
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Linhui Wang,
Second Military Medical University, China

REVIEWED BY

Hailin Tang,
Sun Yat-sen University Cancer Center
(SYSUCC), China
Yonghao Chen,
Sichuan University, China

*CORRESPONDENCE

Bo Guan

guanbo6@163.com

Xiaowei Li

lllxxxwww2005@aliyun.com

Zongyao Hao

haozongyao@163.com

†These authors have contributed equally to
this work

RECEIVED 12 December 2024
ACCEPTED 31 March 2025

PUBLISHED 17 April 2025

CITATION

Guan B, Huang C, Wang Y, Zhang J, Li X and
Hao Z (2025) MRI-based habitat analysis of
vascular and nerve invasion in the tumor
microenvironment: an advanced approach for
prostate cancer diagnosis.
Front. Oncol. 15:1541413.
doi: 10.3389/fonc.2025.1541413

COPYRIGHT

© 2025 Guan, Huang, Wang, Zhang, Li and
Hao. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 17 April 2025

DOI 10.3389/fonc.2025.1541413
MRI-based habitat analysis of
vascular and nerve invasion in
the tumor microenvironment:
an advanced approach for
prostate cancer diagnosis
Bo Guan1*†, Cong Huang2†, Yalei Wang3†, Jialong Zhang2,
Xiaowei Li4* and Zongyao Hao2,5*

1Department of Urology, Fuyang People’s Hospital of Anhui Medical University, Fuyang, China,
2Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China,
3Department of Radiology, Fuyang People’s Hospital of Anhui Medical University, Fuyang, China,
4Department of Nephrology, Fuyang People’s Hospital of Anhui Medical University, Fuyang, China,
5Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary
Diseases, Anhui Medical University, Hefei, China
Purpose: This study aims to detect vascular and neural invasion in prostate

cancer through MRI, utilize habitat analysis of the tumor microenvironment,

construct a radiomic feature model, thereby enhancing diagnostic accuracy and

prognostic assessment for prostate cancer, ultimately improving patients’ quality

of life.

Methods: We retrospectively collected records of 400 patients with

pathologically verified prostate cancer from January to December 2023. We

developed a radiomic features model within the tumor habitat using MRI data

and identified independent risk factors through multivariate analysis to construct

a clinical model. Finally, we assessed the performance of these features using the

DeLong test (through the area under the receiver operating characteristic curve,

AUC), evaluated the calibration curve with the Hosmer-Lemeshow test, and

performed decision curve analysis.

Results: In the training set, the optimal algorithm based on the intratumoral

heterogeneity score had an AUC value of 0.882 (CI: 0.843-0.921); in the test set,

the AUC value was 0.860 (CI: 0.792-0.928). The traditional radiomics model

(considering the entire tumor) had an AUC value of 0.761 (CI: 0.695-0.827) in the

training set and 0.732 (CI: 0.630-0.834) in the test set. The combined model that

integrates habitat scores and Gleason scores had an AUC value of 0.889 (CI:

0.8509-0.9276) in the training set and 0.886 (CI: 0.8183-0.9533) in the test set,

outperforming the single models.

Conclusions: By deeply analyzing the tumor microenvironment and combining

radiomics models, the diagnostic precision and predictive accuracy of vascular

and nerve invasion in prostate cancer can be significantly improved. This

approach provides a valuable tool for optimizing treatment plans, improving

patient prognosis, and reducing unnecessary medical interventions.
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Introduction

Prostate cancer (PCa) prevalence is on the rise, second only to

lung cancer, making it the most common form of male-specific

malignancy and a major contributor to fatalities due to cancer (1–4)

(5). Perineural invasion (PNI) is highly prevalent in PCa, observed

in up to 75% of surgical resection specimens (6). PNI is an ominous

clinical and pathological characteristic of PCa, which has been

associated with cancer pain, adverse pathological features,

elevated biochemical recurrence rates, increased risk for bone

metastasis and diminished overall survival (7–9), It is defined as

the invasion of cancer cells into the nerves, around the nerves, and

through the nerves, and is an indicator of low prognosis and

survival rate in PCa (10). While organ-confined PCa can be

effectively managed, the metastatic disease originating from the

extracapsular extension is mostly incurable (11). Interestingly, over

50% of surgical specimens have extracystic dilation as a result of

PCa that spreads mainly or completely in the surrounding space of

the nerves (12). Currently, there is no relevant test to analyze the

prognosis of prostate cancer patients, and clinicians are limited

to biopsies.

