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Introduction: Puerto Rican (PR) Hispanic/Latino (H/L) men are an understudied

population that has the highest prostate cancer (PCa) specific mortality among

other Hispanic populations. Little information is known about the higher

mortality in PR H/L men. It is thought that epigenetic changes in key genes

may play a critical role in aggressive tumors.

Methods:We aimed to identify key 5-hydroxymethylcytosine (5hmC) changes in

PR H/L men with aggressive PCa. We performed sequencing analysis using the

5hmC-enriched DNA from 22 prostate tumors and 24 adjacent normal

FFPE samples.

Results: We identified 808 differentially methylated genes (DMGs) in tumors

compared to adjacent normal tissues. These genes suggest key mechanisms,

including upregulated signatures of negative Androgen Receptor (AR) regulation,

Wnt/b-catenin pathway activation, and downregulation of tumor suppressor

genes. Pathway analysis of DMGs demonstrated that DNA repair pathway was

most upregulated in tumors. Since 5hmC abundance positively correlates with

gene expression levels, we further investigated 808 DMGs in TCGA PCa gene

expression data. Further, we identified 59 DMGs with significant gene expression

changes in the same direction. Additionally, we identified 111 aggressiveness-

related DMGs, of which, two hypomethylated genes (CCDC122, NUDT15) and

four hypermethylated genes (PVT1, RPL30, TRMT12, UBR5) were found to be

altered at transcriptomic level in a concordant manner in PR H/L PCa patients.

Aberrant 5hmC and GE changes in these six genes were also associated with

progression-free survival in the mixed PCa population.

Discussion: The 5hmCmodifications and associated gene expression changes in

these six genes could be linked to the highest prostate cancer (PCa)-specific

mortality in PR H/L men. In conclusion, our study identified 59 DMGs showing
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concordant epigenetic and transcriptomic changes in tumor tissues and 111

DMGs showing association with aggressive PCa among PR H/L men. Our findings

have significant implications for understanding these key genes’ molecular

mechanisms, which may drive PCa progression and mortality in this

population. This will help in developing potential biomarkers or therapeutic

targets for personalized treatment strategies in this high-risk subgroup. Future

research will explore how these genes contribute to PCa-specific mortality

through molecular analyses, with plans to validate them in a larger

validation cohort.
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Introduction

In 2024, 299,010 new prostate cancer (PCa) cases and 35,250

PCa-specific deaths are anticipated in the US (1). The lifetime risk of

PCa in US men is approximately 12.5% (2). PCa-specific mortality

(PCSM) rates have been found to vary among different racial/ethnic

groups in the US, especially in certain Hispanic subgroups as

compared to non-Hispanic Whites (NHWs) and non-Hispanic

Blacks (NHBs) (3). This study combined all Hispanic subgroups

into one broad group including Mexican Americans, Caribbeans,

Puerto Ricans, and South Americans. However, among different

Hispanic/Latino (H/L) subgroups, Puerto Rican men showed

significantly higher PCSM rates than other Hispanic groups and

NHBs (3) (Table 1). Indeed, PCa is the most common cancer case

and cancer-specific death in Puerto Rico (4). According to the 2019

PR Cancer Registry data, PCa is the leading cancer type in terms of

incidence 137.3/100,000) and mortality (16.2/100,000) in Puerto

Rican (PR) H/L men (5). Despite the high level of PCa

vulnerability in this population, the underlying causes of the high

mortality rate in this group are still unclear.

PCa is a complex disease that is mediated by the accumulation

of genetic and epigenetic aberrations, such as differential expression

of oncogenes and tumor suppressor genes (6). Differential DNA

methylation can influence carcinogenesis and disease progression

(7). Epigenetic changes such as DNA methylation (5-

hydroxymethylcytosines (5hmC) and 5-methylcytosines (5mC))

are important mechanisms responsible for transcription

regulation and ultimately functional implications to drive

aggressive pathology of PCa (8, 9). Zhao et al. reported

differential 5mC changes during PCa progression at putative

regulatory regions. Indeed, the most common molecular events in

PCa are DNA methylation dysregulation. Among these epigenetic

changes, some specific changes may be associated with poor

outcomes, including PCSM, metastasis, and recurrence (10). The

Cancer Genome Atlas (TCGA) study found associations between

gene expression and methylation profiles. This study suggested that

epigenetic changes define distinct molecular subtypes of PCa (11).
02
The role of DNA methylation in promoter regions has been

investigated numerously, and many differentially methylated

genes have been related to gene silencing of tumor suppressor

genes in PCa and with poor outcomes (7, 12–14).

In addition to commonly known 5-methylcytosine methylation

in the genome, 5-hydroxymethylcytosines (5hmC) are also

reported. These 5hmCs are created by oxidation of common 5-

methylcytosine methylation by ten-eleven translocation (TET)

enzymes (15). Several studies reported a regulatory role of 5hmC

in gene expression (8, 16). Like common 5-methylcytosine

methylation, locations of 5hmC are in gene bodies, promoters,

and enhancers, which are transcriptionally active regions (17).

