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Background: Most small renal masses (SRMs) grow slowly and have good

prognosis, but a portion of SRMs can also demonstrate aggressive

characteristics, which can be explored by the proliferation-related marker Ki67.

Methods: A total of 241 patients collected from the two centerswere included in the

study, of which 145 patients from the First Affiliated Hospital of Guangzhou Medical

University were divided into training and validation cohort, while 96 patients from

Sun Yat-sen Memorial Hospital were served as test cohort. To ensure the class

balance of the outcomemeasures, the training cohort was oversampled, resulting in

an increase of 77 cases in the minority class. After variables processing and feature

selecting, optimal artificial intelligence-based model was constructed to predict the

Ki67 expression level, and the model performance, interpretation and application

development was performed.

Results: The baseline characteristics of enrolled patients were described, and no

statistically significant differences were found between two centers and cohorts,

both before and after oversampling. The optimal model, regularized random

forest, was constructed showing AUROC values of 0.802, 0.878, and 0.668, and

balanced accuracy of 0.744, 0.808, and 0.679 in the oversampling training,

validation, and test cohort, respectively. Model interpretation was performed, and

a web application was built.

Conclusions: An artificial intelligence-based predictive model for non-invasively

assessing the Ki67 expression level of SRMs was developed, thus providing

valuable reference for clinical decision-making in these patients.
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1 Introduction

According to the guidelines of the American Society of Clinical

Oncology (1), small renal masses (SRMs) are defined as renal

tumors detected incidentally on imaging with diameter less than

or equal to 4 cm, representing a group of tumors that include

benign, indolent, and aggressive types. The standard treatment

recommended by the guidelines is partial nephrectomy, with

active surveillance or renal tumor biopsy considered in specific

circumstances. The five-year cancer-specific survival probability for

SRMs ranges from 95% to 100% (2), as most tumors exhibit an

indolent natural progression with slow growth and minimal

metastasis. However, a subset of SRMs can also demonstrate

aggressive characteristics, which are associated with clear cell

subtype, high grade, positive p53 expression, and high Ki67

expression (3). Clinical factors and conventional imaging often

poorly predict this aggressive feature, while immunohistochemistry

can explore the nature of tumor growth and invasiveness by

detecting the expression of certain biomarkers, such as Ki67,

which reflects cell proliferation (4).

Previous studies have indicated that Ki67 is a prognostic

indicator for renal tumors, where high expression is associated with

aggressive behavior, poor prognosis, and adverse clinicopathological

features, potentially serving as a marker for risk stratification and

even a therapeutic target in renal tumors (5). For patients with renal

tumors under surveillance without surgical indication, Ki67 can serve

as a useful predictive marker for identifying suspicious lesions that

are highly proliferative. Early detection of such highly proliferative

tumors can enhance the precision and effectiveness of treatment,

prevent disease progression, and may extend overall survival (6).

However, due to the tumor heterogeneity, the Ki67 expression level

assessed from the biopsy sample evaluates only a small specimen and

may not accurately represent the entire tumor (7). Additionally,

biopsy is invasive and cannot dynamically monitor Ki67 expression

during tumor follow-up, which limits the application of biopsy

techniques in assessing Ki67 expression level.

The high cost and low detection rates of liquid biopsy techniques,

such as circulating tumor cells or circulating tumor DNA, have limited

their application in detecting Ki67 expression levels in SRMs (8).

Imaging techniques, which can directly or indirectly reflect

histopathological changes caused by gene and cytokine expression,

are currently the most commonly used non-invasive tools for detecting

Ki67 expression levels in tumors, but the accuracy of predicting tumor

invasiveness or Ki67 expression levels from imaging directly is

relatively low (9). Radiomics employs advanced analysis methods to

extract numerous features from medical images at high throughput,

transforming medical images into mineable high-dimensional data. By

analyzing the feature data through automated or semi-automated

software, it can provide more quantitative and more reliable

information than visual observation (10). Some studies have utilized

radiomics technology to predict the Ki67 expression level in renal

tumors (11–13). However, these studies failed to provide detailed

reproducibility protocols, used only one or a few algorithms to build

predictive models, and lacked clinical translation plans, which limited

their application. More importantly, these studies focused on renal

tumors of all sizes without specific reference to SRMs. SRMs exhibit
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distinct biological behavior compared to larger renal tumors, and

directly applying models developed for all renal tumor sizes to SRMs

without assessing their applicability is problematic. For SRMs, where

active surveillance is particularly relevant, no specialized non-invasive

tool currently exists for accurately predicting Ki67 expression, which is

crucial for clinical decision-making.

Therefore, this study focuses on SRMs and employs artificial

intelligence algorithms based on clinical characteristics and

computed tomography (CT) radiomics to predict the Ki67

expression level. The arterial phase of CT was chosen as the basis

for model construction in the study, because Ki67 expression is

closely associated with tumor angiogenesis and blood perfusion,

which can be effectively captured by arterial phase imaging (14).

