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Interpretable multiparametric
MRI radiomics-based machine
learning model for preoperative
differentiation between benign
and malignant prostate masses:
a diagnostic, multicenter study
Wenjun Zhou1,2†, Zhangcheng Liu1,3†, Jindong Zhang1,
Shuai Su1, Yu Luo1, Lincen Jiang1, Kun Han1, Guohua Huang2,
Jue Wang4, Jianhua Lan2* and Delin Wang1*

1Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing,
China, 2Department of Urology, Guang’an People’s Hospital, Guang'an, Sichuan, China, 3Department
of Urology, Neijiang Second People’s Hospital, Neijiang, Sichuan, China, 4Department of Urology,
Panzhihua Central Hospital, Panzhihua, Sichuan, China
Objective: The study aimed to develop and externally validate multiparametric

MRI (mpMRI) radiomics-based interpretable machine learning (ML) model for

preoperative differentiating between benign and malignant prostate masses.

Methods: Patients who underwent mpMRI with suspected malignant prostate

masses were retrospectively recruited from two independent hospitals between

May 2016 and May 2023. The prostate mass regions in T2-weighted imaging

(T2WI) and diffusion-weighted imaging (DWI) MRI images were segmented by

ITK-SNAP. PyRadiomics was utilized to extract radiomic features. Inter- and

intraobserver correlation analysis, t-test, Spearman correlation analysis, and the

least absolute shrinkage and selection operator (LASSO) algorithm with a five-

fold cross-validation were applied for feature selection. Five ML learning models

were built using the chosen features. Model performance was evaluated with

internal and external validation, using area under the curve (AUC), calibration

curves, and decision curve analysis to select the optimal model. The

interpretability of the most robust model was conducted via SHapley Additive

exPlanation (SHAP).

Results: A total of 567 patients were enrolled, consisting of the training (n = 352),

internal test (n = 152), and external test (n = 63) sets. In total, 2,632 radiomic

features were extracted from regions of interest (ROIs) of T2WI and DWI images,

which were reduced to 18 via LASSO. Five ML models were established, among

which the random forest (RF) model presented the best predictive ability, with

AUCs of 0.929 (95% confidential interval [CI]: 0.885–0.963) and 0.852 (95% CI:

0.758–0.934) in the internal and external test sets, respectively. The calibration

and decision curve analyses confirmed the excellent clinical usefulness of the RF

model. Besides, the contributing relations of the radiomic features were

uncovered using SHAP.
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Conclusions: Radiomic features from mpMRI combined with machine learning

facilitate accurate preoperative evaluation of the malignancy in prostate masses.

SHAP can disclose the underlying prediction process of the ML model, which

may promote its clinical applications.
KEYWORDS

malignant prostate mass, multiparametric magnetic resonance imaging, radiomics,
machine learning, interpretation
Highlights
• Noninvasive mpMRI radiomics-based machine learning

models were used to distinguish between benign and

malignant prostate masses.

• The RF model demonstrated the highest predictive

accuracy, with robust performance validated on

external cohorts.

• SHAP analysis enhanced the interpretability of the RF

model, facilitating clinical decision making in prostate

cancer diagnosis.
Introduction

Prostate cancer (PCa) is one of the most commonly diagnosed

malignancies and a significant contributor to cancer-related mortality

among men worldwide (1, 2). According to the World Health

Organization, PCa represents approximately 15% of all new cancer

cases in men, with substantial variation in incidence and mortality

rates across regions (3, 4). Benign prostatic hyperplasia (BPH) is

defined as a noncancerous enlargement of the prostate common in

aging men (5–7). Accurate differentiation between PCa and BPH is

crucial, as these conditions share overlapping symptoms, such as

urinary difficulties, but differ vastly in prognosis and treatment

requirements (8, 9). Misidentification between PCa and BPH can

lead to under- or overtreatment, underscoring the need for precise

diagnostic tools that can reliably distinguish between malignant and

benign prostate conditions.

Traditional diagnostic tools for prostate conditions include

prostate-specific antigen (PSA) testing, multiparametric MRI

(mpMRI), digital rectal examination (DRE), and transrectal

ultrasound (TRUS)-guided biopsy (10–14). Although PSA test has

increased early detection, it lacks specificity, leading to unnecessary

biopsies and potential overdiagnosis of low-risk tumors (12, 15).

