the

role of ferroptosis in the molecular subtyping of TNBC, as well as in

TME remodeling, is therefore of paramount importance.

In the present study, we first identified eight ferroptosis-related

genes (FRGs) and explored the gene expression heterogeneity in pan-

cancers. We then focused on the FRG-based molecular subtype

identification of TNBC according to the mRNA expression of the

eight FRGs and characterized the immune landscape within distinct

subtypes. Further, we constructed a ferroptosis-related scoring model

by the product of mRNA expression and correlation coefficient of the

eight FRGs and defined the ferroptosis-related gene signature as the

FerrScore. We identified six Cancer Therapeutics Response Portal

(CTRP)-derived and six Profiling Relative Inhibition Simultaneously

in Mixtures (PRISM)-derived drugs based on FerrScore and further

confirmed everolimus as the most promising candidate drug for TNBC

patients with high FerrScore. Meanwhile, we applied FerrScore to

immunotherapy cohorts to evaluate the diagnostic value of FerrScore

in immune checkpoint inhibitor (ICI) therapy benefit prediction and

found that FerrScore was a promising biomarker to predict anti-PD-1,

anti-PD-L1, and anti-PD-1 + CTLA-4 therapy benefits. Taken

together, the FRG signature is a potentially powerful metric to

stratify patients with TNBC, and FerrScore is a reliable basis to

screen candidate compounds and predict ICI therapy benefits, which

provides new perspectives for clinical treatment.
Materials and methods

Data acquisition and filtration

The transcriptomic profiles and clinical information of patients

with TNBCwere obtained from theNational Omics Data Encyclopedia

(NODE) (https://www.biosino.org/node/) (FUSCC, Project ID:

OEP000155) conducted by Zhimin Shao from Fudan University

Shanghai Cancer Center, and finally, 358 tumor samples and 88

normal samples were enrolled into further analysis after excluding

patients without matched information (14). The GSE76124 and

GSE21653 cohorts were used as the validation datasets (12).
Genetic variations and expression profiles
of FRGs

A total of 125 FRGs were first identified from the FerrDb (http://

www.zhounan.org/ferrdb/legacy), and 841 survival-related genes
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were screened from the FUSCC dataset by the Kaplan–Meier

survival analysis. Finally, nine hub genes were chosen after an

intersection. Ultimately, eight FRGs were applied for the

unsupervised clustering analysis, while ALOX15B was excluded

with no expression difference between normal tissues and tumors.

The expression profiles of the eight FRGs were visualized at the

single-cell level in GSE118389, and they were further validated in

multiple single-cell RNA-seq datasets from Tumor Immune Single-

cell Hub (TISCH) (http://tisch.comp-genomics.org/home/). In

addition, genetic variations of the eight FRGs were elaborated

using the “maftools” R package in the Cancer Genome Atlas

Program (TCGA) TNBC cohort. The dysregulation and

methylation profiles of the eight FRGs were also illustrated, as

well as Pearson’s correlation between FRG expression and copy

number variation (CNV), and FRG expression and promoter

methylation in pan-cancer.
FRG-based unsupervised clustering

Unsupervised clustering analysis was performed according

to the mRNA expression of the eight FRGs using the

“ConsensusClusterPlus” R package to identify molecular subtypes,

and principal component analysis (PCA) was applied to

demonstrate the distribution of FRG-related subtypes. The

Kaplan–Meier analysis was used to compare the survival

probability between distinct groups. The reliability and stability of

our FRG-related subtype identification strategy in the FUSCC

TNBC cohort were then verified by the Non-negative Matrix

Factorization (NMF) algorithm using the “CancerSubtypes” R

package, as well as in the GSE76124 and GSE21653 cohorts using

the “ConsensusClusterPlus” R package.
Gene Ontology analysis and gene set
variation analysis between distinct
subtypes of TNBC

We screened the differentially expressed genes (DEGs) between

different ferroptosis subtypes using the “limma” R package with a fold-

change of 1.5 and an adjusted p-value of <0.05. We then applied the

“ClusterProfiler” R package to perform Gene Ontology (GO) analysis

to explore the involved biological processes of the ferroptosis-related

subtypes of TNBC. In order to further characterize the immune

characteristics within the distinct ferroptosis subtypes, we analyzed

the immune-related pathways by gene set variation analysis (GSVA)

according to the Molecular Signatures Database (MSigDB-v5.2)

(https://www.gsea-msigdb.org/gsea/index.jsp).
Tumor immune landscape characterization
within distinct subtypes of TNBC

We compared the immune score, stromal score, estimate score,

tumor purity, Tumor Immune Dysfunction and Exclusion (TIDE)
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score, exclusion score, and dysfunction score using the

“ESTIMATE” R package and TIDE (http://tide.dfci.harvard.edu/),

as well as tumor inflammation signature (TIS) score according to

the mRNA expression of the 18 genes (28). We estimated immune

cell infiltration between different groups using the Cibersort,

XCELL, ssGSEA, TIMER, and MCP counter algorithms.
Construction of the FerrScore scoring
model

To further explore the potential diagnostic value of ferroptosis

signatures to prioritize treatment strategies of TNBC, the penalized

Cox regression model based on the least absolute shrinkage and

selection operator (LASSO) penalties was used to calculate the

correlative coefficients of the eight FRGs and defined the

ferroptosis-related gene signature as the FerrScore. The FerrScore

formula was established as follows:

FerrScore = ∑ (correlative coefficient × gene’s expression).