This non-invasive and convenient tool will enable a more

comprehensive and accurate understanding of SRMs, allowing for

preoperative assessment of tumor proliferation, risk, invasiveness,

benign or malignant tendencies, and prognosis, thereby aiding

clinical diagnosis and treatment of SRM patients and promoting

personalized treatment strategies.
2 Materials and methods

2.1 Data collection and processing

This study retrospectively collected data from SRM patients at

the First Affiliated Hospital of Guangzhou Medical University

(FAHGZMU) and Sun Yat-sen Memorial Hospital (SYSMH)

from January 2015 to June 2024. Clinical baseline characteristics,

preoperative renal-related CT scans within 30 days, and

pathological Ki67 expression were extracted through the hospital

information system. Inclusion criteria included: (1) patients

underwent surgical resection of renal parenchymal tumors and

confirmed to have pathological Ki67 expression levels; (2) renal CT

scans conducted within 30 days before surgery, including the

arterial phase; (3) the maximum diameter of the renal tumor

shown on CT did not exceed 4 centimeters (cm); and (4)

complete clinical baseline characteristics were available. Exclusion

criteria included: (1) pathology obtained only through renal tumor

biopsy; and (2) the arterial phase of CT of poor quality, such as the

presence of artifacts or unclear tumor boundaries that are difficult

to identify.

Clinical baseline characteristics included age, sex assigned at birth

(sex), body mass index (BMI), tumor size, tumor laterality, history of

previous or existing other cancers (other cancer), Neutrophil-to-

Lymphocyte Ratio (NLR), and estimated Glomerular Filtration Rate

(eGFR). Age was categorized into two groups: < 65 years and ≥ 65

years. BMI was calculated as weight in kilograms divided by the square

of height in meters and then divided into normal (18.5 ≤ BMI < 25) or

abnormal groups. Tumor size was categorized into four groups: 0 < x ≤

1 cm, 1 < x ≤ 2 cm, 2 < x ≤ 3 cm, and 3 < x ≤ 4 cm. A history of

previous or existing other malignant tumors was included in the study

because it may indicate a constitutional tendency towards

tumorigenesis, which could be associated with tumor aggressiveness

and prognosis (15). NLR, which has been shown to correlate with the

pathological subtype, grade, stage, and biological aggressiveness of renal
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tumors (16, 17), was also included in the study. NLR was divided into

two groups, < 3 and ≥ 3, as previous studies suggest that categorizing

NLR using a cutoff of 3 has more clinical significance (18). The varying

aggressiveness of renal tumors may impose different burdens on the

kidney, thereby affecting eGFR, which was calculated using the CKD-

EPI Creatinine Age, Sex Equation (2021) (19). The formula is: 142 *

min(Scr/k,1)^a * max(Scr/k,1)^(-1.200) * 0.9938^age * 1.012[if

female], where Scr is serum creatinine, k is 0.7 for females and 0.9

for males, a is -0.241 for females and -0.302 for males, min indicates

the minimum of Scr/k or 1, and max indicates the maximum of Scr/k

or 1. eGFR was then divided into normal (eGFR ≥ 90) or

abnormal groups.

During CT scanning, non-ionic iodinated contrast material was

administered at a dose of 1.5 ml/kg (maximum volume 100 ml)

through the right antecubital vein using a power injector at a flow

rate of 2.5 ml/s. The arterial phase was acquired 25–30 seconds after

contrast injection, the venous phase at 60–70 seconds, and the

excretory phase at 2–3 minutes. The scan slice thickness was 2 mm,

and the reconstruction thickness was 2 mm. Image reconstruction

was performed using both soft tissue and sharp kernels.

Subsequently, CT images of the patients were imported into the

3D-slicer software (version 5.4.0) in Digital Imaging and

Communications in Medicine format, and the arterial phase,

which has been confirmed to have research value in previous

studies, was selected to extract radiomics features (12). The

researchers constructed a predictive model using only the arterial

phase of CT to differentiate Ki67 expression levels across renal cell

carcinomas of all sizes (12), thereby demonstrating the feasibility of

using the arterial phase alone. Additionally, employing only the

arterial phase simplifies the workflow, avoids noise and redundancy

from other phases, and reduces both model construction and

clinical application costs, facilitating efficient use. Moreover, the

arterial phase is the most standardized and widely used in renal CT

imaging across most centers, which is conducive to model

dissemination (20). Although other phases were not considered in

the study, it is worth noting that they may provide Supplementary

Information about the tumor, enriching the feature set and

potentially enhancing model accuracy and generalizability.

The region of interest (ROI) for the renal tumor was segmented

semi-automatically, initially using the Segment Editor module of the

3D-slicer software to automatically outline, followed by manual

adjustment of the ROI on each slice by researcher to ensure that

the ROI fit closely to the tumor and did not extend beyond its

boundaries. By combining the continuous ROI slices, a three-

dimensional volume of interest (VOI) was formed. Radiomics

features of the VOI were extracted using the SlicerRadiomics

extension plugin, and the images were preprocessed before

extraction, including resampling to unify voxel dimensions to 1*1*1

mm^3 to meet isotropy, discretization with a Bin Width of 25 HU to

reduce noise and standardize intensity, and application of Gaussian

kernel function transformations and wavelet transformations with

“1,2,3,4,5” Log kernel sizes and Wavelet-based features to extract

features based on LoG filter kernel wavelet transformations

(Supplementary Figure 1). A total of 1316 radiomics features were

extracted, with specific annotations available on the PyRadiomics

official website (http://pyradiomics.readthedocs.io/en/latest).
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Ultimately, 148 patients from FAHGZMU and 96 patients from