The task of diagnosing and predicting the progression of diseases

with imaging techniques, especially tumors, is challenging due to the

complexity of the biological processes involved. Prognosis can be

improved by aAccurate diagnosis and prediction of tumor lethality

which are essential for optimizing treatment options. However,

traditional diagnostic tools often lead to subjective interpretations

due to limited information, resulting in inaccurate decisions. For

example, clinicians often draw blood in patients with prostate

tumors, for assessing the prostate-specific antigen (PSA) for

diagnosing early prostate cancer, but elevated PSA levels may be

caused by multiple factors, which may result in overdiagnosis and

over-treatment (13–16). To address these limitations, we have

introduced a novel approach that utilizes advanced medical image

analysis techniques to improve diagnostic accuracy.

The limitations in the diagnosis and treatment of prostate

cancer, including the issues of overdiagnosis and overtreatment,

are particularly significant in countries like China, where the

incidence of prostate cancer is continuously rising. This study

proposes an innovative method by deeply analyzing the tumor

microenvironment to capture its heterogeneity and complexity,

which not only improves diagnostic accuracy but also

significantly enhances predictive precision. The application of

MRI imaging technology allows for a comprehensive examination

of different tumor regions, identifying patterns and correlations that

may have been missed by traditional methods.
02
Moreover, this study constructs a radiomics model that

combines feature selection, detailed analysis of the tumor

microenvironment, and assessment of clinical relevance. This

comprehensive approach helps identify the most informative and

prognostic imaging features. By integrating these features with an

in-depth analysis of the tumor microenvironment, a comprehensive

tumor atlas is created, capturing the biological and clinical

characteristics of the tumor. This atlas provides a valuable basis

for optimizing treatment plans, improving patient prognosis, and

reducing unnecessary medical interventions.

For Chinese patients, the significance of this research is particularly

pronounced. With the incidence of prostate cancer on the rise among

Chinese men, often accompanied by higher mortality rates and poor

prognosis, this method not only enhances diagnostic efficiency but also

offers a scientific basis for personalized treatment plans. This can help

improve the overall survival rate and quality of life for Chinese patients

with prostate cancer.

In this study, we screened 400 patients with PCa through a

series of rigorous inclusion and exclusion criteria. These patients

were randomized to two groups, namely the training group and the

testing group, to ensure the effectiveness and reliability of

the model.
Methods

Patient selection

Records of 400 patients with prostate cancer cases from January

2023 to December 2023 were collected in June 2024. The inclusion

criteria were: (1) Patients above 18 years of age; (2) Patients must

have had a definitive pathological diagnosis of prostate cancer

confirmed through prostate biopsy or radical surgery. This

criterion ensured that only confirmed cases of prostate cancer

were included in the study.; (3) All patients’ medical records had

to be comprehensive, including all relevant clinical variables and

radiomics histological data. This ensured that sufficient data was

available for analysis and modeling. (4) Patients were required to be

conscious and motionless during the imaging investigations to

eliminate errors caused by passive positions or motion artifacts

due to unclear consciousness. This criterion ensured the quality and

reliability of the MRI images used in the study. (5) Patients who had

not received endocrine therapy prior to the MRI examination were

included to avoid potential confounding factors that may arise from

therapy-induced changes in the prostate. (6) There were no specific

restrictions on the time interval between the MRI examination and
frontiersin.org
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surgery. However, all relevant clinical data and imaging findings

from the MRI examination had to be available and recorded

accurately. Exclusion criteria were: (1) Histologically undiagnosed

prostate cancer; (2) Patients with severe comorbidities, such as

cardiovascular or circulatory system diseases, were excluded to

avoid potential confounding factors that may affect the accuracy

of the MRI imaging and subsequent radiomics analysis. This

criterion ensured that the study population was relatively

homogeneous in terms of health status, allowing for more reliable

and valid analysis results. The workflow of radiomics analysis

involves dividing the samples into two groups ina 2:1 ratio: a

training group containing 270 samples and an internal testing

group containing 130 samples.
Workflow of radiomics analysis

In this study, a novel approach was introduced that aimed to

address the complex challenges inherent in medical image analysis,

with a focus on enhancing diagnostic accuracy through two key

advancements. Firstly, an in-depth analysis of the tumor

microenvironment is performed by comprehensively examining

different tumor zones; this has improved our predictive accuracy

significantly resulting in informed clinical decision-making.