Patients with TNBC were divided into high and low FerrScore

groups according to the optimal cut-off value using the “Survminer” R

package, and theOSwas compared between groups. The “survivalROC”

R package was used to plot the receiver operating characteristic (ROC)

curve and estimate the predictive accuracy of the FerrScore model.
FerrScore-based drug sensitivity screening

To further screen the promising agents for patients with

high FerrScore, the FerrScore construction model was applied to the

PRISM (https://www.theprismlab.org/) and CTRP2.0 (https://

portals.broadinstitute.org/ctrp/) databases. The expression profile

of the cancer cell lines (CCLs) was available on the Broad Institute-

Cancer Cell Line Encyclopedia (CCLE) portal (https://

portals.broadinstitute.org/ccle/). The area under the dose–

response curve (AUC) values were calculated to estimate the drug

sensitivity, and lower AUC values indicated higher sensitivity to

chemotherapy. Spearman’s correlation analysis was performed to

explore the association between FerrScore and AUC values to

identify the candidate drugs for patients with high FerrScore.

Further, the CMap score of drugs was calculated by submitting

the 300 DEGs between normal tissues and tumors with the most

significant fold changes (150 up- and 150 downregulated genes) to

the CMap website (https://clue.io/query). Clinical trial status,

experimental evidence, and the mRNA expression of drug targets

were obtained from the National Center for Biotechnology

Information (NCBI) (https://pubmed.ncbi.nlm.nih.gov/) and

DrugBank (https://go.drugbank.com/).
FerrScore-based ICI therapy benefit
prediction

To further evaluate the diagnostic value of FerrScore in ICI

therapy benefit prediction, a urothelial cancer cohort was applied
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using the “IMvigor210CoreBiologies” R package to explore the

association between FerrScore and anti-PD-L1 immunotherapy

response. Further, the GSE78220 and PRJEB23709 cohorts were

applied to study the potential role of FerrScore in anti-PD-1 and

anti-PD-1 + CTLA-4 ICI therapy, and adoptive T-cell therapy

response in the GSE100797 cohort, respectively.
Histological analysis

Human TNBC samples were obtained from the Second

Affiliated Hospital of Nanjing Medical University (Nanjing,

China). Tissues were sectioned into 5-mm-thick paraffin sections

and further subjected to hematoxylin and eosin (H&E) and

immunohistochemical (IHC) staining with anti-SOCS1 Rabbit

pAb (Cat# GB11372, ServiceBio, Hubei, China), anti-NOX4

Rabbit pAb (Cat# GB11347, ServiceBio), anti-PD-1 Rabbit pAb

(Cat# GB11338, ServiceBio), and anti-CD3 Rabbit pAb (Cat#

GB11014, ServiceBio).
Four-color immunofluorescence

Formalin-fixed paraffin-embedded sections were stained with anti-

SOCS1 Rabbit pAb (Cat# GB11372, ServiceBio), anti-NOX4 Rabbit

pAb (Cat# GB11347, ServiceBio), anti-PD-1 Rabbit pAb (Cat#

GB11338, ServiceBio), and anti-CD3 Rabbit pAb (Cat# GB11014,

ServiceBio) overnight at 4°C and then incubated with secondary

antibodies for 1 hour at room temperature, while the cell nucleus

was counterstained with DAPI (Cat# GDP1024, ServiceBio).
In vitro cell viability assay

MDA-MB-231 TNBC cells were transfected with pshRNA-SOCS1

plasmids (targeting 5′-CACGCACTTCCGCACATTC-3′) (29) or

control plasmids using Lipofectamine™ 3000 reagent. The

knockdown efficiency was evaluated by Western blotting analysis

using an antibody against human SOCS1 (Cat# 55313, Cell Signaling

Technology, Inc., Danvers, MA, USA). Then, the cells (4.0 × 103/well)

were seeded into 96-well plates, incubated overnight, and treated with

RSL3 (0.5 mM) (Cat# HY-100218A, MedChemExpress, Monmouth

Junction, NJ, USA) for 72 hours. Cell viability was assessed using the

Cell Counting Kit-8 (CCK-8 Kit) (Vazyme, Nanjing, China) according

to the manufacturer’s instructions.
Statistical analysis

The R version 4.0.4 software was used for the RNA-seq data

analysis and visualization. Wilcoxon test and Student’s t-test were

performed to compare the differences between the two groups,

while the Kruskal–Wallis test and one-way ANOVA were used to

compare the differences between three or more groups. Spearman’s

and Pearson’s correlation analyses were chosen to explore whether
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there was a positive or negative relationship. The Kaplan–Meier

survival analysis was applied to compare the survival probability

across groups. For comparisons among groups, p < 0.05 indicates

significant differences.
Results

Identification, genetic variations, and
expression profiles of the FRGs

Cytotoxic T cell-driven immunity promotes ferroptosis in cancer

cells; for instance, anti-PD-L1 antibody induces lipid peroxidation-

dependent ferroptosis in tumor cells (Figure 1A), which made

ferroptosis-related anticancer therapy a promising target (30).

