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resonance imaging-based and
machine learning model for the
noninvasive differentiation of
intracranial glioblastoma, primary
central nervous system
lymphoma and brain metastases:
a retrospective analysis
Yuxiang Sun1,2†, Junpeng Xu2†, Dongsheng Kong2†, Yu Zhang3,
Qijia Wu2, Liqin Wei2, Zihao Zhu1, Chunhui Li1*

and Shiyu Feng2*

1Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China, 2Department of
Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China, 3Department
of Neurosurgery, Xuanwu Hospital, Xiongan, China
Background: Accurate preoperative identification of intracranial glioblastoma

(GB), primary central nervous system lymphoma (PCNSL), and brain metastases

(BM) is crucial for determining the appropriate treatment strategy.

Purpose: We aimed to develop and validate the utility of preoperative magnetic

resonance imaging-based radiomics and machine learning models for the

noninvasive identification them. STUDY TYPE: Retrospective. POPULATION:

We included 202 patients, including 71 GB, 59 PCNSL, and 72 BM, randomly

divided into a training cohort (n =141) and a validation cohort (n = 61).FIELD

STRENGTH/SEQUENCE: Axial T2-weighted fast spin-echo sequence (T2WI) and

contrast-enhanced T1-weighted spin-echo sequence (CE-T1WI) using 1.5-T and

3.0-T scanners. ASSESSMENT: We extracted radiomics features from the T2

sequence and CE-T1 sequence separately. Then, we applied the F-test and

recursive feature elimination (RFE) to reduce the dimensionality for both

individual sequences and the combined sequence CE-T1 combined with

T2.The support vector machine (SVM), k-nearest neighbor (KNN), and naive

Bayes classifier (NBC) were used in model development. STATISTICAL TESTS:

Chi-square test, one-way analysis of variance, and Kruskal-Wallis test were

performed. The P values <0.05 were considered statistically significant.

Performance was evaluated using AUC, sensitivity, specificity, and

accuracy metrics.

Result: The SVM model exhibited superior diagnostic performance with macro-

average AUC values of 0.91 for CE-T1 alone, 0.86 for T2 alone, and 0.93 for
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combined CE-T1 and T2 sequences. And the combined sequence model

demonstrated the best overall accuracy, sensitivity, and F1 score, with an

accuracy of 0.77, outperforming both KNN and NBC models.

Conclusion: The SVM-based MRI radiomics model effectively distinguishes

between GB, PCNSL, and BM. Combining CE-T1 and T2 sequences

significantly enhances classification performance, providing a robust,

noninvasive diagnostic tool that could assist in treatment planning and improve

patient outcomes.
KEYWORDS

central nervous system malignant tumors, machine learning, magnetic resonance
imaging; multi-classification, glioblastoma, PCNSL = primary CNS lymphoma
1 Introduction

Central nervous system malignant tumors are a type of highly

heterogeneous intracranial solid tumors, mainly originating from

brain tissue or secondary to tumor metastasis in other organs.

Among them, glioblastoma (GB), Primary Central Nervous System

Lymphoma,(PCNSL) and brain metastases (BM) are three common

CNS malignant tumors (1). Due to their complexity in clinical

manifestations and treatment strategies, they cause a serious threat

to patients’ health. GB is the most common and primary brain tumor

in adults, with a median overall survival of 14-17 months and a 5-year

survival rate of less than 5% (2). PCNSL has the worst prognosis

among all non-Hodgkin lymphomas, with a 5-year estimated overall

survival rate of only 30.5% (3). Although the prognosis of BM has

improved, the median survival time of patients is more than 6months,

ranging from 8 to 16 months, but it still depends on the type of

primary tumor (4). There are significant differences in treatment

options for the three tumors mentioned above—GB, BM, and PCNSL.