SYSMH were included in the study. Among them, the high Ki67

expression group, defined as Ki67 ≥ 10%, consisted of 25 and 15

cases, respectively. We reviewed studies on the impact of Ki67

expression levels on the biological behavior and prognosis of renal

tumors and found a wide range of Ki67 cutoff values used for

grouping, with the 10% choice being the most common. Studies

that selected 10% as the cutoff included a large number of patients, up

to 401, and involved renal tumor histological types that included all

stages of clear cell renal cell carcinoma and non-clear cell renal cell

carcinoma with follow-up times exceeding 100 months, and

endpoints including overall survival, cancer-specific survival and

disease-free survival (21, 22). These large, comprehensive cohort

studies provide a reference for the choice of Ki67 cutoff values, so

we selected 10% as the Ki67 cutoff value, as it may be the most

meaningful threshold for prognostic evaluation. Furthermore,

patients from FAHGZMU were randomly divided into training

and validation cohorts in a ratio of 7:3, while patients from

SYSMH served as the test cohort. Considering the class imbalance

of Ki67 expression levels, the training cohort was subjected to the

Synthetic Minority Over-sampling Technique (SMOTE) algorithm

for oversampling to balance the proportion of the high and low Ki67

expression groups (23), forming a dataset with a nearly 1:1 ratio,

referred to as the train_SMOTE cohort. The train_SMOTE cohort

was used for feature selection and model construction, while the

validation and test cohorts were used for model evaluation. All

categorical variables were converted into dummy variables in these

three cohorts, and continuous variables were standardized using Z-

score normalization based on the mean and standard deviation of the

train_SMOTE cohort. The study flowchart is detailed in Figure 1.
2.2 Feature selection and
model construction

Images of 30 randomly selected patients were segmented by

another researcher, and intraclass correlation coefficient (ICC) was

analyzed on the radiomics features extracted by different researchers,

among which features with ICC > 0.75 were reserved for subsequent

analysis. Correlation analysis was performed on both clinical baseline

characteristics and radiomics features to identify and eliminate highly

linearly correlated features, which were defined as having Pearson

correlation coefficients ≥ 0.9. Subsequently, a variety of dimensionality

reduction techniques were employed to refine the feature set: (1) Filter

methods: Support Vector Machine-Selection By Filter (svmSBF); (2)

Wrapper methods: Support Vector Machine-Recursive Feature

Elimination (svmRFE), Support Vector Machine-Simulated

Annealing (svmSA), Support Vector Machine-Genetic Algorithms

(svmGA), and Logistic Regression (LR); (3) Embedded methods:

least absolute shrinkage and selection operator (lasso); (4) Boruta.

Since the number of clinical baseline features is relatively small,

dimensionality reduction is achieved after applying the above

methods. For radiomics features, due to their high dimensionality, an

intersection analysis of features selected by different methods was

further conducted to obtain the final reduced feature set. The

reduced clinical features and radiomics features were then combined
frontiersin.org
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to formmultiple feature subsets, providing a foundation for subsequent

model construction.

A variety of artificial intelligence algorithms were used to build

models, including Adaptive Boosting, Discriminant Analysis, eXtreme

Gradient Boosting, Gaussian Process, Generalized Linear Model,

Logistic Regression, k-Nearest Neighbors, Multivariate Adaptive

Regression Spline, Multilayer Perceptron, Neural Network, Naive

Bayes, Partial Least Squares, Tree Model, Random Forest, Rotation

Forest, Support Vector Machines, Adjacent Categories Probability

Model, Multinomial Regression, Ordinal Regression, Radial Basis

Function Network, Nearest Shrunken Centroids, Non-Informative

Model. During model training, 5-fold cross-validation was

implemented, and the hyperparameter tuning strategies built into

each algorithm were used to optimize the model performance. By

applying these artificial intelligence-basedmodels on the train_SMOTE

cohort, validation cohort, and test cohort, predictions could be

obtained, and the area under the receiver operating characteristic

curve (AUROC) of the models could be calculated accordingly.
Frontiers in Oncology 04
Ultimately, the models were ranked based on their AUROC on the

validation cohort, leading to the selection of the best-performing

predictive model.
2.3 Model performance evaluation,
interpretability, and web
application development

The best threshold of the Receiver Operating Characteristic

(ROC) curve for the final predictive model was set as the binary

classification threshold, with samples above this threshold being

classified as high Ki67 expression group, and vice versa. Based on

the actual and predicted labels, the confusion matrix could be

calculated, where True Positive (TP) represents actual positive and

predicted positive, False Positive (FP) represents actual positive and

predicted negative, True Negative (TN) represents actual negative

and predicted negative, and False Negative (FN) represents actual
FIGURE 1

The flowchart of the study. FAHGZMU, First Affiliated Hospital of Guangzhou Medical University; SYSMH, Sun Yat-sen Memorial Hospital; svmSBF,
Support Vector Machine-Selection By Filter; svmRFE, Support Vector Machine-Recursive Feature Elimination; svmSA, Support Vector Machine-
Simulated Annealing; svmGA, Support Vector Machine-Genetic Algorithms; LR, Logistic Regression; ROC, receiver operator characteristic; PR,
precision-recall; DCA, decision curve analysis; SHAP, Shapley Additive exPlanations; LIME, local interpretable model-agnostic explanations.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1541143
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lin et al. 10.3389/fonc.2025.1541143
negative and predicted positive. From this, model performance

metrics could be calculated: (1) Precision, equivalent to Positive

Predictive Value, calculated as Precision = TP/(TP+FP); (2) Recall,

equivalent to Sensitivity and True Positive Rate, calculated as Recall =

TP/(TP+FN); (3) Specificity, equivalent to True Negative Rate,

calculated as Specificity = TN/(TN+FP); (4) Negative Predictive

Value (NPV), calculated as NPV = TN/(TN+FN); (5) Balanced

accuracy, which is more meaningful than Accuracy in imbalanced

binary classification prediction models, calculated as Balanced

accuracy = (Sensitivity+Specificity)/2 = (Recall+Specificity)/2.