Therefore, we designed the present study to explore the role of

ferroptosis in the molecular subtype identification of TNBC and

constructed a FerrScore model to screen promising drugs and

predict response to immunotherapy (Supplementary Figure 1). We

first identified 125 FRGs from the FerrDb and intersected them with

841 survival-related genes screened using the Kaplan–Meier survival

analysis (Figure 1B, Supplementary Figures 2A–J, Supplementary

Table 1). In FUSCC TNBC cohort, EMC2, FTH1, HMOX1,

LPCAT3, NOX4, and SOCS1 were upregulated in tumors, while

BAP1 and ISCU were downregulated (Figure 1C). Eight hub genes

were identified, while ALOX15B was excluded for no difference

between normal tissues and tumors, and the expression of the eight

FRGs distinguished tumors from the normal tissues by PCA

(Figure 1D). In addition, the expression of the eight FRGs varies in

different grades and T and N stages of TNBC (Supplementary

Figure 3). The length of the coding sequence (CDS) and

chromosomal location of the eight FRGs were obtained from the

NCBI (Supplementary Table 2). In pan-cancer analysis, ISCU was

obviously downregulated in breast invasive carcinoma, and EMC2

suffered the highest frequency of CNV (Supplementary Figures 4A,B).

NOX4 showed the highest frequency of methylation, while the

expression of SOCS1 positively correlated with the promoter

methylation across 20 types of cancer in TCGA (Supplementary

Figures 4C, D).

Protein–protein interaction (PPI) network showed that

HMOX1 interacted with FTH1 and NOX4, and the correlation of

the eight FRGs is exhibited in the network plot (Figures 1E–G).

Somatic mutation analysis of the eight FRGs showed that 6 (4.41%)

of 136 samples suffered genetic variations, and EMC2 underwent

dramatically high frequency (32.37%) of copy number gain in

TCGA cohort (Figures 1H–J, Supplementary Table 2). In the

GSE118389 scRNA-seq dataset, SOCS1 was primarily expressed

in T cells, and HMOX1 was principally expressed in macrophages at

the single-cell level (Figures 1K–T), as well as validated in another

four datasets in TISCH (Supplementary Figures 5A–H). At the

protein level, FTH1, ISCU, and SOCS1 were medium stained in

breast cancer tissues on the Human Protein Atlas (HPA) portal

(Supplementary Figure 5I). The results strongly indicated that

dysregulation and imbalance of the FRGs contributed to the

progression and malignancy of TNBC.
Frontiers in Oncology 05
Ferroptosis-related subtype identification
and pathway enrichment analysis

Consensus clustering was performed to identify ferroptosis-

related molecular subtypes according to the mRNA expression of

the eight FRGs in the FUSCC TNBC cohort. Patients were divided

into two distinct groups (K = 2) with high and low intergroup

correlations (Figures 2A–E). PCA exhibited that the distinct

subgroups can be distinguished by the expression of the eight

FRGs (Figure 2F). Patients in cluster 1 showed better OS than

those in cluster 2 by the Kaplan–Meier analysis (Figure 2G).

Tumors in cluster 2 were indeed mainly composed of IM

and BLIS mRNA subtypes with younger age distribution

(Supplementary Figures 6A–C, Supplementary Table 3). Research

from the MD Anderson Cancer Center suggested that the BLIS

mRNA subtype had the worst outcome (13). The expression of

LPCAT3 and NOX4 was higher in cluster 2, and EMC2 showed no

difference, while others exhibited an opposite profile (Figures 2H, I).

Univariate Cox regression analysis showed that cluster 2 was a risk

factor [Hazard Ratio (HR) = 2.47] with worse OS (Figure 2J). As

validated by the NMF Clustering algorithm, patients in the FUSCC

TNBC cohort were also divided into two distinct subgroups with

significantly different OS probabilities (Supplementary Figures 7A–

C). Similarly, patients with TNBC were clearly divided into two

groups with different OS using unsupervised clustering analysis in

the GSE76124 and GSE21653 datasets, and PCA showed

the distribution of FRG-related subtypes (Supplementary

Figures 7D–K).

To further explore the involved GO processes and enriched

pathways that participated in the progression of distinct subgroups,

we identified the DEGs by setting the fold change of 1.5 as

illustrated in the volcano plot (Figure 2K). GO analysis of

the upregulated DEGs showed that iron ion binding molecular

function (MF) was significantly enriched in cluster 2, while the

downregulated DEGs were predominately enriched in T-cell

activation and leukocyte proliferation biological processes (BPs)

(Figures 3A, B). Altogether, tumors in cluster 2 with worse OS

exhibited more iron ion overloading and less T-cell activation,

which strongly suggested that tumors in cluster 2 were more

sensitive to ferroptosis. Afterward, we performed GSVA to

further study the impact of tumor cell ferroptosis on TME

reprogramming and found that tumors in cluster 2 exhibited

higher enrichment scores of programmed cell death, metal ion

SLC transporters, drug metabolism cytochrome p450, and EMT

pathways (Supplementary Figure 8). A previous study confirmed

that tumor cells with a high mesenchymal state were more sensitive

to ferroptosis as enhanced iron endocytosis during EMT (17, 31).