Although DRE and TRUS are helpful in diagnosing PCa, they involve

invasive procedures that may bring about multiple complications.

Imaging advancements, particularly the mpMRI, have increased

diagnostic accuracy by enhancing lesion visualization and reducing

reliance on invasive procedures (16–20). However, the evaluation of

mpMRI images is highly dependent on the expertise of radiologists
02
and can be subject to variability, highlighting the need for

standardized and reproducible diagnostic tools. Therefore, there is

a strong need for noninvasive, accurate diagnostic tools that can

differentiate PCa from BPH while assessing tumor aggressiveness

when malignancy is present.

Radiomics is an evolving field that converts medical images, such

as MRI or CT, into quantitative data that can reveal underlying

biological information about tumors (21, 22). It involves extracting

features like texture, shape, and intensity, which may provide valuable

insights into tissue composition and disease characteristics beyond

what is visible in conventional imaging (23). MRI or CT radiomics-

based machine learning (ML) models have shown potential in

differentiating benign from malignant masses across various

cancers, including lung, liver, and breast tumors (24–26). These

findings underscore radiomics’ ability to improve diagnostic

accuracy by capturing subtle variations in tissue that may not be

visible to the naked eye. Several previous researchers have developed

CT- or MRI-based radiomics models for differentiating malignant

from benign prostate masses as well (27–29). However, existing

research faces notable limitations. Most studies rely on relatively

small, single-center cohorts, with few conducting external validations,

limiting the models’ generalizability across broader clinical settings.

Additionally, comparisons among different radiomics-based ML

models are often lacking, and the interpretability of these models

remains underexplored.

This study aims to develop and externally validate mpMRI

radiomics-based ML models for preoperatively differentiating

between malignant and benign prostate masses. The predictive

performances of the established models are compared, and the

most robust prediction model is interpreted using SHapley Additive

exPlanations (SHAP).
Methods

Study cohorts

This retrospective, multicenter study involved two independent

institutes: the First Affiliated Hospital of Chongqing Medical

University (Center 1) and the Guang’an People’s Hospital (Center

2). The Institutional Review Board (IRB) of our hospital approved
frontiersin.org
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this study (approval number: K2023-599), and the patient’s

informed consent requirement was waived. All study protocols

were in accordance with the Declaration of Helsinki (30). The

patients’ clinic-radiological features, MRI images, and whole-slide

image were anonymized before all protocols.

Patients who underwent prostate biopsy or radical

prostatectomy (RP) for pathological diagnosis between May 2016

and May 2023 were enrolled (Center 1, n = 813; Center 2, n = 157).

RP pathology was used as the primary gold standard for cancer

diagnosis, whereas for biopsy-only patients, a composite reference

was established using multiparametric MRI and MRI/ultrasound

fusion-targeted biopsy, combined with longitudinal follow-up. To

minimize biopsy false negatives, a standardized biopsy protocol was

employed, including MRI-targeted biopsy and centralized

pathology review (31). Biopsy-negative patients with elevated PSA

velocity underwent repeat biopsy or advanced biomarker testing.

We excluded patients (1) without multiparametric MRI scans or

with poor image quality (n = 170), (2) without complete clinic-

pathological data (n = 87), (3) who received previous therapy or

biopsy prior to MRI scans (n = 57), and (4) whose MRI images

exhibited unrecognizable prostate mass boundaries (n = 77).

A total of 567 patients were finally recruited, consisting of 504

patients from Center 1 and 63 patients from Center 2. With a ratio

of 7:3, patients from Center 1 were split into the training (n = 352)

and internal test set (n = 152). Patients from Center 2 were assigned
Frontiers in Oncology 03
as the external test set (n = 63). The detailed patients’ recruitment

flow is shown in Figure 1.
Clinic-radiological features and
histopathological evaluation

Clinical characteristics, including age, total prostate-specific

antigen (tPSA), free prostate-specific antigen (fPSA), the ratio of

fPSA to tPSA (fPSA/tPSA), and prostate-specific antigen density

(PSAD), were collected via the electronic medical recording system.

Radiological features such as prostate volume, seminal vesicle

invasion (SVI), extracapsular extension (ECE), and lymph node

invasion (LNI) were assessed by two experienced radiologists (both

with over 8 years’ experience in urological image reading). The

controversial cases were reevaluated by a third senior radiologist

(with over 15 years’ experience in urological image reading).