Additionally, the discriminative power of the final model was

assessed using the ROC curve and Precision-Recall (PR) curve,

while calibration and clinical usefulness performance were assessed

through calibration curves and Decision Curve Analysis (DCA).

Since artificial intelligence algorithms are often considered

“black box” models that are difficult to interpret directly,

numerous methods have been developed to explain artificial

intelligence-based models (24). At both the dataset and individual

observation levels, Shapley Additive exPlanations (SHAP) (25)

values were calculated, which is a tool for measuring the

contribution of variables to model predictions, with positive

values indicating an increase in the prediction probability and

negative values indicating a decrease. Furthermore, local

interpretable model-agnostic explanations (LIME) was used to

explain model predictions at the individual observation level,

which approximates the decision process of the original model

locally by generating virtual samples around a specific observation

and then training a simpler, transparent model (26).

To facilitate the clinical translation of the model and to make it

easily applicable in actual clinical settings, we developed a Web

application using the R package “Shiny”, which integrates the steps

of data standardization and model prediction. It consists of two

main components: The first part allows users to input model-related

predictive factors and obtain prediction results, while the second

part provides detailed information about the article and the model,

including model performance, interpretation of predictive factors,

and relevant information on image processing. Users are required

to segment small renal masses on the arterial phase of renal CT

using the 3D-Slicer software and extract radiomics features using

the settings provided in this study. Upon inputting the raw values of

the radiomics features and selecting relevant clinical information,

the Web application will generate the predicted Ki67 expression

level. This integrated web application aims to enhance the

practicality and accessibility of the model, enabling it to support

clinical decision-making.
2.4 Statistical analysis

All statistical analyses were performed using R version 4.3.3

(https://www.r-project.org/), with statistical significance defined as

a two-tailed P < 0.05.

For clinical baseline data, which are all categorical variables, the

chi-square test was used to calculate expected frequencies; if the

frequencies were appropriate for the chi-square test, it was applied.

If not, the Fisher’s exact test was utilized for the analysis.
Frontiers in Oncology 05
The outcomes for categorical variables were depicted as

“number (percentage)”.

In subsequent analyses, we utilized 7 methods for the selection of

predictive variables: Support Vector Machine-Selection By Filter

(svmSBF), Support Vector Machine-Recursive Feature Elimination

(svmRFE), Support Vector Machine-Simulated Annealing (svmSA),

Support Vector Machine-Genetic Algorithms (svmGA), Logistic

Regression (LR), least absolute shrinkage and selection operator

(lasso), and Boruta; and constructed predictive models using 22

classes of artificial intelligence algorithms: Adaptive Boosting,

Discriminant Analysis, eXtreme Gradient Boosting, Gaussian

Process, Generalized Linear Model, Logistic Regression, k-Nearest

Neighbors, Multivariate Adaptive Regression Spline, Multilayer

Perceptron, Neural Network, Naive Bayes, Partial Least Squares,

Tree Model, Random Forest, Rotation Forest, Support Vector

Machines, Adjacent Categories Probability Model, Multinomial

Regression, Ordinal Regression, Radial Basis Function Network,

Nearest Shrunken Centroids, Non-Informative Model.
3 Results

3.1 Baseline characteristics

After applying the inclusion and exclusion criteria, the study

ultimately included 145 patients from FAHGZMU and 96 patients

from SYSMH. Among the patients in this center, there were 33 cases

(13.69%) and 18 cases (18.75%) in the high Ki67 expression group,

respectively. Additionally, the cases from both centers showed a

similar distribution in other clinical baseline characteristics, with no

statistically significant differences. Specifically, SRM patients included

in the study were mainly males under 65 years old, without a history

of previous or existing other cancers, with tumor diameters mostly

over 2 centimeters, slightly more common on the right side, and with

NLR values mostly less than 3. The proportions of normal and

abnormal for BMI and eGFR were roughly equal (Table 1).

Subsequently, the FAHGZMU cohort was randomly split into a

training cohort and a validation cohort in a ratio of 7:3, with the

training cohort including 11 cases in the high Ki67 expression group,

accounting for 10.78%. To address the issue of class imbalance, we

employed the SMOTE oversampling strategy, increasing the number of

samples in the high Ki67 expression group from 11 to 88. After

oversampling, the distribution of baseline characteristics in the high

Ki67 expression group remained consistent with the pre-oversampling

distribution, showing no statistically significant differences

(Supplementary Table 1). This was then combined with the original

91 cases in the low Ki67 expression group to form the train_SMOTE

cohort, which was nearly a 1:1 ratio and used for subsequent

model construction.