Additionally, tumors in cluster 2 showed lower enrichment scores

of immune-related pathways, such as natural killer cell-mediated

cytotoxicity, leukocyte transendothelial migration, and T-cell and

B-cell receptor signaling pathways (Figures 3D, E, Supplementary

Table 4). Altogether, tumors in cluster 2 were a group of

cancer types that were more sensitive to ferroptosis with an

immunosuppressive phenotype and worse OS compared to that

of cluster 1.
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FIGURE 1

Expression profiles and genetic variations of the FRGs. (A) Overview of the cytotoxic T cell-driven immunity promotes ferroptosis in cancer cells to
reshape the TME in TNBC drawn by BioRender (https://biorender.com/). (B) The Venn diagram was plotted to show the identification of crucial FRGs in
FUSCC TNBC. (C) The expression profiles of the FRGs between normal tissues and tumors displayed by split violin plot; Student’s t-test, ** P < 0.01,
*** P < 0.001, **** P < 0.0001, NS, no significance. (D) PCA to distinguish tumors from normal tissues according to the expression of the eight FRGs in
FUSCC TNBC cohort. (E–G) PPI network and the correlation of the eight FRGs in FUSCC TNBC cohort. (H–J) The somatic mutation, CNV frequency, and
chromosomal location of CNV of the eight FRGs in TCGA TNBC. (K–L) Uniform Manifold Approximation and Projection (UMAP) plot of total cells from
patients with TNBC in GSE118389, with each cell color coded for cluster and cell type. (M–T) The expression profiles of eight FRGs in TNBC at single-cell
level. FRGs, ferroptosis-related genes; TME, tumor microenvironment; TNBC, triple-negative breast cancer; FUSCC, Fudan University Shanghai Cancer
Center; PCA, principal component analysis; PPI, protein–protein interaction; CNV, copy number variation.
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FIGURE 2

Ferroptosis subtype identification in FUSCC TNBC cohort. (A–E) The consensus CDF, delta area, tracking plot, and consensus matrix (K = 2, 3)
plotted by “ConsensusClusterPlus” R package to identify distinct clusters in patients with TNBC. (F) PCA revealed that the expression of the eight
FRGs represented by distinct ferroptosis subtypes. (G) Kaplan–Meier curve showed the significant difference in OS between the two molecular
subtypes of TNBC. (H, I) The heatmap and split violin plot illustrated the variations of the eight FRGs among different subtypes of TNBC. (J)
Univariate Cox regression between the two ferroptosis subtypes on OS in TNBC by forest plot. (K) Volcano plot showed the DEGs between different
subtypes of TNBC (fold change = 1.5). FUSCC, Fudan University Shanghai Cancer Center; TNBC, triple-negative breast cancer; PCA, principal
component analysis; FRGs, ferroptosis-related genes; OS, overall survival; DEGs, differentially expressed genes. * P < 0.05, *** P < 0.001, **** P <
0.0001. NS, no significance.
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Immune landscape characterization within
ferroptosis-related subtypes

Ferroptotic tumor cells release DAMPs to affect the infiltration,

differentiation, and function of immune cells in the TME to influence

tumor growth (23). We therefore performed comprehensive analysis

to amply illustrate the immune signature of the two ferroptosis-related
Frontiers in Oncology 08
subtypes, as well as the role of ferroptosis in TME remodeling. The

expression of chemokines, interleukins, interferons, and receptors

were markedly different within the two distinct subgroups

(Figure 4A). Tumors in cluster 2 possessed lower immune, stromal,

ESTIMATE, dysfunction, and TIS scores, as well as higher tumor

purity, TIDE score, and exclusion score (Figures 4B–I). Further, we

applied Cibersort to infer the immune infiltration in tumors and
FIGURE 3

GO and GSVA of the two distinct subtypes. (A, B) GO analysis of up- and downregulated genes between the two subtypes (cluster 2 vs. cluster 1).
(C–E) GSVA between two distinct subtypes by MSigDB-v5.2 of C2 curated gene sets and H hallmark gene sets. GO, Gene Ontology; GSVA, gene set
variation analysis.
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found that there were less abundant NK cells resting and T cells CD4

memory activated in cluster 2 (Figure 4J), which may result from the

low expression of SOCS1 that was positively correlated with NK cells

resting numbers by Spearman’s correlation analysis (Figure 4K). In
Frontiers in Oncology 09
addition, the network plot illustrated the complex communications

among immune cells in the TME of TNBC (Figure 4L). Finally,

tumors in cluster 2 expressed less MHC complex and higher immune

checkpoints (Figures 4M, N). In summary, tumors in cluster 2 were
FIGURE 4

Variations of immune-related regulators and TME landscapes within distinct ferroptosis phenotypes. (A) The heatmap describes the variations in
mRNA expression of chemokines, interleukins, interferons, and other cytokines in ferroptosis phenotypes; Student’s t-test, *p < 0.05, ** P < 0.01, ***
P < 0.001, **** P < 0.0001. (B–I) The immune, stromal, ESTIMATE, TIDE, dysfunction, exclusion, and TIS scores and tumor purity among the two
subtypes; Wilcoxon test. (J) Infiltration of 24 populations of immune cells within the two clusters by Cibersort; Student’s t-test. (K) Spearman’s
correlation between the expression of the eight FRGs and immune cell infiltration in TNBC. (L) Interaction network of infiltrated immune cells by
Spearman’s correlation analysis according to the expression of the eight FRGs, and the line connecting two cell types indicates an interaction
between them. (M, N) Variations of MHC complexes and immune checkpoint expression at mRNA level among the ferroptosis subtypes; Student’s t-
test. TME, tumor microenvironment; FRGs, ferroptosis-related genes; TNBC, triple-negative breast cancer; NS, no significance.
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more likely to have a cold tumor phenotype with less immune