The pathological data comprised the results of the transrectal

ultrasound (TRUS) biopsy and the findings subsequent to radical

prostatectomy. A systematic 12-core transrectal ultrasound (TRUS)

biopsy was performed, with a minimum of two cores obtained from

each target. In addition, needle biopsies were performed on the

areas of the lesion identified on the MRI scans. The evaluation of the

pathology slides was conducted by an experienced senior

pathologist who was unaware of the MRI results and had
FIGURE 1

Patients’ recruitment flowchart of this multicenter study.
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accumulated over a decade of expertise in the analysis of prostate

samples. Tumor classification was based on the 2016 WHO

classification, with additional grading determined by the Gleason

score (GS) and cancer group grades (32, 33).
MRI examination and prostate mass region
delineation

In this study, multiparametric MRI examinations were

conducted on patients presenting with signs of prostate

pathology. At Center 1, imaging was conducted using a high-

resolution 3.0 T MR scanner (GE Discovery MR750W, General

Healthcare, Milwaukee, USA) with an eight-channel abdominal

surface coil. At Center 2, a 3.0 T MRI scanner (Philips Intera

Achieva, Best, Netherlands) with a 32-channel body phased-array

coil was used for image acquisition. T2-weighted imaging (T2WI)

and diffusion-weighted imaging (DWI) served as the main

sequences for subsequent feature extraction and analysis. T2WI

was used to capture detailed anatomical structure, whereas

DWI, alongside apparent diffusion coefficient (ADC) mapping,

enabled quantitative assessment of tumor cellularity—a key

indicator of malignancy. Detailed MRI parameters are provided

in Supplementary Figure S1.

Two independent radiologists (Readers A and B, both with over

8 years of experience in PCa diagnosis) who were blinded to the

patients’ clinic-histopathological data delineated the prostate mass

region, using the ITK-SNAP software (http://www.itksnap.org/

pmwiki/pmwiki.php). Reader A firstly segmented the 3D region

of interest (ROI) for all patients. Two weeks later, 50 patients were

randomly selected and resegmented by Readers A and B for the

calculations of inter- and intraobserver correlation coefficients

(ICCs). The controversial cases were reevaluated by a third senior

radiologist (Reader 3, with over 15 years of experience in PCa

diagnosis). The Prostate Imaging–Reporting and Data System (PI-
Frontiers in Oncology 04
RADS) score was assessed when segmenting ROIs. The study

workflow is illustrated in Figure 2.
Radiomic feature extraction and selection

Prior to radiomic feature extraction, image preprocessing

included normalization, resampling to consistent voxel spacing,

and intensity standardization to ensure comparability across MRI

scans. PyRadiomics in Python was utilized to extract radiomic

features from 3D ROI of T2WI and DWI images. In each phase,

14 shape features, 18 first-order features, 75 texture features that

derived from the original images, and 1,209 filtered features from

the images after transformation (the image-transformation

methods included exponential, gradient, logarithm, square,

square-root, and wavelet) were extracted. The extracted radiomic

features were standardized using Z-score normalization.

A four-step feature selection process was employed. First, inter-

and intraobserver correlation analysis was conducted to calculate

ICCs. Features with both inter- and intraobserver correlation

coefficients more than 0.75 were considered highly reproduceable.

Second, a t-test was employed to screen the significantly relevant

features to malignant prostate mass. Third, a Spearman correlation

analysis with a threshold of 0.80 was conducted to reduce

redundant features. Lastly, the least absolute shrinkage and

selection operator (LASSO) logistic algorithm with a five-fold

cross-validation was employed to filter the optimal radiomic

features subset for predicting malignant prostate mass.
Machine learning model building and
comparison