In previous studies on predicting Ki67 levels for other tumors,

most investigations utilized single-center data for model construction

and validation. Only a few studies, like ours, incorporated external

data to further test the models, such as those in lung cancer (27) and

gastrointestinal stromal tumors (28). Additionally, it is worth

mentioning that a few studies, due to imbalanced outcome classes,

also employed SMOTE for oversampling (29, 30).
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3.2 Feature selection and
model construction

Feature selection was performed separately on clinical baseline

characteristics and radiomics features. There was no high

correlation among the clinical baseline characteristics, so all were

used for feature selection. Through different selection methods,
Frontiers in Oncology 06
seven optimal subsets were ultimately produced, with one subset

including all 10 clinical baseline characteristics (Figure 2A).

The 1316 radiomics features extracted by 3D-slicer were

reduced to 337 after ICC analysis and removal of highly linear

correlation features. Various dimensionality reduction methods

were applied, with svmSBF, svmRFE, svmSA, svmGA, LR, lasso,

and Boruta selecting 144, 308, 73, 247, 14, 29, and 134 features,
frontiersin.or
TABLE 1 Baseline characteristics of small renal mass patients.

FAHGZMU SYSMH P for FAHGZMU
and SYSMH

All, N=145 Train, N=102 Val, N=43 Test, N=96

Age (y) 0.903

<65 181 (75.10%) 78 (76.47%) 30 (69.77%) 73 (76.04%)

≥65 60 (24.90%) 24 (23.53%) 13 (30.23%) 23 (23.96%)

Sex 0.267

Female 97 (40.25%) 48 (47.06%) 15 (34.88%) 34 (35.42%)

Male 144 (59.75%) 54 (52.94%) 28 (65.12%) 62 (64.58%)

BMI 0.694

Normal 123 (51.04%) 56 (54.90%) 20 (46.51%) 47 (48.96%)

Abnormal 118 (48.96%) 46 (45.10%) 23 (53.49%) 49 (51.04%)

Other cancer 0.239

Yes 20 (8.30%) 9 (8.82%) 6 (13.95%) 5 (5.21%)

No 221 (91.70%) 93 (91.18%) 37 (86.05%) 91 (94.79%)

Diameter (cm) 0.606

0<x ≤ 1 7 (2.90%) 2 (1.96%) 2 (4.65%) 3 (3.12%)

1<x ≤ 2 49 (20.33%) 24 (23.53%) 9 (20.93%) 16 (16.67%)

2<x ≤ 3 85 (35.27%) 39 (38.24%) 13 (30.23%) 33 (34.38%)

3<x ≤ 4 100 (41.49%) 37 (36.27%) 19 (44.19%) 44 (45.83%)

Laterality 0.473

Left 111 (46.06%) 47 (46.08%) 23 (53.49%) 41 (42.71%)

Right 130 (53.94%) 55 (53.92%) 20 (46.51%) 55 (57.29%)

NLR 0.115

<3 180 (74.69%) 80 (78.43%) 34 (79.07%) 66 (68.75%)

≥3 61 (25.31%) 22 (21.57%) 9 (20.93%) 30 (31.25%)

eGFR 0.692

Normal 123 (51.04%) 52 (50.98%) 20 (46.51%) 51 (53.12%)

Abnormal 118 (48.96%) 50 (49.02%) 23 (53.49%) 45 (46.88%)

Ki67 expression 0.096

<10% 208 (86.31%) 91 (89.22%) 39 (90.70%) 78 (81.25%)

≥10% 33 (13.69%) 11 (10.78%) 4 (9.30%) 18 (18.75%)
FAHGZMU, First Affiliated Hospital of Guangzhou Medical University; SYSMH, Sun Yat-sen Memorial Hospital; Train, training cohort; Val, validation cohort; Test, test cohort; BMI, body mass
index; Other cancer, history of previous or existing other cancers; NLR, Neutrophil-to-Lymphocyte Ratio; eGFR, estimated Glomerular Filtration Rate; Normal of BMI and eGFR represents 18.5
≤ BMI < 25 and eGFR ≥ 90, respectively. Calculation formulas: BMI = weight/(height)^2; NLR = Blood neutrophils/Blood lymphocytes; eGFR = 142 * min(Scr/k,1)^a * max(Scr/k,1)^(-1.200) *
0.9938^age * 1.012[if female], where Scr is serum creatinine, k is 0.7 for females and 0.9 for males, a is -0.241 for females and -0.302 for males, min indicates the minimum of Scr/k or 1, and max
indicates the maximum of Scr/k or 1.
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respectively. Given that the number of features after selection was

still large, we further refined the feature set through intersection.

The filter method svmSBF, the embedded methods lasso, and

Boruta, these three methods were collectively intersected with the

wrapper methods svmRFE, svmSA, svmGA, and LR in sequence.

Ultimately, this process respectively identified 16, 2, 15, and 3

radiomics features (Figure 2B), forming four optimal subsets of

radiomics features.

The optimal subsets of clinical baseline characteristics and

radiomics features were combined one by one, resulting in 28

datasets used for constructing artificial intelligence-based models.