GB usually adopts maximum surgical resection combined with

concurrent chemoradiotherapy (5); BM is mainly treated with

surgical resection, possibly supplemented by chemoradiotherapy (6);

while PCNSL is mainly treated with chemotherapy (7). Therefore,

accurate preoperative identification of intracranial GB, PCNSL, and

BM is crucial for formulating a personalized treatment plan

(3).Conventional magnetic resonance imaging (cMRI) technology is

currently an important tool for preoperative diagnosis and evaluation

of brain tumors. However, due to the heterogeneity of tumors and the

overlap of imaging features, For example, PCNSL, GB, and BM can all

present with homogeneous enhancement accompanied by edema (8,

9), leading to diagnostic delays and suboptimal treatment, There are

obvious limitations in identification based solely on neuroradiologists’
entral nervous system
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experience. Although diffusion-weighted imaging (DWI) and

dynamic susceptibility contrast perfusion-weighted imaging (DSC-

PWI) are key sequences for differentiating brain tumors. For example,

DWI measures water molecule movement, where PCNSL typically

exhibits restricted ADC, while GBM and BM show more variable

signals. DSC-PWI assesses tumor hemodynamics, with studies

showing that PCNSL has significantly lower rCBV than GBM and

BM, aiding in clinical differentiation (10). However, these techniques

still have limitations, including signal overlap, blood flow effects, and

imaging parameter standardization issues (9). Multiple reports (11,

12) pointed out that central nervous system tumors, especially PCNSL,

have a very high misdiagnosis rate, which to a certain extent limits the

formulation and implementation of individualized treatment

strategies. Traditional diagnostic methods that rely on surgeon

experience and cMRI still face great challenges in accurately

identifying central nervous system malignancies. Although needle

biopsy can confirm the type of tumor through pathological analysis,

thus making up for the shortcomings of the above identification

methods to a certain extent, because it is an invasive operation, it will

be accompanied by certain surgical risks, such as postoperative

bleeding, infection, and Possible neurological dysfunction (13),

which increases the financial and psychological burden on patients.

Especially for elderly patients, due to the higher risks of surgery, they

are often unable to tolerate the trauma of multiple surgeries.

In order to solve the problem of insufficient specificity of cMRI in

the diagnosis of brain tumors and reduce the unnecessary damage

and burden of puncture biopsy on patients, the scientific research

community has actively explored and implemented many novel

imaging technologies in the past few decades. These innovations

not only enriched the diagnostic methods, but also introduced many

additional imaging parameters, greatly increasing the complexity and

depth of neuroimaging data. However, faced with this massive and

complex diagnostic information, how to efficiently and economically

evaluate its value in clinical practice has become a problem that needs

to be solved urgently. More and more studies have shown that

preoperative MRI is feasible in differentiating the types of central
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nervous system tumors (14), and that MRI imaging features have

great development value in differentiating tumor types. Artificial

intelligence (AI) especially machine learning (ML) technologies, has

opened up new auxiliary diagnosis pathways for clinicians. AI-driven

imaging data analysis is particularly eye-catching, as it can build

models, comprehensively evaluate various types of imaging data, and

effectively process massive amounts of data. This advantage not only

improves data processing capabilities, but also potentially enhances

the comparability and objectivity of diagnostic results, as it no longer

relies entirely on the personal experience of clinicians. AI technology

has shown great potential and broad application prospects in

improving the specificity, efficiency, and accuracy of brain tumor

diagnosis. It not only solves many challenges faced by traditional

imaging technologies, but also provides more comprehensive,

objective, and in-depth data support for clinical decision-making.

However, many studies are currently limited to differentiating

between two types of central nervous system tumors, such as GB

and PCNSL (15–17) or GB and BM (18, 19), but relatively few studies

have been conducted on the simultaneous identification of three

brain tumors. This study developed three machine learning models

based on preoperative MRI. By analyzing the radiomics features of

MRI images, we aimed to establish a multi-classification model that

can provide high-accuracy differentiation of intracranial GB, PCNSL,

and BM to assist clinical decision-making and treatment planning.
2 Materials and methods

2.1 IRB approval

This study has been approved by the Ethics Committee and

publicly registered ([S2018-268-02], approval date: [2018.12]). This

study was conducted in strict accordance with the guidelines of the

Declaration of Helsinki. All patients included in the study signed

written informed consent before enrollment.
2.2 Patients

We retrospectively enrolled 202 patients with intracranial

space-occupying lesions who underwent surgical treatment and

were pathologically confirmed from April 2016 to May 2024. The

average age of the patients was 58.7 ± 15.4 years, including 98 male

patients and 104 female patients. The specific tumor type

distribution was: 71 patients with GB, 59 patients with PCNSL,

and 72 patients with BM. Inclusion criteria: ① According to the

NCCN Clinical Practice Guidelines for Central Nervous System

Tumors issued in 2023, the pathological or molecular diagnosis

results were GB, PCNSL, and BM; ② The patients did not receive

chemoradiotherapy and surgical treatment before MRI

examination; ③ GB, PCNSL, and BM lesions were all located in
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the brain parenchyma; ④ The diameter of tumors was >5 mm (20);