Five machine learning models, namely, random forest (RF),

eXtreme Gradient Boosting (XGBoost), logistic regression (LR),
FIGURE 2

The overall workflow of this study.
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support vector machine (SVM), and k-nearest neighbor (KNN),

were employed to establish prognostic models for malignant

prostate mass, using the selected radiomic features. Grid search

with five-fold cross-validation was applied to optimize the

hyperparameters for each classifier in the training set, which were

further validated in the internal and external test sets (Figure 2). The

receiver operating characteristic (ROC) curve analysis, area under

the ROC curve (AUC), accuracy (ACC), sensitivity (SEN),

specificity (SPE), positive predictive value (PPV), and negative

predictive value (NPV) were calculated for the models’

performance evaluation. To compare the predictive performances

and clinical usefulness of the constructed ML models, the DeLong

test, calibration curve analysis with Brier score loss, and decision

curve analysis were conducted. A lower Brier score indicated better

model calibration.
Interpretation of machine learning model

The most robust ML model was interpreted via the SHAP

methodology, which is broadly applied in exploring the

interpretability of ML models (34, 35). Based on the cooperative

game theory, SHAP calculates each feature’s influence on model

predictions by evaluating its marginal impact across all feature

combinations, ensuring a balanced representation of feature

importance. It offers interpretability on both a local scale by

clarifying individual predictions and a global scale by

summarizing the relative influence of features across the dataset.
Statistical analysis

Statistical analysis was performed using SPSS 25.0 statistical

software (SPSS, Armonk, NY, USA), R software (version 4.3.1;

https://www.r-project.org/), and Python (version 3.8.0; https://

www.python.org/). The Shapiro–Wilk test assessed normality for

continuous variables, with normal data reported as mean ± SD and

analyzed via t-tests; nonnormal data were given as medians with

interquartile ranges (IQRs) and compared using Mann–Whitney U

tests. Categorical data, shown as counts (percentages), were

evaluated using chi-square or Fisher’s exact test. Based on the

Youden index, optimal cutoff-based accuracy, sensitivity,

specificity, PPV, and NPV were calculated, with 95% confidential

intervals (CIs) estimated using 1,000 bootstraps. A significance

threshold of P < 0.05 was applied throughout.
Results

Clinical characteristics

A total of 579 patients (mean age: 70.0 years, IQR: 65.0–75.0 years)

were retrospectively enrolled from two centers. Of these, 249 cases (43.9%)

were pathologically confirmed as benign prostate masses, and 318 cases
Frontiers in Oncology 05
(56.1%) were malignant. As shown in Table 1, there were no statistically

significant differences among the training, internal test, and external test

sets in terms of clinic-radiologic-histopathological characteristics, including

age, tPSA, fPSA, fPSA/tPSA, PSAD, prostate volume, Gleason score, and

the presence of SVI, LNI, and ECE, with all P values greater than 0.05.
Selection of radiomic features

In total, 2,632 radiomic features were extracted from the ROI of

T2WI and DWI MRI images. Among them, 1,939 features exhibited

strong reproducibility with both inter- and intraobserver correlation

coefficients over 0.80. The t-test filtered 1,317 features that were

significantly related to the malignancy of prostate masses, of which

238 were retained after Spearman correlation analysis. Finally, the

LASSO algorithm with five-fold cross-validation selected 18 radiomic

features that are optimal for malignant prostate mass prediction. The

features’ selection process using LASSO is demonstrated in

Supplementary Figure S1. The correlation matrix and clustered

heatmaps for the selected features are displayed in Supplementary

Figures S2, S3, respectively.
Establishment of ML models

Using the chosen radiomic features and grid search, five ML

models were successfully built for differentiating malignant from

benign prostate masses in the training set. As shown in Figures 3A–

C, the RF model obtained the highest AUCs, with 0.966 (95% CI:

0.949–0.981) in the training set, 0.929 (95% CI: 0.885–0.963) in the

internal test set, and 0.852 (95% CI: 0.758–0.934) in the external test

set. The XGBoost followed, with AUCs of 0.896 (95% CI: 0.861–

0.925), 0.907 (95% CI: 0.859–0.947), and 0.815 (95% CI: 0.710–

0.906) in the training, internal test, and external test sets,

respectively. The LR, SVM, and KNN models ranged as the third,

fourth, and fifth predicting models. Meanwhile, the RF model

exhibited excellent accuracies, with 0.903, 0.875, and 0.760 across

the three datasets (Figures 3D–F). The predictive abilities of

established ML models in the training, internal test, and external

test sets are summarized in Table 2.
Comparison of ML models

Table 3 lists the DeLong test analysis comparing AUCs of the

RF model with other ML models. As a result, except for the external

test set, the RF model exceeded the other four models for predicting

malignant prostate mass, with all DeLong test P values being less

than 0.05. Furthermore, the RF model demonstrated optimal

calibration across the training, internal test, and external test sets,

as indicated by the lowest Brier scores and well-aligned calibration

curves (Figures 4A–C). Moreover, it achieved the highest net benefit

across most threshold probabilities in the decision curve analysis

within all three datasets (Figures 4D–F). These results affirm the RF
frontiersin.org
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model’s predictive reliability and its clinical utility for guiding