Using the R package caret, we trained 66 models of 22 types of

algorithms on the train_SMOTE cohort. The specific names of these

algorithms and corresponding parameters of method in the caret

package are shown in Supplementary Table 2. The AUROC of each

model in the train_SMOTE cohort, validation cohort, and test cohort

was calculated and ranked based on the values from the validation

cohort. Some model results were visualized through heatmaps

(Figure 3), while the detailed results of all models are presented in

Supplementary Table 3. Among all models, the best performing

model was CsvmRFE_R4type.svmSA_RRF, indicating that its

clinical features (C) were selected using the svmRFE method, while

its radiomics features (R), LoG(s=2)_firstorder_Maximum and LoG

(s=2)_GLSZM_LowGrayLevelZoneEmphasis, were determined

through the intersection analysis of svmSA with the other three

methods, and it is a regularized random forest (RRF) model

constructed based on these variables. This optimal model

demonstrated AUROC values of 0.802, 0.878, and 0.668 in the

train_SMOTE cohort, validation cohort, and test cohort, respectively.

We employed a variety of variable selection and model

construction methods in the study, which is rare in existing

studies on predicting Ki67 levels in renal tumors or other tumors.

While a few studies might have used multiple variable selection

methods, such as in pituitary adenomas (31), or multiple model

construction methods, such as the five machine learning algorithms
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used in breast cancer (32) and medulloblastoma studies (33), the

majority of studies selected only one or a few methods. This may

lead to the neglect of other potential approaches.
3.3 Model performance

Based on the best threshold of 0.003 determined by the ROC

curve of the optimal model in the train_SMOTE cohort, the

predicted values were transformed into binary classification

results. Consequently, the confusion matrices (Figure 4A) and

performance metrics (Figure 4B) were calculated. The balanced

accuracy of the model in the train_SMOTE cohort, validation

cohort, and test cohort was 0.744, 0.808, and 0.679, respectively.

Regarding other performance indices, the precision, recall,

specificity, and NPV of the training cohort were 0.706, 0.818,

0.670, and 0.792, respectively. In the validation and test cohorts,

the recall (1.000 and 0.833) and NPV (1.000 and 0.932) increased,

while specificity slightly decreased (0.615 and 0.526), and precision

decreased more significantly (0.211 and 0.288). The high recall and

NPV, along with the low precision, suggest that the model could

effectively identify most high Ki67 expression cases but also

produced relatively high false positives.

The model’s discrimination was demonstrated through ROC and

PR curves. The AUROC results were consistent with those shown in

the model optimization, with values of 0.802, 0.878, and 0.668 in the

train_SMOTE cohort, validation cohort, and test cohort, respectively

(Figure 4C). The possible reasons for the lower AUROC value in the

test cohort may include: (1) the small sample size of the internal

datasets, whichmay limit themodel’s generalizability; (2) oversampling

of the minority class with high Ki67 expression during model training,

which may reduce model performance in real-world cohorts; and (3)

the exclusive use of radiomics features from arterial phase CT in model

construction, which may lead to the neglect of potential predictive

factors in other imaging modalities and phases. The area under the PR
FIGURE 2

The results of feature selection of clinical baseline characteristics (A) and radiomics features (B). Given that the number of radiomics features after
selection was still large, intersection was further used to refine the feature set. BMI, body mass index; other cancer, history of previous or existing
other cancers; NLR, Neutrophil-to-Lymphocyte Ratio; eGFR, estimated Glomerular Filtration Rate; svmSBF, Support Vector Machine-Selection By
Filter; svmRFE, Support Vector Machine-Recursive Feature Elimination; svmSA, Support Vector Machine-Simulated Annealing; svmGA, Support
Vector Machine-Genetic Algorithms; LR, Logistic Regression; R4type, three methods (svmSBF, lasso, Boruta) together intersected with the wrapper
methods (svmRFE, svmSA, svmGA, and LR in sequence).
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curve (AUPRC) was significantly reduced in the validation cohort and

test cohort, with values of 0.359 and 0.368, respectively, compared to

0.827 in the train_SMOTE cohort (Figure 4D). Although the ratio of

outcome variable in the train_SMOTE cohort was close to 1:1, class

imbalance still existed in the validation and test cohort, with the high

Ki67 expression group accounting for 9.30% and 18.75%, respectively,

which may be the main reason for the lower AUPRC (34). In addition,

we also plotted calibration curves (Figure 4E) and DCA (Figure 4F) to

demonstrate the model’s calibration and clinical usefulness.

Compared with other studies on predicting Ki67 levels, most

investigations typically only had internal datasets, making it

impossible to assess their external generalizability. In these studies,

the AUC values for their training and validation cohorts were usually

around 0.8, similar to our internal dataset. A few studies had poorer

discrimination performance, such as an AUC of 0.69 (33), or better

performance, with AUC values of 0.95 and 0.86 in the training and

validation cohorts, respectively (32). Among the few studies involving

external datasets, their external cohort performance was slightly worse
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than the internal data but generally reached above 0.7 (27, 28), showing

slightly better generalizability than our study.
3.4 Model interpretability

We attempted to explain the “black box” of the artificial

intelligence-based model, with variable importance and SHAP

values used to reveal the contribution of each variable to the

model’s predictions. The results showed that the radiomics feature

LoG(s=2)_firstorder_Maximum had a significant contribution to the

model; however, the contributions of other included variables could

not be quantified through these two methods (Supplementary

Figures 2A-C). Consistent results were obtained through local

analysis of specific observations (Supplementary Figures 2D-E).