⑤ T2WI and CE-T1 examinations were performed on preoperative

MRI. Exclusion criteria: ① pathologically confirmed other types of

tumors; ② no MRI examination before surgery; ③ unclear tumor

boundaries and unable to accurately delineate the volume of interest

(VOI); ④ patients had received radiotherapy, chemotherapy or

hormone therapy before surgery; ⑤ had a history of other brain

tumors or trauma. ⑥ patients and family members disagreed. See

Figure 1 for the flow chart.
2.3 MRI data

All patients included in the study underwent MRI image

acquisition before surgery using Siemens MRI equipment,

including 1.5T magnetic field strength with 8-channel head

phased array coil and 3.0T magnetic field strength with 16-

channel head phased array coil. The following are the detailed

scanning parameters and contrast agent usage: CE-T1 scanning

parameters: TR/TE are 1600 ms/3.02 ms and 1700 ms/24 ms, FOV

are 210 mm×210 mm and 240 mm×240 mm, slice thickness are 5.0

mm and 6.0 mm, and slice spacing is 5.5 mm and 6.5 mm

respectively; T2 scanning parameters: TR/TE are 5400 ms/98 ms

and 5700ms/93 ms, FOV are 210 mm×210 mm and 240 mm×240

mm, slice thickness are 5.0 mm and 6.0 mm, and slice spacing is 5.5

mm and 7.5 mm respectively. These image data were then used for

subsequent radiomics feature extraction and development of

machine learning models.
2.4 MRI data processing and
feature extraction

2.4.1 Image preprocessing
We used Python (3.7. 1) to apply the N4ITK bias correction

algorithm to all images to avoid uneven signal intensity. The images

were then resampled to a standardized voxel spacing of 1 mm × 1

mm × 1 mm, and the voxel intensity was discretized (25 Hu bin) to

reduce image noise and standardize intensity. Finally, the images

were normalized to the maximum and minimum values of signal

intensity to reduce the difference in signal intensity between images

acquired by different machines.

2.4.2 Image segmentation and feature extraction
We registered T2WI to CE-T1 based on the General

Registration (Elastix) module of 3D Slicer (http://www.Slicer.org,

version 5.7.0) software. A primary neurosurgeon and a primary

radiologist jointly agreed to outline the VOI layer by layer on the

registered CE-T1 image combined with the original image. The VOI

includes all information such as the tumor core, enhancement area,

necrosis and cystic changes. The tumor VOI outlined based on the
frontiersin.org
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CE-T1WI image was copied and registered with the brain tumor on

the T2WI image to obtain the brain tumor VOI based on the T2WI

image. Then, we used the Radiomics module of 3D Slicer to extract

features from the VOI of each image, including first-order features,

morphological features, texture features (grayscale co-occurrence

matrix, grayscale region size matrix, grayscale dependency matrix,

neighborhood grayscale difference matrix, grayscale run-length

matrix) and wavelet transform. A total of 851 radiomics features

were extracted for each patient.

2.4.3 Data preprocessing and feature screening
We performed Z-score standardization on the features

extracted from the images to ensure the consistency and

comparability of the data among different features, laying the

foundation for subsequent analysis work. To verify the

consistency of the texture feature extraction process, we reviewed

the results evaluated using the intraclass correlation coefficient

(ICC) and selected features with ICC values >0.75, which were

considered to be highly relevant when independently extracted by

two doctors. consistency and reliability, and therefore were used in

subsequent analysis and model building. Next, we used the F test to

conduct a retrospective analysis of the historical data, with the

purpose of eliminating those features that were not significantly

different between different imaging groups (i.e., P value > 0.01),

ensuring that only those features that were statistically significant in

distinguishing different imaging groups were characteristics are

retained. Subsequently, we used recursive feature elimination

(RFE) to reduce the dimensionality of the remaining features (the

target dimension was set to 10). Finally, we built a model based on

these rigorously screened and dimensionally reduced features. This

model has not only demonstrated high prediction accuracy and
Frontiers in Oncology 04
robustness in the past, but its construction process has also fully

demonstrated our rigor and scientificity in feature selection,

ensuring the validity and reliability of the model.