Secondly, the advanced radiomics model leverages an combined

approach merging feature selection, detailed analysis of the tumor

microenvironment, and assessment of clinical significance, thereby
Frontiers in Oncology 03
enhancing the accuracy of tumor lethality predictions. Figure 1

illustrates the detailed workflow of our methodology, demonstrating

its potential to evidently improve prognostic capabilities in the field.
Image acquisition

All patient images were taken using a high-resolution 3.0 Tesla

Philips Magnetic Resonance Imaging machine. This state-of-the-art

imaging system was used to guarantee that the highest quality of

diagnostic images were recordeed. The MR750 WIDE MRI

machine is renowned for its wide field of view, which allows for

visualizing larger body parts and improved capturing the images of

anatomical structures. Additionally, its advanced gradient system

and high bandwidth capabilities enable the acquisition of high-

resolution, detailed images promptly (Supplementary Table S1).
Image segmentation

The demarcation of the Region of Interest (ROI) was conducted

using ITK-SNAP by two individual experienced radiologists,

working independently. In cases of disagreement, the opinion of a

third expert radiologist, possessing two decades of professional

experience was sought to make the final determination, thereby

guaranteeing the precis ion and dependabil i ty of the

ROI identification.
Feature Extrac�on Feature Selec�on Predic�on

Cluster Reorg

ROI Segmenta�onROI Segmenta�on Habitat Genera�on

Subregion Cluster

Habitat Missing

K Nearest Neighbor

Clinical Use

Segmenta�on Radiomics Feature

Shape Features

FirstOrder Features

Texture Features

Wavelet Transform

LoG Transform

Images

Masks

Clusters

Habitat Cross Valida�on

Lasso

Sta�s�cal Analysis
ITH Score

Radiomics Signature

Signature Comparasion

Delong Test

DCA

Calibra�on Curve

Nomogram

FIGURE 1

Overall workflow of this study.
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Data preprocessing

In our study, voxel spacing was standardized to 1mm×1mm×1mm

across all analyzed image volumes using a fixed resolution

resampling technique (17). Moreover, we normalized the MR value

to a range of -120 to 180. This resulted in precise image comparisons

and significantly enhanced the accuracy and reliability of our

analytical results.
Intratumor heterogeneity analysis

Subregion generation
In this study, MRIs were used to extract local features, including

entropy and energy, from each voxel within the Volume of Interest

(VOI), using a 3x3x3 moving window technique, resulting in a 19-

dimensional feature vector for each voxel, as outlined in

Supplementary 1A. K-means clustering algorithm was used to

segment the VOI into distinct subregions, with the number of

clusters ranging from 3 to 10, with the optimal number of clusters

determined by the Calinski-Harabasz (CH) score (18),. This

approach provided a detailed characterization of intratumor

heterogeneity, enhancing our understanding of the tumor’s

structural complexity (Figure 2). Further details of our

methodology and the implications of these findings are discussed

in Supplementary 1A.

Feature extraction
Each segmented subregion, including the whole intra tumor

VOI, a comprehensive classification of handcrafted radiomic

features was performed into three main groups: geometric,

intensity, and texture. Geometric features measure the tumor’s

shape and spatial extents, intensity features assess the brightness

levels of voxels, and texture features analyze spatial patterns within

the tumor using advanced techniques such as the Gray Level Co-

occurrence Matrix (GLCM), Gray Level Run Length Matrix

(GLRLM), Gray Level Size Zone Matrix (GLSZM), and

Neighborhood Gray Tone Difference Matrix (NGTDM).
Frontiers in Oncology 04
Radiomic features were extracted from the entire VOI to

perform intra-tumor analysis including specific subregions

identified within the tumor. K-Nearest Neighbors (KNN) method

was used to ensure consistent labeling across different habitat

regions in order to manage the unclustered areas resulting from

the unsupervised nature of our clustering algorithm, we employed

the. Feature extraction was executed using the pyradiomics tool

(version 3.0.1), which adheres to the strict standards set by the

Imaging Biomarker Standardization Initiative (IBSI).