infiltration and high expression of immune checkpoints to build an

immunosuppressive TME.
Construction of the FerrScore model in
TNBC

We constructed a FerrScore model based on eight FRGs to

further study how ferroptosis affects the tumor phenotype and TME

remodeling, and we evaluated the accuracy of FRG signature in

predicting the response to chemotherapy and immunotherapy of

TNBC. We identified high and low FerrScore groups with

remarkably different OS by a cut-off value of 0.03, and the AUC

of 3-year survival was 0.70 of the FerrScore model (Figures 5A–C,

Supplementary Table 5). The age distribution, mRNA type, intrinsic

subtype, paclitaxel treatment status, tumor grade, and relapse-free

survival (RFS) status of patients among the two groups were

different (Supplementary Table 6). Among the two distinct

subtypes of TNBC, the FerrScore of cluster 2 was significantly

higher than that of cluster 1, and patients in cluster 2 were finally

incorporated into the high FerrScore group with worse OS

(Figures 5D, E). We found that the high FerrScore group had

more LAR mRNA subtype and less basal intrinsic subtype

(Figure 5F). Among the eight FRGs, the expression of EMC2 was

positively correlated with the FerrScore of tumors, while HMOX1

showed an obvious negative correlation (Figure 5G). The expression

of LPCAT3, EMC2, and NOX4 was higher in the high FerrScore

group than the lower one, while another five FRGs were

downregulated in the high FerrScore group (Figure 5H).

We explored the immune signature within the high and low

FerrScore groups to study the impact of FerrScore on TME

reprogramming and finally noticed that FerrScore was negatively

correlated with the expression of MHC complex molecules and

immune checkpoints (Figures 5I, J). Meanwhile, we found that

FerrScore positively correlated with metal ion SLC transporters,

tumor escape from immune attack, and PD-1 signaling pathways, as

well as negatively correlated with T-cell and B-cell receptor signaling

pathways (Figure 5K). In addition, we also observed a positive

association between FerrScore and stromal score, TIDE score, and

exclusion score, along with a negative correlation between FerrScore

and TIS score and immune score (Figure 5L). We inferred the

immune signatures between the two groups using the Cibersort,

XCELL, ssGSEA, TIMER, and MCP counter algorithms and found

that tumors with low FerrScore had higher abundance of immune cells

in the TME (Supplementary Figure 9). Altogether, FerrScore was an

effective reference indicator to determine the immune phenotype of

TNBC, which laid a solid foundation for its role in promising

candidate drug screening and ICI therapy response prediction.
FerrScore-based candidate drug screening
to guide chemotherapy

Large numbers of preclinical evidence uncovered that the

induction of ferroptosis in tumors contributed to preventing
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acquired chemotherapy resistance to several cancer therapies, and

ferroptosis inducers have been proven to work synergistically with

traditional drugs to suppress tumor growth in mouse models with

head and neck cancer (32). We first applied the FerrScore scoring

model to human breast cancer cell lines in CCLE and also identified

two clusters (Supplementary Figure 10A). Tumors in cluster 2 were

more sensitive to NUTLIN-3A(−), AFATINIB, and AZD8055 with

lower AUC values, while tumors in cluster 1 were more sensitive to

KU-55933, MASITINIB, PAC-1, AZD7762, BI-2536, and

PELITNIB (Supplementary Figures 10B–J).

To further study the potential role of FerrScore in response to

chemotherapy, we screened candidate compounds according to the

FerrScore to guide the chemotherapy of patients with TNBC. First,

we applied the FerrScore model to the CTRP and PRISM datasets

and identified five CTRP-derived (BRD5468, ZSTK474, AZD6482,

sildenafil, and canertinib) and five PRISM-derived (temsirolimus,

idasanutlin, everolimus, CGM097, and Nutlin-3) drugs by

Pearson’s correlation analysis for tumors with high FerrScore

(Figures 6A–D, Supplementary Table 7). Second, we calculated

the fold changes of the candidate agents’ target genes, while a higher

fold change indicated more potential for candidate drugs. Third, to

identify the most promising agents for high FerrScore tumors, we

then calculated the CMap score by submitting the 300 DEGs with

the most significant fold changes to the CMap website, and

everolimus achieved the best grades with a CMap score of −90.58

(Figures 6E, F). Finally, we searched the published experimental

evidence and clinical trial status of candidate drugs and found that

everolimus had been acknowledged as a therapeutic agent for

advanced breast cancer (Supplementary Table 7), which further

confirmed that everolimus was the most promising compound for

patients with higher FerrScore.
FerrScore-based ICI therapy prediction to
optimize immunotherapy

ICI therapy revolutionized the clinical treatment of patients

with cancer. Anti-PD-L1 antibodies have been proven to act

synergistically with ferroptosis activators (such as erastin) to

suppress tumor cell growth (30). DAMPs released from

ferroptotic tumor cells altered the TME status and ICI

therapy response. Therefore, we applied the FerrScore scoring

model to anti-PD-L1, anti-PD-1, and anti-PD-1 + CTLA-4 ICI

immunotherapy and adoptive T-cell therapy cohorts to predict

immunotherapy benefits.

First, we investigated an anti-PD-L1 immunotherapy cohort

(IMvigor210) of urothelial carcinoma. We divided patients into

high and low FerrScore groups, and patients in the high FerrScore

group had a worse OS (Figure 7A). Indeed, patients in the low

FerrScore group were more likely to benefit from anti-PD-L1

therapy (Figures 7B, C). In addition, tumors with lower FerrScore

also presented a higher frequency of tumor mutational burden

(TMB) and tumor neoantigen burden (TNB) (Figures 7D, E).