2.4.4 Establishment and verification of
ML models

We randomly divided the case data into a training set

(containing 141 samples) and a test set (containing 61 samples)

in a ratio of 7:3. Subsequently, we adopted the One-Vs-Rest (OvR)

multi-classification strategy and trained three machine learning

models using the training set data: support vector machine

(SVM), K nearest neighbor classification (KNN), and Naive Bayes

classifier(NBC). In order to optimize the performance of the model,

we used a 5-fold cross-validation technique to select the best

hyperparameter combination on the training set. During the

model construction process, we considered models based on a

single MRI sequence (such as T2 sequence or CE-T1 sequence),

and also explored the joint model of T2 sequence combined with

CE-T1 sequence to evaluate the impact of different input data on

model performance. After training, we used the validation set to

evaluate the performance of the three machine learning models. The

entire process, including data partitioning, model training,

hyperparameter optimization, model evaluation and other steps,

was implemented using the Python programming language. The

research roadmap is shown in Figure 2.
2.5 Statistical methods

For measurement data (i.e., continuous variables or numerical

data), we use mean (Mean) ± standard deviation (Standard
FIGURE 1

Patient inclusion and exclusion criteria flowchart.
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Deviation, SD), i.e. (X ± S) for description. In the data analysis stage,

if the data does not meet the assumption of normal distribution or

homogeneity of variance, we may choose Kruskal-Wallis H test

(when comparing three or more independent samples) for non-

parametric test. For count data (i.e., categorical variables or discrete

data), we use frequency (n) and percentage (%) to express its

distribution. When analyzing such data, Chi-square test is a

commonly used method to compare whether the differences

between different classification groups are statistically significant.

When constructing a multi-classification model, in order to

evaluate the overall classification performance of the model, we

use the classification-weighted macro-average receiver operating

characteristic (ROC) curve and the area under the curve (AUC) as

evaluation indicators. These indicators can comprehensively reflect

the classification ability of the model in different categories. In order

to compare the performance differences of different machine

learning models in classification tasks, especially the differences in

AUC values, we use the DeLong test. This is a statistical method

specifically used to compare whether the AUC values under two or

more ROC curves are significantly different. Finally, we set the
Frontiers in Oncology 05
significance level to 0.05, that is, when the P value is less than 0.05,

we believe that the observed difference is statistically significant.
3 Results

3.1 Patient characteristics

A total of 202 patients were included in the study, comprising

71 patients (35.1%) diagnosed with WHO grade 4 GB (IDH-

wildtype), including 36 women (50.7%) and 35 men (49.3%), with

a mean age of 60.1 ± 15.5 years, ranging from 30 to 80 years.

Additionally, 59 patients (29.2%) had PCNSL, all of which were

diffuse large B-cell lymphoma (DLBCL-PCNSL), including 29

women (49.2%) and 30 men (50.8%), with a mean age of 61.0 ±

14.6 years, ranging from 30 to 85 years. Furthermore, 72 patients

(35.6%) had brain metastases originating from various primary

tumors, including 34 patients with lung cancer (47.2%), 12 patients

with breast cancer (16.7%), 3 patients with melanoma (4.2%), 14

patients with digestive tract tumors (19.4%), 8 patients with renal
FIGURE 2

Research route.
TABLE 1 Demographics and clinical characteristics of the patients.