decision making across diverse datasets.
SHAP interpretation of the RF model

SHAP was applied to uncover the prediction process of the RF

model. As illustrated in Figure 5A, the top three contributing radiomic

features for malignant prostate mass prediction were wavelet-

LLH_firstorder_Maximum_DWI (+0.06), original_shape_

LeastAxisLength_T2 (+0.05), and original_gldm_LargeDependence

LowGrayLevelEmphasis_T2 (+0.04). This demonstrates that wavelet-

LLH_firstorder_Maximum_DWI was the most influential feature in

predicting malignancy, with the model placing the greatest weight on

this feature when determining whether a prostate mass is malignant.

Following closely in importance were original_shape_LeastAxisLength_

T2 and original_gldm_LargeDependenceLowGrayLevelEmphasis_T2,

which, although contributing slightly less, still played a significant role

in the prediction. Except for the original_firstorder_Minimum_DWI,

and the wavelet-LLH_firstorder_90Percentile_T2, all other features

were positively correlated with malignancy of prostate mass

(Figure 5B). This indicates that the majority of the radiomic features

in the model were directly related to the likelihood of a prostate mass
Frontiers in Oncology 06
being malignant. Specifically, as the values of these features increased,

the probability of malignancy also increased, emphasizing their

importance in differentiating benign from malignant prostate masses.

The SHAP decision plot demonstrates the influences of all contributing

features on the final predicting probability (Figure 5C). In this plot, each

point represents an individual prediction, and the position along the x-

axis reflects the cumulative contribution of all features to the model’s

predicted outcome. Features with higher SHAP values push the

prediction toward a higher probability of malignancy, whereas

features with lower SHAP values move the prediction toward a lower

probability. Moreover, Figure 6 highlights two representative cases that

differentiated benign and malignant prostate mass, illustrating the

distinct contributions of each of the 18 selected radiomic features

within the RF model. These examples help clarify the specific impact

of each feature on the model’s predictive output, enhancing our

understanding of the role that these features play in assessing

malignancy of prostate mass.
Discussion

In this study, we successfully developed a noninvasive

diagnostic model that combines mpMRI radiomics and machine
TABLE 1 The clinical, radiological, and histopathological characteristics of the study cohorts.

Variable All patients
(n = 567)

Training
set (n = 352)

Internal test
set (n = 152)

External test
set (n = 63)

P value

Pathological
diagnosis, %

0.21

Benign 249 (43.9) 164 (46.6) 58 (38.2) 27 (42.9)

Malignant 318 (56.1) 188 (53.4) 94 (61.8) 36 (57.1)

Age, years 70.00 (65.00–75.00) 70.00 (65.00–75.00) 69.00 (65.00–76.00) 72.00 (67.00–77.00) 0.13

tPSA, ng/ml 17.35 (10.21–55.67) 17.51 (9.96–56.34) 17.90 (10.07–67.02) 16.26 (10.48–50.00) 0.89

fPSA, ng/ml 2.31 (1.15–5.83) 2.38 (1.10–5.66) 2.10 (1.18–6.75) 2.51 (1.21–4.86) 0.96

fPSA/tPSA 0.11 (0.08–0.16) 0.11 (0.08–0.16) 0.11 (0.08–0.16) 0.11 (0.80–0.18) 0.71

PSAD, ng/ml/cm3 0.38 (0.19–1.44) 0.38 (0.19–1.48) 0.43 (0.18–1.45) 0.30 (0.20–1.19) 0.90

Prostate volume, ml 43.54 (30.20–63.36) 41.09 (29.47–59.27) 45.64 (29.78–63.86) 46.37 (32.33–73.43) 0.12

Gleason score (GS), % 0.38

Benign 249 (43.9) 164 (46.6) 58 (38.2) 27 (42.9)

GS ≤ 6 53 (9.3) 32 (9.1) 12 (7.9) 9 (14.3)