Higher TMB leads to higher TNB, increasing chances for T-cell

recognition, and is clinically associated with better ICI therapy
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FIGURE 5

FRG-based FerrScore model construction in TNBC. (A) High and low FerrScore groups classification using “ggrisk” R package by the cut-off value of
0.03. (B) The Kaplan–Meier curve uncovered worse OS of patients with high FerrScore. (C) The ROC curve shows the specificity and sensitivity of
FerrScore in predicting the 1-, 3-, and 5-year survival of patients with TNBC. (D) Variations of FerrScore between the two distinct clusters; Wilcoxon
test. (E) The Sankey diagram displays the correlation between clusters, FerrScore, RFS status, intrinsic subtype, and mRNA subtype by “ggalluvial” R
package. (F) The heatmap shows the correlation between FerrScore and Copy Number Aberration (CNA) subtype, iCluster subtype, intrinsic subtype,
mRNA subtype, mutation subtype, and SNF subtype in patients with TNBC. (G) Pearson’s correlation between the expression of eight FRGs and
FerrScore. (H) The mRNA expression of the eight FRGs among high and low FerrScore groups; Student’s t-test. (I, J) The expression of MHC
complexes and immune checkpoints between the high and low FerrScore groups; Student’s t-test, *p < 0.05, ** P < 0.01, *** P < 0.001, **** P <
0.0001. (K, L) Pearson’s correlation analysis between FerrScore and immune-related signaling pathways and scores. FRG, ferroptosis-related gene;
TNBC, triple-negative breast cancer; OS, overall survival; ROC, receiver operating characteristic; RFS, relapse-free survival; NS, no significance.
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outcomes (33). The AUC value of the FerrScore model to predict

anti-PD-L1 ICI benefits was 0.56 in the IMvigor210 cohort

(Figure 7F). Second, we applied the FerrScore model to an anti-

PD-1 therapy cohort (GSE78220) of melanomas, and patients with
Frontiers in Oncology 12
high FerrScore suffered worse OS (Figure 7G). Patients with low

FerrScore had better anti-PD-L1 therapeutic response, and the

AUC value of this model to predict anti-PD-L1 therapy response

was 0.74 (Figures 7H–J). Third, we divided patients with melanoma
FIGURE 6

Promising candidate drug identification for TNBC patients with high FerrScore. (A, B) Spearman’s correlation analysis and drug response comparison
of five CTRP-derived agents. (C, D) Spearman’s correlation analysis and drug response analysis of five PRISM-derived agents. (E, F) The clinical status,
experimental evidence, mRNA expression of target genes, and CMap score of the five CTRP-derived and five PRISM-derived drugs documented by
the heatmap. TNBC, triple-negative breast cancer; CTRP, Cancer Therapeutics Response Portal; PRISM, Profiling Relative Inhibition Simultaneously in
Mixtures. ** P < 0.01, *** P < 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1541119
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2025.1541119
FIGURE 7

Prognostic value of the FerrScore in predicting ICI therapy benefits. (A) Kaplan–Meier survival analysis between patients with high and low FerrScore
in IMvigor210 cohort with anti-PD-L1 therapy in urothelial carcinoma. (B) Variations of anti-PD-L1 responsiveness within high and low FerrScore
groups; Student’s t-test. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. (C) FerrScore of patients in
different anti-PD-L1 response groups; Wilcoxon test, *p < 0.05. (D, E) TMB and TNB frequency between high and low FerrScore groups; Wilcoxon
test, *p < 0.05, ** P < 0.01. (F) The ROC curve of FerrScore in predicting responsiveness of patients with anti-PD-L1 therapy. (G) Kaplan–Meier
survival curve among high and low FerrScore groups in GSE78220 cohort with anti-PD-1 therapy in melanoma. (H) Difference in anti-PD-1 response
between high and low FerrScore groups; Student’s t-test. (I) FerrScore of patients with different anti-PD-1 response; Wilcoxon test, *p < 0.05. (J) The
ROC curve of FerrScore in predicting responsiveness of patients following anti-PD-1 therapy. (K) Kaplan–Meier survival analysis between high and
low FerrScore groups in PRJEB23709 with anti-PD-1 + CTLA-4 combination therapy in melanoma. (L) Comparison of anti-PD-1 + CTLA-4 therapy
response among high and low FerrScore groups; Student’s t-test. (M) Wilcoxon test of FerrScore variation in anti-PD-1 + CTLA-4 response. (N) The
ROC analysis of FerrScore in predicting responsiveness of patients with anti-PD-1 + CTLA-4 therapy. (O) Kaplan–Meier survival analysis among high
and low FerrScore groups of melanoma patients with adoptive T-cell therapy in GSE100797. (P) Variations of adoptive T-cell therapy within high and
low FerrScore groups; Student’s t-test. (Q) FerrScore comparison in adoptive T-cell therapy; Wilcoxon test. ICI, immune checkpoint inhibitor; TMB,
tumor mutational burden; TNB, tumor neoantigen burden; ROC, receiver operating characteristic; NS, no significance.
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(PRJEB23709) following anti-PD-1 + CTLA-4 therapy into high

and low FerrScore groups. Patients with low FerrScore had better

OS and benefited more from anti-PD-1 + CTLA-4 therapy

(Figures 7K–M). The AUC value of the FerrScore model

to predict anti-PD-1 + CTLA-4 therapy benefit was 0.61

(Figure 7N). Finally, we clustered patients with melanoma

(GSE100797) following adoptive T-cell therapy into high and low

FerrScore groups and found no difference in the OS and therapy

benefits between the two groups (Figures 7O–Q). Collectively, the

FerrScore was a promising biomarker to predict ICI therapy

benefits to optimize therapy options for patients.
SOCS1 and NOX4 are associated with
immunity to TNBC