Training set Test set

GBM PCNSL BM P value GBM PCNSL BM P value

Patients 51 39 51 20 20 21

Age 54.4 ± 15.2 62.8 ± 15.0 62.3 ± 15.9 0.13 56.6 ± 13.0 56.3 ± 14.0 61.6 ± 13.6 0.33

Female 23 17 27 0.618 13 12 12 0.874
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cancer (11.1%), and 1 patient with fibrosarcoma (1.4%). The mean

age of these patients was 62.4 ± 14.6 years, ranging from 35 to 85

years. These patients were selected as the training set and validation

set for the ML classifier. The overall patient demographics are

shown in Table 1.
3.2 Selected radiomic features

We used the Radiomics module of 3D Slicer to extract 851

radiomic features from the CE-T1 and T2 sequences for each

patient, including first-order features, morphological features,

texture features, and wavelet features. After filtering the radiomic

features through intragroup correlation (ICC>0.75), F test (P<0.01),

and recursive feature elimination (target dimension set to 10), the

feature sets of CE-T1, T2, and CE-T1 combined with T2 each

contained 10 features. Among the features extracted from the joint

parameters, a total of 7 CE-T1 features and 3 T2 features were

selected, as shown in Table 2.
3.3 Machine learning model
effectiveness evaluation

3.3.1 Performance of a single sequence model
CE-T1 sequence: When comparing the performance of three

classifiers (SVM, KNN, and NBC), we found that the SVM model

performed best on a number of key indicators. Specifically, the

macro-average AUC of the SVM model reached 0.91, which is

significantly higher than the 0.86 of KNN and the 0.82 of NBC,
Frontiers in Oncology 06
showing the advantages of SVM in handling complex classification

tasks. In addition, the accuracy of the SVM model reached 72. 1%,

which is also the highest among the three classifiers. The F1 score, as

the harmonic mean of accuracy and recall, is also an important

indicator of classifier performance. The F1 score of SVM is 0.719,

which is also ahead of KNN and NBC. Although KNN and NBC

also show certain classification capabilities, their performance is

slightly inferior to SVM. This may be due to the stronger

generalization ability of SVM when dealing with high-

dimensional data and complex classification boundaries, while

KNN may be affected by noisy data and the curse of

dimensionality, and NBC assumes the independence between

features, This is often not true in actual situations. In summary,

the SVM model stands out among the three classifiers, and its

excellent performance provides strong support for subsequent

clinical applications and research.

T2 sequence: When comparing the performance of models built

based on the T2 sequence and the CE-T1 sequence, we found that

when the T2 sequence was used alone, the performance of the

constructed model was slightly lower than that of the CE-T1

sequence. Specifically, the AUC of the SVM model trained using

the T2 sequence was 0.86, which is still a relatively high value, but

lower than the performance of the SVM model under the CE-T1

sequence. Similarly, the KNN and NBC models also achieved AUCs

of 0.75 and 0.80, respectively, when using the T2 sequence, which

are also lower than their performance under the CE-T1 sequence.

To more intuitively demonstrate these differences, we provide the

confusion matrix heat map and macro-average ROC curve of each

model constructed under the T2 sequence (as shown in Figures 3,

4). The confusion matrix heat map reflects the prediction accuracy
TABLE 2 Features retained after screening by CE-T1, T2, and CE-T1 combined with T2 models.

T2 CE-T1 CE-T1 combine T2

T2-Original-shape-Sphericity T1-wavelet-LHL-gldm-
LargeDependenceLowGrayLevelEmphasis

T1-wavelet-LHL-gldm-
LargeDependenceLowGrayLevelEmphasis

T2-Original-shape-Maximum2DDiameterSlice T1-original-firstorder-Skewness T1-original-firstorder-Skewness

T2-wavelet-LHL-glrlmRunVariance T1-original-shape-Flatness T1-original-shape-Sphericity

T2-wavelet-LHL-glrlm-
LongRunLowGrayLevelEmphasis

T1-original-shape-Sphericity T1-wavelet-LLH-gldm-
LargeDependenceLowGrayLevelEmphasis

T2-wavelet-LHL-gldm-
LargeDependenceHighGrayLevelEmphasis

T1-wavelet-LLH-gldm-
LargeDependenceLowGrayLevelEmphasis

T1-wavelet-LHL-glcm-JointAverage

T2-wavelet-HLL-gldm-
LargeDependenceHighGrayLevelEmphasis

T1-wavelet-LHL-gldm-LowGrayLevelEmphasi T1-wavelet-LLL-firstorder-Skewness

T2-wavelet-LLH-ngtdmContrast T1-wavelet-LL-LfirstorderSkewness T1-wavelet-HLL-gldm-
DependenceNonUniformityNormalized