However, unlike 5mC, the functional role of 5hmc is

overexpression of gene regulation (18). Therefore, 5hmCs were

suggested as a new class of epigenetic biomarkers for various

cancers, including PCa (8, 19, 20).

Notably, 5hmCmodification is predominant in gene bodies and can

be a better marker in echoing gene expression than gene body 5mC (21).

Also, around 33% of 5hmC peaks are in tissue-specific differentially

methylated regions potentially affecting tissue-specific functional gene

expression in the same direction (21, 22). 5hmC DNA methylation also

has an essential tissue-specific function in epigenomic activation in PCa

and it was identified as a potential biomarker of aggressive PCa (8). This

study identified that 5hmC levels of genes such as EZH2 and TOP2A

associated with poor survival in PCa. Transcriptomic levels of these

genes were shown to be hallmark of aggressive PCa (23). This depicts

that 5hmC patterns can find epigenomic activation of driver genes

associated with aggressive PCa. However, it is not known why PR H/L

men show high PCa-specific mortality. Since differential DNA

methylation may influence racial disparities in PCa, there is a need to

investigate 5hmC profiles to evaluate potential PR-specific methylated

genes associated with poor prognosis. To identify promising 5hmC

biomarkers for aggressive PCa in PR men, we applied the 5hmC-Seal

technology (24) to examinemethylation changes in PCa tissues from PR

men. Our results suggested that differential 5hmC changes in a group of

candidate genes are associated with aggressiveness and potentially

contribute to cancer disparity.
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Methods

IRB approval and tissue sample collection

Two Institutional Review Boards, the Moffitt Cancer Center

(Protocol no. Pro00048100) and the Ponce Health Sciences

University (PHSU) (Protocol no. 1909021277A001), approved

this study. All study participants signed an Informed Consent.

We obtained 88 formalin-fixed paraffin-embedded (FFPE) prostate

tumor and adjacent non-involved pair samples from the Puerto

Rico Biobank (PRBB), a U54 PHSU-MCC PACHE Partnership core

facility. All prostate tissues were obtained from prostate cancer

patients who were treated surgically. We excluded the patients with

metastasis, and who were treated by radiation. Based on Gleason

scores and following the 2023 National Comprehensive Cancer

Network (NCCN) guidelines for prostate cancers, tumors from

study participants were classified as either aggressive or indolent.
Gene expression

mRNA transcript quantification was done using the Human

Exon 1.0 ST microarray (Thermo-Fisher, Carlsbad, CA, USA) at the

Genomic Core at Moffitt Cancer Center. RNA was extracted from

the FFPE blocks using macro-dissection from 88 PR H/L prostate

cancer patients. The microarray measures 46,050 RNA transcripts.

The SCAN (25) algorithm was used to preprocess and normalize the

transcriptomic data resulting in log2 gene expression. Decipher, a

22-marker prognostic gene-expression score, was determined from

the Decipher Prostate cancer classifier assay (25, 26). We used the

following cut-off values for Decipher score, 0.0 – 0.45, low risk for

metastasis, 0.46 – 0.60, intermediate risk, and 0.61 – 1.00, high risk.
DNA extraction and quality control

Genomic DNA samples were obtained from the FFPE prostate

tumor tissues as described in the manufacturer’s instructions (QIAamp

DNA FFPE Tissue kit, Qiagen, Germantown, MD). DNA was

extracted from the marked tumor area on the H&E slides by the

pathologist (J.D.) from 46 (22 tumor and 24 adjacent normal) tissues

from 88 PR H/L patients. DNA quality was tested with DNA integrity
Frontiers in Oncology 03
numbers (DINs) using Tapestation (Agilent Technologies). The mean

DIN score was 4.07 with range 1.7-6.0. We used the cut off >2.5. DNA

was quantified using Qubit 2.0 fluorometer (Life Technologies) with

Qubit dsDNA HS Assay Kit (Life Technologies).
5hmC library preparation

We used 7-50 ng of genomic DNA as starting material. Briefly,

DNA polishing (at 37°C for 30 min) and enzymatic fragmentation (at

37°C for 5 min.) were carried out using NGS FFPE DNA polishing kit

(KAPA/Roche, USA) and DNA fragmentation kit (KAPA/Roche, USA)

as per manufacturer’s instructions. After fragmentation, the DNA

sample was end-repaired and A-tailed using KAPA/Roche Hyper

Prep Kit PCR-Free as per manufacturer’s instructions. End-repaired

DNAwas ligated with adapters (5 NEBNextMultiplexOligos, Illumina),

processed further for USER enzyme digestion, and purified. After

digestion, DNA was enriched by labeling and capturing as described

previously (24). The enriched DNA was used for qPCR (4 ml) and
library amplification (20 ml). Fold change was used to describe the

relative enrichment and it was calculated by D-D Ct formula (2(–DDCt)) =

(DCt Sample) – (DCt control). The 5hmC DNA was amplified using

universal primer (New England Biolabs, USA), index primer (New

England Biolabs, USA) and HiFi HotStart ReadyMix (KAPA/Roche).