To clarify whether other predictive variables do not play a role in

the model’s predictions, we attempted to predict Ki67 expression levels

using only the feature LoG(s=2)_firstorder_Maximum. The binary
FIGURE 3

Top artificial intelligence algorithms for model optimization according to the AUROC of the validation cohort. The algorithm label (C_R_M)
represents clinical features (C) and radiomics features (R) are used together to build the model (M). train_SMOTE, train_SMOTE cohort; val, validation
cohort; test, test cohort; AUROC, the area under the receiver operating characteristic curve.
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classification of the prediction results was based on the best threshold

of ROC curve of this feature in the train_SMOTE cohort. The results

showed that when relying solely on LoG(s=2)_firstorder_Maximum

for prediction, the model’s AUROC and balanced accuracy

significantly decreased compared to before, and other performance

metrics also decreased to varying degrees (Supplementary Figure 2F).

This finding suggests that the model’s overall performance was

compromised after the removal of other variables, thus confirming

that other variables also play within the model, although variable

importance and SHAP did not adequately explain or quantify

their impact.

Furthermore, we used LIME to explain the optimal model,

which is an algorithm that constructs a more understandable, lasso,

to explain the prediction results for specific observations. The

analysis results revealed the importance of variables that

significantly influenced the prediction results for specific

observations, showing that LoG(s=2)_firstorder_Maximum was

indeed the most important predictive variable, while other

variables were not without effect (Supplementary Figure 2G).

Nomograms can illustrate the decision-making process of logistic

regression by quantifying the risk scores of predictive factors. In

contrast, machine learning models usually require indirect methods

for interpretation. We used SHAP and LIME to elucidate the

mechanisms of our models to some extent. This is an improvement

compared to previous machine learning models for predicting tumor

Ki67 levels, which did not attempt to explain the models (29, 31).
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3.5 Web application development

We built an interactive web application where users can input

the values of relevant predictive variables to output the predicted

Ki67 level grouping results (https://doctorlinjy.shinyapps.io/

smallrenalmasski67prediction/).

Models based on logistic regression can be enhanced in their

applicability through nomograms. However, previous models based

on machine learning algorithms, such as the k-Nearest Neighbors

model for pituitary adenomas (31) and the random forest model for

gliomas (29), typically did not provide a way to use the model. This

limited their clinical translation. In contrast, the web application we

developed facilitates the use of the established models by users.
4 Discussion

Advances and widespread adoption of imaging technologies

have led to a significant increase in the number of incidentally

detected renal masses, particularly SRMs with a diameter not

exceeding 4 centimeters (35). Although the prognosis for the

majority of SRMs is relatively favorable, a subset of them still

exhibit robust proliferation and invasiveness (3). Analyzing the cell

proliferation marker Ki67 allows for the assessment of tumor

growth and invasiveness, which is crucial for predicting the

aggressiveness of SRMs, risk stratification, and clinical decision-
FIGURE 4

Model Performance. Confusion matrices (A), performance metrics (B), ROC curves (C), PR curves (D), calibration curves (E), and DCA (F) of the final
model in the train_SMOTE, validation and test cohort. The results of ROC and PR curves was presented in the format of “the area under the curve
(95% confidence interval)”. train_SMOTE, train_SMOTE cohort; val, validation cohort; test, test cohort; NPV, Negative Predictive Value; ROC, receiver
operating characteristic; DCA, Decision Curve Analysis.
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making (4, 5). Radiomics techniques have the potential to enhance

the accuracy of tumor diagnosis and have shown promise in

evaluating tumor characteristics, assisting differential diagnosis,

and optimizing clinical decisions (36). Numerous studies have

demonstrated the effectiveness of radiomics techniques in

preoperatively predicting Ki67 expression levels in various

tumors. In the field of renal tumor, Scrima and colleagues found

a significant statistical correlation between CT texture features and

Ki67 expression in SRMs, but their study did not delve further (11);

Yang and colleagues constructed an xgboost-based predictive model

based on arterial phase radiomics features, however, their study

included renal tumors of all sizes, not specifically focusing on

SRMs (12).

This study collected data from SRM patients at two centers and

grouped them based on Ki67 expression, among which patients

with Ki67 ≥10% were classified as high expression group. Clinical

baseline characteristics of the patients were collected, and tumor

segmentation of the arterial phase CT images was performed using

3D-slicer software, extracting 1316 radiomics features. By reducing

the dimensionality of clinical and radiomics features, a regularized

random forest model was ultimately constructed to predict Ki67

expression levels. The model demonstrated AUROC values of 0.802,

0.878, and 0.668, and balanced accuracy of 0.744, 0.808, and 0.679

in the training, validation, and test cohorts, respectively.

Additionally, calibration curves and DCA showed that the model

has a certain degree of calibration and clinical usefulness value. To

facilitate the use of the model, we also developed a web application.

The artificial intelligence-based predictive model allows for

non-invasive preoperative assessment of Ki67 expression in SRM

patients, enabling preliminary judgment of the tumor’s proliferative

capacity, risk, invasiveness, and malignant potential and prognosis,

increasing understanding of its natural course. This aids in

providing more diagnostic and therapeutic evidence for SRM

patients, assisting clinical decision-making, and promoting

personalized precision therapy. For SRM patients predicted to

have low Ki67 expression, there will be a basis for considering

delay treatment and potentially performing renal tumor biopsy

before deciding on subsequent treatment; whereas for patients

predicted to have high Ki67 expression, there is a cautionary

effect, indicating that preoperative treatment plans may be

considered, or higher requirements may be necessary to achieve

the standard of negative surgical margin.