A pre-fusion technique was used to merge the features from the

respective subregions, thereby creating a robust and informative

combined feature set. This approach significantly enhances the

predictive efficacy of our models in assessing treatment efficacy

and tracking changes in tumor characteristics.
Feature selection
Intraclass Correlation Coefficient (ICC) was used to ensure the

reliability of radiomic features, selectively retaining features that

exhibited an ICC > 0.8 as evaluated by two independent physicians.

This strategy guaranteed that only features demonstrating high

consistency were subsequently analyzed. We then normalized the

feature distribution according to the mean and standard deviation

of the training cohort. Statistical evaluation involved t-tests, and the

significance threshold set at p<0.05, to only retain features

demonstrating statistical significance.

For correlation analysis, we utilized Pearson’s correlation to

identify and eliminate highly correlated features, setting a cutoff

threshold at 0.9. Minimum Redundancy Maximum Relevance

(mRMR) algorithm was sued to further refine the analysis, which

optimized our feature set to 32 by effectively balancing relevance

and redundancy.

Least Absolute Shrinkage and Selection Operator (LASSO)

regression was used to further improve the selection process for

our radiomic signature. This method simplifies the model by

penalizing the regression coefficients, effectively removing

inappropriate features. The optimal regularization parameter l
was identified through 10-fold cross-testing, ensuring the

selection of the most predictive features. This comprehensive
Image HabitatMask Local Features

Sam
ple1

Sam
ple2

Entropy JointEntropyJointEnergy SumEntropyDifferenceEntropy

FIGURE 2

Schematic diagram of intratumoral heterogeneity region segmentation.
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methodology, using ICC filtering and LASSO regression, solidifies a

predictive and robust radiomic signature.

Signature building
Machine learning models were developed using features

selected via LASSO to predict the Radiomics Signature and

Intratumor Heterogeneity (ITH) score. Furthermore, Grid-Search

algorithm was used to optimise the models’ hyperparameters across

5-fold cross-testing.

Radiomics signature (Radiomics)

The refined features were used combined to develop advanced

algorithms, employing Logistic Regression (LR) for linear modeling

and Random Forest for handling complex structures. This approach

enabled the formation of a nuanced risk model that effectively

captured the intricacies within the data.

Clinical signature

Multiple Instance Learning (MIL) approach was used to ensure

uniformity across our analysis by including all clinical features in

the model by the same machine learning algorithms.

Combined model

We conducted univariate and stepwise multivariate analyses of

the selected clinical features in the model to validate the efficacy of

our integrated model. Only significant (p<5) features were merged

with the MIL features to form the final combined model. This

rigorous approach ensured comprehensive evaluation and

integration of significant clinical predictors, improving the overall

predictive capability of our model.
Statistical analysis

Shapiro-Wilk test was use to evaluate the normality of clinical

features. T-test or the Mann-Whitney U test was used to analyze the

continuous variables, based on their distribution. Chi-square (c²)
tests were used to assess the categorical variables. The baseline

characteristics of all cohorts are detailed in Table 1. P-values
Frontiers in Oncology 05
between different cohorts exceeded 0.05, indicating no significant

differences and confirming unbiased group allocation.

OnekeyAI platform, version 3.5.12, using Python 3.7.12 was

utilized to perform all statistical analyses. Statistical computations

were executed using Statsmodels version 0.13.2. PyRadiomics version

3.0.1was used to conduct the Radiomics feature extraction. Machine

learning algorithms, including the Support Vector Machine (SVM),

were implemented using Scikit-learn version 1.0.2.
Results

Clinical features

A rigorous univariate analysis was conducted encompassing all

clinical features, primarily focusing on the calculation of odds ratio

(OR) and its corresponding p-values for each attribute. Moreover,

the Gleason score exhibited p-values less than 0.05, thus reflecting

statistical significance. Due to this significance, Gleason was

subsequently chosen as a crucial clinical comparison factor for

our subsequent analyses (Table 2; Supplementary Figures S2A, B).