GS = 7 111 (19.6) 64 (18.2) 39 (25.7) 8 (12.7)

GS = 8 53 (9.3) 33 (9.4) 14 (9.2) 6 (9.5)

GS = 9 82 (14.5) 49 (13.9) 24 (15.8) 9 (14.3)

GS = 10 19 (3.4) 10 (2.8) 5 (3.3) 4 (6.3)

Presence of SVI, % 136 (24.0) 81 (23.0) 39 (25.7) 16 (25.4) 0.79

Presence of LNI, % 138 (24.3) 87 (24.7) 35 (23.0) 16 (25.4) 0.90

Presence of ECE, % 159 (28.0) 97 (27.6) 44 (28.9) 18 (28.6) 0.95
fro
tPSA, prostate-specific antigen; fPSA, free prostate-specific antigen; fPSA/tPSA, the ratio of fPSA to tPSA; PSAD, prostate-specific antigen density; SVI, seminal vesicle invasion; ECE,
extracapsular extension; LNI, lymph node invasion.
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FIGURE 3

Predictive performances of the five machine learning models. The receiving operating curve (ROC) analysis of the established models in the training
(A), internal test (B), and external test (C) sets. The models’ predicting metrics radar plot in the training (D), internal test (E), and external test (F) sets.
TABLE 2 The predicting performances of the established five machine learning models in the training, internal test, and the external test sets.

Dataset Model AUC (95% CI) ACC SPE SEN NPV PPV

Training set

RF 0.966 (0.949–0.981) 0.903 0.927 0.883 0.874 0.933

XGBoost 0.896 (0.861–0.925) 0.818 0.841 0.798 0.784 0.852

LR 0.862 (0.822–0.898) 0.801 0.774 0.824 0.794 0.807

SVM 0.861 (0.822–0.898) 0.810 0.780 0.835 0.805 0.813

KNN 0.875 (0.838–0.909) 0.778 0.823 0.739 0.734 0.827

Internal test set

RF 0.929 (0.885–0.963) 0.875 0.931 0.840 0.783 0.952

XGBoost 0.907 (0.859–0.947) 0.836 0.793 0.862 0.780 0.871

SVM 0.879 (0.824–0.927) 0.796 0.776 0.809 0.714 0.854

LR 0.890 (0.840–0.936) 0.809 0.793 0.819 0.730 0.865

KNN 0.867 (0.811–0.917) 0.743 0.810 0.702 0.627 0.857

External test set

RF 0.852 (0.758–0.934) 0.760 0.824 0.707 0.700 0.829

XGBoost 0.815 (0.710–0.906) 0.693 0.824 0.585 0.622 0.800

LR 0.822 (0.717–0.909) 0.773 0.794 0.756 0.730 0.816

SVM 0.823 (0.722–0.912) 0.773 0.794 0.756 0.730 0.816

KNN 0.820 (0.714–0.910) 0.760 0.912 0.634 0.674 0.897
F
rontiers in Oncology
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7
RF, random forest; XGBoost, eXtreme Gradient Boosting; LR, logistic regression; SVM, support vector machine; KNN, k-nearest neighbor; AUC, area under the ROC curve; CI, confidential
interval; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
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learning to differentiate between benign and malignant prostate

masses. The RF model demonstrated excellent predictive

performance across both internal and external validation cohorts.

Additionally, the model’s decision-making process was elucidated

using the SHAP method, providing valuable insights into its

prediction mechanism. These findings highlight the potential of

this model to support clinical decision making in prostate cancer
Frontiers in Oncology 08
diagnosis, offering a reliable and noninvasive tool for preoperative

identification of malignant prostate masses.

Radiomics-based ML models have attracted considerable

attention in medical imaging, particularly for their potential in

differentiating benign from malignant prostate masses in a

noninvasive manner. Previously, Li et al. (36) developed six ML

models using the mpMRI-derived radiomic features to predict PCa

in 238 patients. The RF model was proven to be the best classifier in

their study, with an AUC value of 0.931. Castaldo et al. (37)

calculated the mpMRI radiomics-based risk score in 189 patients,

which successfully differentiated clinically significant PCa from

other prostate conditions. Li et al. (38) used mpMRI radiomic

features and the LASSO algorithm to develop a diagnostic model for

236 subjects, yielding an AUC value of 0.895–0.956 in

differentiating PCa and begin prostate mass. All of their studies

confirmed the predictive values of mpMRI radiomic features for

malignancy of prostate masses. In consistence with their studies,

using a four-step feature selection process, 18 radiomic features

were chosen in our study for five ML models’ establishment, which

all satisfactorily predicted malignant from benign prostate masses,

with AUCs ranging from 0.815 to 0.929 in the test sets. Differing

from their findings that based on single center cohorts, our study

included external validations, improving the generalization abilities

of our models.