T2-wavelet-HHL-glcmMCC_ T1-wavelet-HLL-gldm-
DependenceNonUniformityNormalized

T2-Original-shape-Sphericity

T2-wavelet-LLH-firstorderKurtosis T1-wavelet-LLH-glszm-GrayLevelNonUniformity T2-wavelet-HLL-gldm-
LargeDependenceHighGrayLevelEmphasis

T2-wavelet-HLL-
glrlmShortRunHighGrayLevelEmphasis

T1-wavelet-LLL-firstorder-Minimum T2-wavelet-LLH-ngtdm-Complexity
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of the model in each category through the depth of color, while the

ROC curve shows the true positive rate (TPR) and false positive rate

(FPR) of the model at different thresholds. The AUC value

quantifies the area under the ROC curve and is used to evaluate

the overall performance of the model. These results suggest that

although the T2 sequence also contains certain diagnostic

information, the CE-T1 sequence may contain more features that

contribute to the classification task, or these features are more

significantly and stably expressed in the CE-T1 sequence. Therefore,

in practical applications, if conditions permit, we can consider

combining the features of multiple MRI sequences to build a

more accurate and robust classification model.
3.3.2 Performance of combined
sequences model

T2 combined CE-T1 sequence: When we combine the features of

T2 and CE-T1 MRI sequences, the macro-average AUC of the SVM

model significantly increases to 0.93. This result clearly demonstrates

the advantages of the combined sequence in improving diagnostic

performance. Furthermore, the accuracy of the joint model reached

77%, and the F1 score was also 0.77 (Table 3). These indicators jointly

prove the effectiveness of the joint sequence in the classification task.

Specific to the classification performance of the SVM model, for the

classification of GB, its sensitivity reached 85% and specificity was

87.8%, indicating that the model has high accuracy and stability in

identifying GB. At the same time, the sensitivity for DLBCL-PCNSL

is 75%, and the specificity remains at 87.8%, showing that the model

has good discrimination ability for different types of central nervous

system tumors. The sensitivity for BM is 71.4%, and the specificity is

further improved to 90%. Although the sensitivity is slightly lower

than the other two types of lesions, the high specificity indicates that

the model is very accurate in confirming non-BM cases. In order to

more intuitively demonstrate the performance of joint parameters in

the SVM model, we provide a heat map of the confusion matrix,

which intuitively reflects the consistency between the model’s

predictions and actual results on each category through the depth

of the color. In addition, we also plotted the macro-average ROC

curve (shown in Figure 5) and the area under the ROC curve (AUC)

of the joint parameters in the three classifier models. Among them,

the SVM model had the highest AUC value (0.93). The significant

role of joint sequences in improving the overall performance of the

model is further verified. Together, these results support the

effectiveness of combining T2 and CE-T1 sequence features in

building high-performance central nervous system tumor

classification models.
Frontiers in Oncology 07
3.3.3 Model comparison and analysis
The results of the DeLong test show that when we use the features

of T2 and CE-T1 sequences together, the model constructed has a

significantly higher AUC value than the model using only a single

sequence (T2 or CE-T1), and this The difference is statistically

significant (P<0.05). In further analysis, we found that the SVM

performed particularly well when utilizing joint sequence models.

Not only has its AUC value been significantly improved, but the SVM

model has also achieved significant enhancements in the classification

performance of GB, DLBCL-PCNSL and BM. This shows that the

SVM model can more effectively extract and utilize complementary

information from combined sequences, thereby improving the

recognition accuracy of different types of brain lesions. Finally, the

evaluation results on the test set showed that the SVM showed the

best prediction ability when using combined sequences for

prediction. This finding not only verifies the effectiveness of the

combined sequence model, but also emphasizes the superiority of the

SVM classifier in handling such complex classification tasks.
4 Discussion

Based on preoperative multi-parametric MRI radiomics, we

developed and verified a non-invasive auxiliary method to identify

three common central nervous system tumors GB by extracting

features of CE-T1 and T2MRI sequences and combining it with ML

methods., DLBCL-PCNSL and BM models, mainly include SVM

model, KNN and NBC. Among them, the SVM not only shows the

highest AUC in the three-classification task value (0.93), and its

accuracy, sensitivity and specificity are significantly better than the

KNN and NBC, and it has significant advantages in diagnostic

performance. The research results further confirm the importance

of combining MRI information fusion with advanced machine

learning algorithms (21), providing objective clinical evidence-

based medical evidence for the accurate identification of complex

central nervous system tumor types and the formulation of

diagnosis and treatment plans.