The incidence of prostate disease increases as the age increases,

year by year, and similar trends are seen with the incidence of

prostate tumors (19). PSA levels are used in the diagnosis of

prostate cancer, with clinicians often using PSA as a tumor

marker (20), because PSA is a specific indicator of prostate

tumors (21). Furthermore, the Gleason score has been associated

with course of the disease and prognosis with certain advantages in

predicting staging indicators such as tumor extent, lymph node

metastasis, and distant metastasis. The Gleason score is also used

for predicting the effect of tumor treatment (surgical and hormonal

treatment). However, the changes in the blood PSA levels is easily

affected by various factors, such as other prostate diseases, and

several different surgical operations performed on the prostate,

Even examinations on the prostate such as DRE can cause the

PSA levels to increase in the blood PSA level even if there is only a

slight injury. Thus, PSA does not accurately predict the occurrence

of prostate tumors. Therefore, the need of the hour is to develop

methods to accurately predict the presence of prostate tumors at an

early stage, metastasis and their prognosis including preventive
TABLE 1 Baseline characteristics of the two (training and test) cohorts.

Feature_name ALL Train Test p-value

PSA 52.40 ± 154.97 44.08 ± 108.46 71.81 ± 228.91 0.458926607

Age 70.36 ± 7.39 70.05 ± 7.19 71.08 ± 7.82 0.107417592

Gleason 0.934392706

6 66 (16.50) 44 (15.71) 22 (18.33)

7 181 (45.25) 129 (46.07) 52 (43.33)

8 81 (20.25) 55 (19.64) 26 (21.67)

9 65 (16.25) 47 (16.79) 18 (15.00)

10 7 (1.75) 5 (1.79) 2 (1.67)
frontiersin.org

https://doi.org/10.3389/fonc.2025.1541413
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Guan et al. 10.3389/fonc.2025.1541413
measures. This will result in a better quality of life for the patients

with prostate cancer and their overall survival.
Handcrafted features

We assessed the impact of varying the number of clustering

centers from 3 to 10 on the efficacy of our analysis (Supplementary

Figure S3A, B).

1,834 unique radiomic features were extracted in this study,

including shape, first-order, and texture categories. 360 first-order

and 14 shape features, and a variety of texture features were

identified. The final ITH score included features from three

subregions, totaling 5,502 features (Figure 3).

LASSO technique was used for feature extraction. LASSO

logistic regression model was used to detect significant non-zero

coefficients for the Rad-score. The depiction of these coefficients,

along with the mean standard error (MSE) calculated through a 10-

fold cross-testing technique, is exhibited in Figure 4. Radiomic

features, are presented in Supplementary 2A.
Frontiers in Oncology 06
Radiomics results

We evaluated the efficacy of models that only targeted intra-

tumoral regions against those that incorporated segmentation specific

to Intratumoral Heterogeneity Regions (ITHRs) within the tumor.

Our findings revealed that models leveraging the Intratumoral

Heterogeneity (ITH) score demonstrated a marked superiority over

conventional models that encompassed the entire tumor.

Intratumor heterogeneity score
Attaining an AUC of 0.882 in the training cohort, with a

confidence interval spanning from 0.843 to 0.921, and a

corresponding AUC of 0.860 in the testing cohort, falling within

the range of 0.792 to 0.928, the RandomForest model demonstrated

a consistently high proficiency in distinguishing between the

groups. This characteristic is particularly remarkable when

juxtaposed with other models, such as SVM, ExtraTrees,

XGBoost, and LightGBM.

The AUC demonstrates the RandomForest model ’s

effectiveness in executing the categorization (test and training)
FIGURE 3

The number and proportion of manually extracted features.
TABLE 2 Univariable and multivariable analysis of clinical features.

feature_name OR OR lower
95%CI

OR upper
95%CI

p_value OR OR lower
95%CI

OR upper
95%CI

p_value

Age 0.999 0.993 1.005 0.804

PSA 1.000 1.000 1.001 0.342

Gleason 1.099 1.055 1.145 <0.05 1.099 1.055 1.145 <0.05
fro
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task in this specific domain. Among the models assessed,

RandomForest was the most outstanding model which was

validated by its superior performance in both training and testing

phases indicating robust generalizability and a dependable

predictive capability. This underscores its aptness for deployment

in analogous scenarios where predictive accuracy is paramount

(Table 3) (Figures 5A, B).

Radiomics signature
The evaluation of the AUC across various models reveals a

spectrum of performances, with the ExtraTrees model standing out as
Frontiers in Oncology 07
the preeminent one with the highest AUC values. The ExtraTrees model

attained an AUC of 0.761(CI: 0.695 to 0.827) for the training group

while for the testing cohort, it achieved an AUC of 0.732 (CI: 0.630 to

0.834). This remarkable performance signifies the robust ability of the

ExtraTrees model to distinguish between different classes, surpassing the

performances of other models, such as SVM, RandomForest, XGBoost,

and LightGBM, particularly during the training phase (Table 4).