More recently, several researches constructed mpMRI radiomic

model for PCa diagnosis on the basis of multicenter datasets and

ML methods. For example, studies by Mylona et al. (39)

demonstrated the effectiveness of mpMRI radiomic features in

distinguishing malignant from benign prostate masses. These
TABLE 3 Results of DeLong test analysis comparing AUCs of the RF
model with other machine learning models.

Dataset Models Z score P value

Training set

RF vs. XGBoost 7.132 <0.001

RF vs. LR 7.510 <0.001

RF vs. SVM 7.155 <0.001

RF vs. KNN 7.284 <0.001

Internal test set

RF vs. XGBoost 2.118 0.034

RF vs. LR 2.362 0.018

RF vs. SVM 2.667 0.008

RF vs. KNN 2.955 0.003

External test set

RF vs. XGBoost 2.140 0.032

RF vs. LR 0.957 0.339

RF vs. SVM 0.794 0.427

RF vs. KNN 0.935 0.350
AUC, area under the ROC curve; RF, random forest; XGBoost, eXtreme Gradient Boosting;
LR, logistic regression; SVM, support vector machine; KNN, k-nearest neighbor.
FIGURE 4

Evaluation of model’s clinical usefulness. Calibration curve analysis of the five models in the training (A), internal test (B), and external test (C) sets.
Decision curve analysis of the five models in the training (D), internal test (E), and external test (F) sets.
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FIGURE 5

The SHAP analysis of the RF model. (A) The SHAP bar plot indicated the contributing values of the radiomic features for RF predictions. (B) The SHAP
bee-swarm plot demonstrated the positive or negative correlation between radiomic expression and RF output. The x-axis represents the SHAP
values, whereas the y-axis lists the radiomic features and their respective values. Each point represents an individual sample, with red points
indicating higher feature values and blue points indicating lower values. The spread of points along the x-axis reflects how much each feature
influences the model’s prediction, with a wider distribution suggesting that many samples exhibit similar SHAP values for that feature. (C) The SHAP
decision plot showcased the influences of all contributing features on the final predicting probabilities. The vertical gray line represents the model’s
base value. The colored lines show individual predictions, illustrating how each feature either increases or decreases the predicted value relative to
the base value. Each feature’s value is indicated next to its respective line. Starting at the bottom, the prediction lines show how SHAP values
accumulate to the final model score at the top. Red lines correspond to higher feature values, whereas blue lines correspond to lower feature
values. SHAP, SHapley Additive exPlanations; RF, random forest.
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studies primarily focused on single-modal approaches or combined

data from different imaging modalities without explicitly applying

feature fusion methods for a more comprehensive exploration of

diagnostic data. In contrast, our study adopted a feature-fusion

approach, combing the T2WI and DWI MRI-derived radiomic

features. By incorporating multimodal radiomic data, we were able

to select the most optimal set of features, capturing a broader

spectrum of tumor characteristics. This fusion of features provides a

more robust and comprehensive representation of prostate mass

heterogeneity, which is essential for improving diagnostic accuracy.

Besides, the predictive performances of the constructed ML models

were compared using the DeLong test, calibration curve, and

decision curve analysis, and the most optimal ML model for

predicting malignant prostate masses was determined. The RF

model outperformed the others, exhibiting the most robust

performances in both the training (AUC: 0.966), internal test

(AUC: 0.929), and external test (AUC: 0.852) sets, highlighting

the superiority of the RF model in predicting malignant prostate

masses and underscoring the value of incorporating multimodal

radiomic data for improving diagnostic precision.