In previous studies, P Alcaide-Leon et al. (22) extracted CE-T1

sequences from 71 GB and 35 DLBCL-PCNSL patients to establish

an SVM. The results showed that the SVM based on CE-T1WI

texture features was not inferior to expert evaluation in

distinguishing DLBCL-PCNSL from GB. Zenghui Qian et al. (23)

used different machine learning models to identify 242 GB and 170

BM patients and found that the SVM + least absolute shrinkage and

selection operator (LASSO) classifier had the highest predictive effect

with an AUC of 0.9. In addition, its clinical performance was superior

to that of neuroradiologists in terms of accuracy, sensitivity, and

specificity. Swinburne et al. (24) performed multi-class classification

on diffusion and perfusion MR images and conventional MR images

of 26 patients with GB, BM or PCNSL, and evaluated support vector

classifiers and multi-layer perceptron models, with the highest

accuracy of 69.2%. However, these models did not use radiological

features, and the validation method did not use an independent

validation set. Bio Joo et al. (25) established a machine learning
TABLE 3 Evaluation results of the SVM using the combined CE-T1 and
T2 sequences.

Accuracy Recall Precision F1 Score

Training set 0.901 0.901 0.901 0.901

Test set 0.770 0.770 0.771 0.770
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FIGURE 4

Macro-average ROC curves and AUCs of a single sequence in three classifier models. A(1): ROC curve of CE-T1 sequence in the KNN; A(2): ROC
curve of T2 sequence in the KNN; B(1): ROC curve of CE-T1 sequence in the NBC; B(2): ROC curve of T2 sequence in the NBC; C(1): ROC curve of
CE-T1 sequence in the SVM; C(2): ROC curve of T2 sequence in the SVM.
FIGURE 3

Confusion matrix heat map of a single sequence in three classifier models. In this context, the number 0 represents BM, 1 represents GB, and 2
represents PCNSL. A(1): Confusion matrix of CE-T1 in the KNN; A(2): Confusion matrix of T2 sequence in the KNN; B(1): Confusion matrix of CE-T1
in the NBC; B(2): Confusion matrix of T2 sequence in the NBC; C(1): Confusion matrix of CE-T1 in the SVM; C(2): Confusion matrix of T2 sequence
in the SVM.
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model based on CE-T1 combined with T2 for multi-class

classification of GB, PSNCL and BM. The macro-average AUC of

the best model was 0.878, but the study did not extract wavelet during

feature extraction. This study found that the model established after

extracting wavelet features improved the diagnostic efficacy of the

model. Wavelet can filter and denoise the original image, so these

transformed features can effectively capture key tumor heterogeneity

and better predict tumor biology. Wavelet may reflect certain

cytological characteristics of the tumor microenvironment or the

specific expression of certain molecules (26).

Our study found that the combined use of CE-T1 and T2 MRI

sequences has significant advantages in improving the classification and

identification performance of CNS tumors. In the multi-classification

task of the combined model, whether it is sensitivity, specificity or AUC

value, it is significantly better than themodel based on a single sequence,

which fully proves that the combination of multi-classification

technology can improve the diagnostic performance of the model.

potential. This conclusion has been fully verified on multiple

evaluation indicators such as the AUC value and accuracy of the

model (27). It is particularly worth noting that the SVM model shows

the best diagnostic performance when processing joint sequence data,

which is similar to previous research results (18). Through in-depth

research, we found that wavelet-LHLgldmLargeDependenceLow

GrayLevelEmphasis stands out as a key feature in tumor classification.