This consistency not only underscores the Extra Tree model’s

excellent generalization ability but also renders it a favored choice for

submissions that necessitate dependable classification

presentation (Figure 6).
TABLE 3 Model performance of different machine learning algorithms in each cohort.

Model_name Accuracy AUC 95% CI Sensitivity Specificity PPV NPV

SVM 0.707 0.808 0.752 - 0.864 0.676 0.812 0.924 0.426

SVM 0.708 0.771 0.681 - 0.862 0.719 0.677 0.865 0.457

Random Forest 0.764 0.882 0.843 - 0.921 0.736 0.859 0.946 0.491

Random Forest 0.758 0.860 0.792 - 0.928 0.764 0.742 0.895 0.523

Extra Trees 0.707 0.837 0.783 - 0.890 0.662 0.859 0.941 0.430

Extra Trees 0.717 0.768 0.669 - 0.867 0.697 0.774 0.899 0.471

XGBoost 0.768 0.861 0.808 - 0.914 0.759 0.797 0.927 0.495

XGBoost 0.767 0.854 0.787 - 0.922 0.775 0.742 0.896 0.535

LightGBM 0.818 0.897 0.855 - 0.940 0.806 0.859 0.951 0.567

LightGBM 0.775 0.824 0.748 - 0.901 0.798 0.710 0.887 0.550
FIGURE 4

(A) Coefficients of 10-fold cross validation; (B) The mean standard error (MSE) of 10-fold cross validation; and (C) The histogram of the Rad-score
based on the selected features.
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Signature comparation
The evaluation of AUC values across diverse signatures reveals

that the combined model, encompassing Habitat and Gleason

scores, surpasses individual models in discriminative prowess.

The combined model attained an AUC of 0.889 (CI: 0.8509 to

0.9276) in the training group reflecting outstanding classification

efficiency. Similarly, in the testing cohort, it reached an AUC of

0.886(CI: 0.8183 to 0.9533). This performance surpasses that of

individual Gleason, Radiomics, and Habitat models in both

cohorts (Table 5).

The findings indicate that the Combined model, harnessing

Habitat features and Gleason grading, demonstrates superior

predictive accuracy and robustness in both training and testing

scenarios. This enhanced performance of the combined model is

attributable to the synergistic effect accomplished through the

integration of varied and complementary data sources, leading to

improved recognition capabilities. The combined model’s

consistent capability to achieve higher AUC values across
Frontiers in Oncology 08
different cohorts highlights its effectiveness and clinical

applicability in distinguishing between classes with greater

reliability (Figures 7A, B).

Calibration curve analysis

The evaluates model calibration was evaluated by the Hosmer-

Lemeshow (HL) test by gauging the consistency between projected

probabilities and detected outcomes. Lower HL values suggest

better calibration. Excellent calibration was showed by our

Nomogram model, with HL values of 0.719 in the training cohort

and 0.715 in the testing cohort, indicating high accuracy and

reliability in its predictions (Figures 8A, B).

DeLong test

The Habitat model significantly outperformed the Radiomics

model in the training cohort as demonstrated by the DeLong test

and shows a nearly significant advantage in the testing cohort (22).

This superiority suggests that the Habitat model, which focuses on
TABLE 4 Model performance of different machine learning algorithms in each cohort.

Model_name Accuracy AUC 95% Confidence interval (CI) Sensitivity Specificity PPV NPV

SVM 0.736 0.615 0.531 - 0.698 0.856 0.328 0.811 0.404

SVM 0.733 0.613 0.479 - 0.746 0.933 0.161 0.761 0.455

RandomForest 0.629 0.732 0.662 - 0.801 0.606 0.703 0.873 0.346

RandomForest 0.717 0.726 0.620 - 0.832 0.753 0.613 0.848 0.463

ExtraTrees 0.732 0.761 0.695 - 0.827 0.759 0.641 0.877 0.441

ExtraTrees 0.742 0.732 0.630 - 0.834 0.843 0.452 0.815 0.500

XGBoost 0.625 0.720 0.652 - 0.787 0.602 0.703 0.872 0.344

XGBoost 0.717 0.716 0.612 - 0.820 0.753 0.613 0.848 0.463

LightGBM 0.668 0.728 0.662 - 0.795 0.671 0.656 0.868 0.372

LightGBM 0.692 0.660 0.543 - 0.776 0.753 0.516 0.817 0.421
FIGURE 5

(A) Receiver operating characteristic (ROC) curves of different models in train cohort of Intratumor Heterogeneity; (B) ROC Curves of Different
Models in testing cohort of Intratumor Heterogeneity.
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the tumor microenvironment captures the complexities of tumor