We ultimately focused on SOCS1 and NOX4 relating to the

previous analysis to further explore the definite role of FRG

signature in TME reprogramming. Pearson’s correlation analysis

indicated a strong positive correlation between SOCS1 expression

and the mRNA expression of PDCD1 (PD-1), CD274 (PD-L1),

CTLA-4, LAG-3, and HAVCR2 (TIM3), while the expression of

NOX4 negatively correlated with PDCD1, IDO1, and LAG3 mRNA

levels (Figures 8A–H). Therefore, we chose PD-1 as the key marker

to study the relationship between the two FRGs and immune

phenotype shaping. We divided the TNBC samples into cold and

hot immune phenotypes according to CD3 IHC staining and

examined the expression of SOCS1 and NOX4 across the two

subtypes of tumors (Figure 8I). We found that tumors with high

expression of NOX4 and low expression of SOCS1 were cold

tumors, while tumors with high expression of SOCS1 as well as

low expression of NOX4 exhibited phenotypes of hot tumors

(Figures 8I,J). Here, we verified that SOCS1 and NOX4 actively

participated in TME infiltration and remodeling of TNBC.

Furthermore, we analyzed SOCS1 gene expression in 11 TNBC

cell lines using the DepMap portal (https://depmap.org/portal).

Notably, MDA-MB-231 cells exhibited the highest expression

levels of SOCS1 (Figure 8J). Interestingly, the knockdown of

SOCS1 expression in MDA-MB-231 cells led to a reduction in

ferroptosis induced by RSL3 (Figures 8L,M).
Discussion

Immunotherapy-activated CD8+ T cell-released IFNg induces

ferroptosis-specific lipid peroxidation in cancer cells to promote

cancer immunotherapy (30). Ferroptotic tumor cell-derived

DAMPs modulate the innate immune system and then reshape

the TME (34). Ferroptosis in tumor cells has been proven

to enhance response to radiotherapy, chemotherapy, and

immunotherapy of tumors (16). In the present study, we

identified eight survival-associated FRGs in the FUSCC

cohort and explored the dysregulation and methylation of the
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eight FRGs in pan-cancers, as well as genetic variations and

expression profiles in TNBC. We observed different imbalance of

FRGs among pan-cancers, as well as expression profiles in TNBC,

which resulted in the phenotypic heterogeneity of TNBC in

clinical practice.

We classified patients with TNBC in the FUSCC cohort into

two ferroptosis molecular subtypes with significantly different OS:

cluster 1 (low FerrScore) and cluster 2 (high FerrScore). Tumors in

cluster 2 had worse OS with lower immune, TIS, and estimate scores

and higher TIDE scores, exclusion scores, and tumor purity, which

indicate a negative correlation between ferroptosis and tumor

immune infiltration. We also investigated a negative link between

ferroptosis and immune-related pathways, such as natural killer

cell-mediated cytotoxicity, and T-cell and B-cell receptor signaling

pathways. Meanwhile, MHC complexes and immune checkpoints

are rarely expressed in tumors of cluster 2, which may result from

the almost absent infiltration of immune cells. Previous studies have

implied that tumors with abundant lymphocyte infiltration

exhibited better prognosis in a wide range of cancers (35).

Additionally, there was a negative correlation between ferroptosis

and the enrichment scores of the programmed cell death pathway,

metal ion SLC transporters pathway, and drug metabolism

cytochrome p450 pathway. To further explore the role

of ferroptosis in tumor molecular subtyping and TME

reprogramming, we constructed an RFG-based scoring system

and defined it as FerrScore. We observed a negative correlation

between FerrScore and the expression of MHC complexes and

immune checkpoints. Tumors with high FerrScore had higher

stromal, TIDE, and exclusion scores, as well as lower TIS and

immune scores. Further, Pearson’s correlation analysis showed that

tumors with higher FerrScore correlated with the significant

enrichment of the metal ion SLC transporters pathway, tumor

escape from immune attack pathway, and PD-1 signaling

pathway. Our study indicated that ferroptosis in TNBC

reprogrammed TME into a “cold” phenotype with less

lymphocyte infiltration and immune checkpoint expression,

which reduced the opportunities for T-cell recognition and

reactivity to anticancer therapy.

Chemotherapy remains the preferred treatment option of

advanced TNBC in clinical practice according to the 2022 version

of the CSCO guidelines. However, resistance to chemotherapy

remains a largely insurmountable challenge for cancer therapy.