The model interpretability highlights the crucial role of the

radiomics feature in the prediction process. Although other features

did not reveal their specific contributions through SHAP analysis, they

still possess potential relevance that cannot be ignored. For example,

age, gender, and BMI may reflect different physiological and metabolic

states of the body, which could potentially be associated with the

aggressiveness of renal tumors through their impacts on the molecular

level, immune function, and lifestyle (37). Additionally, a history of

previous or existing other malignant tumors may indicate a

predisposition to tumor development, thereby affecting the

aggressiveness and prognosis of renal tumors (15). The NLR has

been shown to be associated with the pathological subtype, grade,
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stage, and biological aggressiveness of renal tumors, which may be

reflected through Ki67 expression (16, 17). Furthermore, eGFR, as an

indicator of renal filtration function, may vary with different levels of

tumor aggressiveness, as more aggressive renal tumors may impose

greater burdens on kidney function, resulting in different eGFR

levels (19).

Ki67 exhibits significant heterogeneity in renal cell carcinoma,

which has important implications for clinical outcomes.

Specifically, high Ki67 expression is typically associated with

aggressive pathological features, such as tumor necrosis, high-

grade nuclear grading, and perirenal fat invasion, and is also

linked to increased recurrence risk and significantly reduced

survival rates (5). In the studies related to Ki67, the choice of

cutoff values varies greatly among different tumors, and even for the

same tumor, a unified standard is lacking. This directly affects the

assessment of patient prognosis and treatment decision-making.

For example, a lower cutoff value can increase sensitivity but carries

the risk of overdiagnosis, while a higher cutoff value has the

opposite effect. Moreover, the use of different cutoff values in

various studies may place the same patient in different risk

groups, leading to conflicting prognostic interpretations and

thereby obscuring the true value of Ki67 as a prognostic marker.

The heterogeneity of Ki67 and the variability in cutoff values

undermine its reliability as an independent prognostic tool for

RCC, resulting in inconsistent clinical outcomes and suboptimal

treatment decisions. Future research needs to establish more

standardized detection and evaluation methods, focusing on

standardizing the cutoff values for Ki67, and further exploring its

application effects in different subtypes or sizes, in order to fully

realize the potential of Ki67 in precision oncology.

This study has some limitations. First, the number of cases

included in this study is relatively small. Although we collected

cases from two centers, only 145 and 96 SRM patients were

included, with 33 and 18 cases in the high Ki67 expression group,

respectively. Limited by the sample size, we could not perform

matching but instead used an oversampling strategy. Although

many studies have used oversampling strategies, and the datasets

before and after oversampling in our study had similar

distributions, whether the data generated by oversampling can

accurately represent real-world situations remains to be verified.

Second, this study only selected the arterial phase for analysis,

which, despite being the most commonly used enhanced phase and

having been confirmed in previous studies to have certain

performance in predicting Ki67 in renal tumors, did not consider

other phases or imaging methods, which may lead to the omission

of some useful features that we did not focus on. Third, we selected

the best-performing model based on AUROC, which has good

performance, but the artificial intelligence-based model is a black

box, and variable importance and SHAP cannot explain it well.

Although we clarified the input and output processes of the model,

its decision-making process is not transparent enough. Lastly, the

performance of the constructed model is not satisfactory. In the

future, strategies to improve model generalizability are needed.

These include increasing the sample size, incorporating data from
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more centers, ensuring class balance in the original data, including

more clinical features, utilizing a wider range of imaging modalities

and phases, and developing more transparent artificial intelligence-

based models.
5 Conclusions

This study developed an artificial intelligence-based predictive

model for non-invasively assessing the Ki67 expression level in

patients with small renal mass, providing valuable reference for

clinical decision-making in these patients. However, the model was

established based on retrospective analysis of arterial phase CT and

clinical characteristics from two centers and still requires validation in

prospective cohorts. In the future, it needs to be improved using larger

and more diverse datasets, additional imaging modalities and phases,

and more advanced radiomics and artificial intelligence methods.
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SUPPLEMENTARY FIGURE 1

Demonstration of the settings for radiomics feature extraction using the

SlicerRadiomics extension plugin in the 3D-slicer software.

SUPPLEMENTARY FIGURE 2

Model Interpretability. Global explanations include variable importance (A)
and SHAP values (B, C), and local explanations include SHAP values (D, E) and
LIME (G). Since variable importance and SHAP only show the importance of
the radiomics feature LoG(s=2)_firstorder_Maximum, only the feature was

used for prediction, and the results show that the performance metrics drop
significantly compared with before (F). BMI, body mass index; other cancer,

history of previous or existing other cancers; NLR, Neutrophil-to-
Lymphocyte Ratio; eGFR, estimated Glomerular Filtration Rate;

train_SMOTE, train_SMOTE cohort; val, validation cohort; test, test cohort;

AUROC, the area under the receiver operating characteristic curve; NPV,
Negative Predictive Value; SHAP, Shapley Additive exPlanations; LIME, local

interpretable model-agnostic explanations.
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