Specifically, the value of this feature is significantly higher in GB

compared to BM and PCNSL, which may be related to the larger

necrotic areas present in GB, while the necrotic areas in BM and PCNSL

are relatively smaller (28). However, since some brain metastases also

have larger necrotic areas (29), the value of wavelet-

LHLgldmLargeDependenceLowGrayLevelEmphasis in some brain

metastases is also higher, which may be part of the reason for model

classification errors (Table 4, Figure 6). In addition, this study also

successfully introduced multi-classification technology into the

differential diagnosis of central nervous system tumors, allowing the

model to handle three different types of tumors at the same time, and is
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no longer limited to previous two-classification tasks. By adopting the

OneVsRest multi-classification strategy, the model can make full use of

various image features (such as GLCM, GLSZM, Wavelet features, etc.)

to classify tumor types more accurately and carefully. In addition, the

number and types of features extracted from the combined sequences

are richer, allowing the model to evaluate tumor heterogeneity from

multiple dimensions, further enhancing the robustness and clinical

application potential of the model, allowing the model to be

combined with multiple parameters Effectively handle more complex

tasks, showing higher generalization ability and diagnostic efficiency.

Although this study has achieved encouraging results, it still has

some limitations. First, this is a single-center retrospective study

and lacks multicenter data verification. More external data should

be introduced in the future to verify the universality of the model. In

addition, the sample size is relatively small, and the sample size can

be further expanded in the future to improve the robustness and

generalization ability of the model. And, this study only used CE-T1

and T2 sequences, and did not combine other sequences (such as

DSC, PWI, etc.). Recent studies have proposed a new voxel-wise

classification method based on DSC perfusion data (30). Future

studies can try to incorporate more sequences into the model to

further improve its diagnostic efficacy. And although the model

demonstrated good diagnostic performance on the validation set, it

indeed lacks an in-depth explanation of the pathological basis of key

features. In future studies, we plan to incorporate histopathological

data by integrating pathological slides and molecular markers to

explore the direct associations between imaging features and

pathological characteristics.
5 Conclusion

This study successfully developed and validated three machine

learning models based on preoperative MRI radiomics features,
FIGURE 5

(A) Macro-average ROC and AUC of combined sequences in different classifier models; (B) Confusion matrix heat map of combined sequences
in SVM.
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which showed good performance in distinguishing GB, DLBCL-

PCNSL and BM. The model mainly includes SVM, KNN and NBC.

Among them, the SVM not only shows the highest AUC value

(0.93) in the three-classification task, Moreover, its accuracy,

sensitivity and specificity are significantly better than KNN and

NBC, and it has significant advantages in diagnostic performance. It

not only performs well in the classification task of a single sequence

(CE-T1, T2), but also achieves the best performance in the
Frontiers in Oncology 10
classification performance of combined sequences. In addition to

this, the combined sequences model improves the diagnostic

performance compared to the single sequence model. With the

continuous development of imaging technology and the continuous

optimization of machine learning algorithms, this kind of machine

learning model based on MRI radiomics features will play a more

important role in the diagnosis and treatment of central nervous

system tumors.
FIGURE 6

We have listed MRI images of four cases, where (A–C) are the GB, PCNSL, and BM correctly predicted by the model, respectively, and (D) is a case
where the model incorrectly predicted BM as GB.
TABLE 4 We have listed three correctly classified cases and one incorrectly classified case, along with the corresponding features.

Prediction results PCNSL BM GB GB

Actual results PCNSL BM GB BM

T1wavelet-LHLgldmLargeDependenceLowGrayLevelEmphasis -0.783045612 -0.434221917 1.660564694 0.033418416

T1originalfirstorderSkewness 1.716216714 0.343341327 -0.648128803 -0.247728039

T1originalshapeSphericity 1.188091697 -0.368825139 -2.086246787 -1.23875299

T1wavelet-LLHgldmLargeDependenceLowGrayLevelEmphasis 0.65578243 -0.664195776 -0.161672473 0.041384592

T1wavelet-LHLglcmJointAverage 0.708196618 0.739044205 -1.841120733 -0.419397948

T1wavelet-LLLfirstorderSkewness 1.512422687 0.274490834 -0.552201118 -0.218504389

T1wavelet-HLLgldmDependenceNonUniformityNormalized 0.587596769 0.029673098 -2.225515335 -0.043338455

originalshapeSphericity 1.187273887 -0.437288232 -2.190445966 -1.315302084

wavelet-HLLgldmLargeDependenceHighGrayLevelEmphasis 0.482900455 0.273711743 -0.400932721 -0.540081324

wavelet-LLHngtdmComplexity 0.530989434 -0.603025579 1.043153293 0.327984142
Their MRI images are shown in Figure 6.
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