heterogeneity, more effectively compared to the Radiomics model

that primarily employs imaging features. These findings highlight

the potential of incorporating tumor microenvironment

characteristics to enhance the predictive accuracy of oncological

models (Figures 9A, B).

Clinical use
Decision curve analysis

(Figures 10A, B) displays the DCA curves for both the training and

testing cohorts. The combined model demonstrated a notable

advantage in terms of net benefit derived from predicted probabilities.

Nomogram

We employed a Nomogram to visualize the results of our

Combined model (Figure 11).
Discussion

PNI is a tropism of cancer cells towards surrounding nerves in the

tumor microenvironment. PNI is associated with disease metastasis,

recurrence, and poor survival in multiple cancers, including prostate,
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pancreatic, head and neck, salivary and colon cancers. Usually, cancer

metastasis occurs mainly through the lymphatic or vascular conduits,

but PNI allows cancer cells to spread along nerve tracts beyond the

predicted anatomic borders of a primary tumor. This often results in

incomplete surgical resection associated with elevated recurrence rates.

Moreover, like many other organs in the body, the prostate is

innervated by both sensory and autonomic nerve fibers, creating

favorable conditions for cancer cells to spread through the nerves

(23) which often leads to adverse outcomes. For example, prostate

cancer patients having an invasion of the nerves may have poor

recovery of postoperative urinary control and sexual function after

undergoing radical prostatectomy, as nerves control urinary control

and sexual function, impacting the patient’s quality of life. Therefore, it

is necessary to accurately predict the presence of neurological invasion

in patients with prostate cancer. Non-invasive examination methods

would be more preferable to the patient and would provide more

choices for for better treatment planning. After screening a large

number of patients in the early stage, we ultimately selected 400

samples that met our requirements for inclusion.

By including appropriate inclusion and exclusion criteria in this

study, our team was able to focus on a more defined and homogenous

study population, reducing the impact of confounding factors. This

helped to enhance the reliability and interpretability of the study
TABLE 5 Prediction performance of intratumor heterogeneity region based rad signatures.

Signature Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

Gleason 0.771 0.648 0.5757 - 0.7200 Train

Radiomics 0.732 0.761 0.6952 - 0.8266 0.759 0.641 0.877 0.441 Train

Habitat 0.764 0.882 0.8427 - 0.9214 0.736 0.859 0.946 0.491 Train

Combined 0.825 0.889 0.8509 - 0.9276 0.894 0.594 0.881 0.623 Train

Gleason 0.742 0.750 0.6535 - 0.8467 test

Radiomics 0.742 0.732 0.6304 - 0.8343 0.843 0.452 0.815 0.500 test

Habitat 0.758 0.860 0.7925 - 0.9277 0.764 0.742 0.895 0.523 test

Combined 0.825 0.886 0.8183 - 0.9533 0.899 0.613 0.870 0.679 test
FIGURE 6

(A) Receiver operating characteristic (ROC) curves of different models in train cohort of Radiomics signature; (B) ROC Curves of Different Models in
testing cohort of Radiomics signature.
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FIGURE 8

(A, B) Different signatures' calibration curves on the testing cohort.
FIGURE 9

(A, B) Delong et al. of (A). cohort and (B). test signatures.
FIGURE 7

(A) Different signatures of area under the receiver operating characteristic (AUROC) curve on the training cohort; (B) Different signatures AUROC on
the testing cohort.
Frontiers in Oncology frontiersin.org10

https://doi.org/10.3389/fonc.2025.1541413
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Guan et al. 10.3389/fonc.2025.1541413
results. The patients were divided into two groups, a training group and

an internal testing group to ensure the validity and generalizability of

the model. Moreover, a new image analysis method was adapted to

improve the diagnostic accuracy by intensely analyzing the tumor

microenvironment and integrating clinical variables. This method

overcomes some of the limitations that are encountered with

conventional medical image analysis and provides new ideas for

accurate diagnosis and treatment of prostate cancer.