To be noted, the RF model exhibited weaker statistical significance

in the external test set compared to other models in the DeLong test,

which may be attributed to the following factors: First, the external

dataset was derived from a different institution, and variations in

imaging acquisition protocols, scanning parameters, and patient

demographics may have impacted the model’s generalizability, leading

to a reduced discriminatory ability. Second, the relatively smaller sample

size in the external test set may have limited the statistical power of the

DeLong test, making it more challenging to detect subtle differences in

AUC values. Additionally, although the RF model still achieved the

highest AUC, the differences between models were smaller in the
Frontiers in Oncology 10
external set than in the internal test set, further affecting statistical

significance. Future studies should incorporate larger, multicenter

datasets to enhance the model’s robustness and generalizability.

The use of the ML model in clinical practice is still met with

skepticism, primarily due to the perceived “black box” nature of many

algorithms (40, 41). Lack of interpretability remains a barrier, with

critics highlighting the need for transparency and reliability in clinical

decision-making tools (42, 43). Recent studies have increasingly applied

interpretable methods, such as SHapley Additive exPlanations (SHAP),

to elucidate the contribution of individual features, thus promoting

acceptance of ML-based diagnostic tools in clinical settings (44–46). To

the best of our knowledge, there has been no previous study

investigating mpMRI radiomics-based interpretable ML model using

the SHAP method for predicting malignant prostate masses. Our

findings demonstrate that the RF model achieved the best

performance, suggesting that RF may offer greater stability and

predictive accuracy in multicenter settings. It is therefore chosen to

explore the underlying prediction logics by incorporating SHAP. As a

result, we identified specific radiomic features, such as wavelet-

LLH_firstorder_Maximum_DWI and original_shape_LeastAxis

Length_T2, that contribute significantly to malignancy predictions.

The contributed relations of the 18 selected radiomic features were

successfully illustrated using the SHAP bar plot, SHAP bee-swarm plot,

and SHAP decision plot. This approach not only enhances model

transparency but also allows clinicians to understand the influence of

individual features on diagnostic predictions. In addition, the precise

prediction of RF model based on the selected radiomic features may be

due to the underlying correlations between MRI radiomics and tumor

biological heterogeneity. For example: the wavelet-LLH_firstorder_

Maximum_DWI suggests the presence of highly variable cellular

structures, which can be indicative of tumor aggressiveness and
frontiersin.o
FIGURE 6

Two representative cases that were successfully differentiated as benign (A) or malignant (B) prostate mass using the RF model. The distinct
contributions of each radiomic features within the RF model for individual predictions are illustrated using the SHAP waterfall plot. RF, random
forest; SHAP, SHapley Additive exPlanations.
rg

https://doi.org/10.3389/fonc.2025.1541618
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2025.1541618
heterogeneity, often linked to increased cellular density and irregularity.

The original_shape_LeastAxisLength_T2 may be associated with the

tumor’s morphological characteristics, such as its invasive potential or

spatial expansion patterns, which can reflect aggressive tumor growth.

Lastly, the original_gldm_LargeDependenceLowGrayLevelEmphasis

feature, extracted from T2-weighted images, is sensitive to areas with

low gray-level variation, often correlating with stromal changes and

microvascular structures in the tumor microenvironment.

Several limitations of this study should be acknowledged. First,

the retrospective nature of this study results in an inevitable

selection bias, which may affect the representativeness of the

study population and the generalizability of the findings. This

underscores the need for prospective studies with predefined

inclusion criteria and systematic follow-up protocols, as well as

external validation in larger, independent cohorts, to confirm the

robustness and clinical applicability of our results. Second, although

the use of multicenter datasets increases generalizability, the sample

size still does not adequately reflect the broader diversity of prostate

cancer patients. A large-scale international multicenter study design

is expected in future researches. Third, although SHAP improved

model interpretability by identifying influential features, it does not

entirely resolve the challenges that clinicians face in applying

machine learning outputs in clinical settings, as the underlying

molecular explanations of radiomics-based model remain

unrevealed. Last but not least, the manual delineation of prostate

mass region not only is time- and labor-dependent but also faces the

reproducibility issue. Auto or semiauto MRI segmentation tools for

prostate mass are urgently needed.

In conclusion, this study demonstrates the potential usage of the

mpMRI radiomics-based interpretable machine learning model for

differentiatingmalignant from benign prostate masses. The successful

application of the SHAP method provides further transparency in

model predictions, a critical step toward clinical adoption. This

approach holds promise for improving preoperative prostate cancer

diagnosis and guiding personalized treatment strategies.
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