Ferroptosis inducers have been proven to act synergistically with

traditional compounds (for example, cisplatin) to inhibit tumor

growth in mouse models of head and neck tumor (32). We

identified six CTRP-derived and six PRISM-derived drugs by

Spearman’s correlation analysis for patients with high FerrScore,

which provided a reference for clinical therapy options. We further

confirmed everolimus as the most promising agent among 12

candidate drugs for patients with high FerrScore referring to

comprehensive factors including CMap score, experimental

evidence, and clinical trial status. Moreover, we applied FerrScore

to four immunotherapy cohorts to predict ICI benefits. Our present
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study indicated that patients with lower FerrScore are more likely to

benefit from anti-PD-L1, anti-PD-1, and anti-PD-1 + CTLA-4 ICI

therapy. The PD-L1 inhibitor atezolizumab combined with nab-

paclitaxel became the first immunotherapy regimen to show
Frontiers in Oncology 15
significant PFS and OS benefits in the first-line treatment of PD-

L1-positive (≥1% tumor area) metastatic TNBC. Moreover, the US

Food and Drug Administration (FDA) approved pembrolizumab

plus chemotherapy for Metastatic Triple - Negative Breast Cancer
FIGURE 8

SOCS1 and NOX4 were correlated with the TME reshape in TNBC. (A–E) Pearson’s correlation analysis of the mRNA expression of SOCS1 and
immune checkpoints (PD-1, PD-L1, CTLA-4, LAG3, and TIM3). (F–H) Pearson’s correlation analysis of the mRNA expression of NOX4 and immune
checkpoints (PD-1, IDO1, and LAG3). (I) IHC detected the expression of SOCS1, NOX4, PD-1, and CD3 in two immune phenotypes of TNBC
according to the spatial distribution of CD8+ T cells. Representative co-stained images are shown, and the scale bar corresponds to 500 mm. (J) The
expression of SOCS1, NOX4, PD-1, and CD3 in two phenotypes of TNBC detected by four-color IF. Representative co-stained images are displayed,
and the scale bar corresponds to 20 mm. (K) The expression levels of the SOCS1 gene across 11 TNBC cell lines using the DepMap portal (https://
depmap.org/portal). (L) The knockdown efficiency of SOCS1 in MDA-MB-231 cells. (M) Cell viability in MDA-MB-231 cells (either control or shSOCS1)
treated with RSL3 was assessed using the CCK-8 assay. **p < 0.01. TME, tumor microenvironment; TNBC, triple-negative breast cancer; IHC,
immunohistochemical; IF, immunofluorescence.
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(mTNBC) based on improved PFS in patients with a combined

positive score (CPS) ≥10 (36). In summary, FerrScore was a

potentially powerful metric to predict chemotherapy and ICI

therapy benefits, which provided new perspectives for the clinical

treatment of TNBC.

We focused on two ferroptosis genes, SOCS1 and NOX4, which

showed a significant correlation with the expression of immune

checkpoints of TNBC in the FUSCC cohort. Among the two

immune phenotypes of TNBC according to CD3 expression,

SOCS1 was significantly over-expressed in hot tumors, while

NOX4 was highly upregulated in cold tumors of TNBC.

Meanwhile, we investigated a positive correlation between the

expression of SOCS1 and PD-1, while NOX4 exhibited a negative

association with PD-1 expression by IHC and immunofluorescence

(IF) staining. SOCS1, a negative feedback regulator of cytokine

signaling, has been proven to suppress CD8+ T-cell proliferation in

mouse models of acute inflammatory arthritis (37). SOCS1

promoted ferroptosis and correlated with clinical progression in

TNBC (38, 39). SOCS1 was also identified as a negative regulator of

PD-L1 by a barcoding system developed by Professor Brown (40).

Meanwhile, SOCS1 was characterized as an intracellular negative

checkpoint of CD4+ T cells, and inactivation of SOCS1 restored

proliferation suppression and anticancer efficacy in both murine

and human CD4+ T cells (41, 42). However, we found a positive

correlation between SOCS1 expression and the infiltration of T cells

CD4 memory activated and NK cells resting in TNBC, as well as

PD-1 mRNA expression. Based on the above, we observed distinct

roles and mechanisms of SOCS1 in PD-1 and PD-L1 expression in

different disease types. Previous studies have shown that siRNA

knockdown or pharmacologic inhibition of NOX4 promoted intra-

tumoral CD8+ T-cell infiltration in many human cancer types and

restored immunotherapy response induced by cancer-associated

fibroblasts (CAFs) (43). NOX4 expression decreases from luminal

to TNBC, with rising Reactive Oxygen Species (ROS) levels

potentially driving mitochondrial reprogramming to promote

aggressiveness (44). In summary, we verified the important

influence of SOCS1 and NOX4 on immune landscape

reprogramming and immune phenotype reshaping of TNBC by a

variety of experiments, which implied their potential role in

enhancing the immunotherapy effect of TNBC.

We still recognized some limitations of our research, although

we applied the largest mRNA sequencing cohort of TNBC

worldwide to identify ferroptosis-related molecular subtypes.

First, TNBC is a heterogeneous disease characterized by its

diverse molecular features, genetic variability, metabolic

reprogramming, and unique tumor microenvironment. We

focused exclusively on a Chinese cohort, which is not

representative of the situation of all ethnographies, and patients

from multicenter clinical queues should be included for further

analysis and verification. Second, further mechanistic studies are

urgently needed to explore how SOCS1 and NOX4 affect T-cell

infiltration and PD-1 expression in TME of TNBC while some IHC

and IF experiments have been conducted. Nevertheless, our group is

conducting further studies that focus on the subject.
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Conclusion

In conclusion, we identified two distinct ferroptosis-related

molecular subtypes with significantly different OS and immune

landscapes, which illustrated a high heterogeneity of TNBC. We

constructed a FerrScore based on eight FRGs and uncovered a

negative correlation between FerrScore and immune infiltration,

which reshaped the TME into an immunosuppressive phenotype.

We confirmed everolimus as the most promising candidate agent

for patients with high FerrScore, as well as documented FerrScore as

a potentially powerful metric to predict anti-PD-L1, anti-PD-1, and

anti-PD-1 + CTLA-4 ICI therapy benefits.
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