By comprehensively analyzing the tumor microenvironment and

radiomics features, we can more deeply reveal the biological

characteristics and heterogeneity of prostate cancer. Consequently,

the accuracy of diagnosis can be significantly improved, misdiagnosis

and missed diagnosis can be effectively reduced, ensuring that patients

can receive appropriate treatment in a timely manner. Meanwhile,

these features provide valuable evidence for personalized treatment of

prostate cancer. Specifically, through a detailed analysis of immune cell

infiltration and angiogenesis status in the tumor microenvironment,

combined with radiomics features, doctors can formulate more precise

treatment plans, which not only improve the treatment effect but also

reduce side effects.In addition, the combination of the tumor

microenvironment and radiomics models can also accurately predict
Frontiers in Oncology 11
the responses of prostate cancer patients to different treatment

regimens and their prognoses. This ability enables doctors to have a

more solid basis for choosing the best treatment plan for patients and

to adjust strategies in a timely manner according to the actual situation

during the treatment process, thus significantly improving the survival

rate and quality of life of patients. More importantly, the analysis results

of tumor microenvironment and radiomics features provide strong

support for clinical decision-making. For example, when making

crucial decisions such as whether to perform radical surgery,

radiotherapy, or endocrine therapy, these features have become

indispensable important references for doctors.

The analysis of the tumor microenvironment and radiomics

features requires close collaboration among multiple disciplines such

as radiology, pathology, medical oncology, and surgical oncology.

Establishing such a multidisciplinary team can jointly customize more

precise diagnosis and treatment plans, significantly improving

treatment outcomes. To promote the wide application of this

technology in clinical practice, it is essential to provide systematic

training for medical staff, covering key skills such as radiomics feature

extraction and analysis, tumor microenvironment detection techniques,

and the formulation of personalized treatment plans. When integrating
FIGURE 10

(A, B) Different signatures’ decision curves on the testing cohort.
FIGURE 11

Nomogram constructed based on the integrated model of Habitat and Gleason score.
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these analytical techniques into clinical practice, it is necessary to follow

relevant clinical guidelines and consensuses to ensure the rationality and

scientific nature of the diagnosis and treatment plans. Meanwhile,

continuous monitoring and evaluation of their effectiveness and safety

are crucial during the clinical application process. This includes

regularly collecting patient clinical data, evaluating treatment efficacy

and side effects, so as to timely adjust and optimize treatment plans. In

conclusion, the comprehensive analysis of the tumormicroenvironment

combined with radiomics models has significant clinical implications in

the diagnosis and treatment of prostate cancer. Through

multidisciplinary collaboration, technical training, establishment of

standardized procedures, adherence to clinical guidelines, and

continuous monitoring and evaluation, we can effectively integrate

this technology into clinical practice and provide patients with more

precise and personalized treatment.

An detailed analysis of the tumor microenvironment, which is

characterized by a variety of cellular and molecular interactions that

can have a significant impact on tumor growth, metastasis, and drug

resistance was performed in this study. The characteristics of different

tumor regions (24) were comprehensively analyzed, to gain a more

complete understanding of the biological characteristics of tumors, and

thus more accurately predict disease progression and treatment

outcomes of patients (25). Second, by incorporating the patient’s age,

non-disease history, and pathologic stage into the model, we could

construct a prediction model that was more in line with the actual

clinical scenario, furnishing clinicians with more accurate and

useful information.

However, our study has several limitations (26). First, though we

had a substantial sample size, the cohort size of 400 patients may not be

representative of the entire patient population (27). Future studies with

larger and more diverse cohorts would facilitate in validating our

findings and ensure the generalizability of our approach. Second, the

image acquisition and preprocessing protocols, although standardized

(28–31), may introduce variability potentally affect the performance of

our model. Stricter standardization and quality control measures could

help mitigate this issue.
Conclusion

This study provides new concepts and methods for a more

accurate diagnosis and treatment of patients with prostate cancer by

introducing an innovative image analysis method to and build a

clinical prostate prediction model based on tumor habitat analysis

and MRI image histology. Although this study still has some

challenges in practical applications, it lays a solid foundation for

future medical image analysis and clinical applications.
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