Further, purified libraries were quantified using the Quantus

fluorometer instrument (Promega) and the QuantiFluor® ONE

dsDNA kit (Promega). The quality of the libraries was assessed using

the TapeStation system. The library size distribution within the range of

200-600 bp across all samples was evaluated, indicating consistent and

high-quality libraries. Next, Single-end 75 bp sequencing was performed

on an Illumina NextSeq 500. 22 prostate tumors and 24 adjacent normal

FFPE samples were sequenced after 5hmC enrichment.
Sequencing data processing

FastQC was used to evaluate raw read quality (27). Reads were

aligned to human genome build hg38 from Ensembl (https://

ftp.ensembl.org/pub/release-111/fasta/homo_sapiens/dna/

Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz) using

bowtie2 v2.5.1 (28) and sorted and indexed using samtools v1.17

(29). Further, duplicates were removed from mapped reads using

Picard (30), and, raw read counts per gene were generated using the

feature Counts tool from package subread (31). Using Principal

Component Analysis (PCA), we checked samples for outliers. We

evaluated samples based on their position relative to the principal

components (PCs), specifically looking for samples that deviated

significantly from most of the dataset. We did not exclude any

samples as outliers based on the PCA plot.
Differentially methylated genes and
pathway analysis

Differentially methylated genes were identified using the DESeq2

package (32). All samples were normalized using Deseq2 internal
TABLE 1 incidence and mortality rates for prostate cancer in
Latin countries.

Country Incidence rate
(per 100000
persons per year)

Mortality rate
(per 100000
persons per year)

Puerto Rico (5) 137.3 16.2

Mexico (64) 42.2 10.6

Peru (65, 66) 40.1 10.5

Brazil (67) 81.5 14.5

Chile (66) 62.3 15.1
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normalization and further compared in unpairedmanner withmultiple-

hypothesis testing as all tumors and adjacent normals were not paired.

Genes with |log2 fold-change| >0.4 and adjusted p-value<0.05 were

considered differentially methylated. Fold change was used to describe

the relative enrichment and it was calculated by D-D Ct formula (2

(–DDCt)) = (DCt Sample) – (DCt control). Pathway analysis was

performed using GSEA (33). Top pathways were selected based on

padj<0.05. An enhanced Volcano package was used to prepare volcano

plot. The cluster Profiler package (34) performed pathway analysis and

visualized functional profiles of differentially methylated genes.
Differentially expressed genes analysis-
TCGA

IlluminaHiSeq pancan normalized prostate cancer gene

expression (N=549) data was downloaded from TCGA Hub.

From a total of 549 samples, 52 samples were normal solid tissue

biopsies and 497 were primary tumors. To identify differentially

expressed genes, we calculated DGE (D gene expression- differences

in GE between tumor and adjacent normal samples) and filtered for

genes having ≥ 1 or ≤ -1 value for DGE and adjusted p-value<0.05.
Integration with 5hmC and gene
expression changes in PCa patients from
mixed origin

5hmC DNA methylation and gene expression values were

integrated for DMGs and differentially expressed genes. Log2FC

was used for 5hmC and DGE values were utilized for TCGA gene

expression data. Significantly hypo- or hypermethylated genes

showing the same direction of alteration as previously published

5hmC data or gene expression were plotted on the same plot using

the ggplot2 package in R (35).
Risk analysis for 5hmC and Gene
expression profile in PR H/L men

Gleason score (GS) was used as a cut-off to identify DMGs in

aggressive PCa patients (GS- 7 (3 + 4) or less, Non-aggressive; GS- 7

(4 + 3) and above, Aggressive). For gene expression profile, we used

21 aggressive and unpaired 65 indolent tumors from 88 PR H/L

patients. Unpaired two-sided Wilcoxon rank sum test from the

‘stats’ package was used to calculate significantly different 5hmC or

gene expression changes in aggressive vs indolent tumors.

Pheatmap package (36) was used to create heatmap plots and the

ggplot2 package (35) was used to create boxplots.
cfDNA 5hmC sequencing and survival
analysis in advanced PCa patients

We performed 5hmc enrichment and sequencing library

preparation as the methods had been previously published (37).
Frontiers in Oncology 04
In brief, cell-free DNAs (cfDNAs) were extracted from 0.4 – 1.0ml

of platelets-poor plasma using QIAamp DNA Blood Mini Kit

(Qiagen). The cfDNA yield was quantified using the Qubit and

stored at -80°C until use. As described above, 5-10ng of cfDNA was

used for 5hmC enrichment and library preparation.
Survival analysis

Survival analysis was performed for 5hmC data generated from

cfDNA (N=55) and gene expression data downloaded from TCGA

for prostate cancer patients (N=497). For the association study,

clinical data for TCGA dataset was also downloaded from GDC

(https://xenabrowser.net). We used Kaplan-Meier survival analysis

(lower level = below the median and higher level = above the

median) to analyze the association of 5hmC or Gene expression

levels with progression-free survival (PFS) as the endpoint.

Association with PFS was done using the ‘survival’ package (38),

and graphical representations were created using the ‘pheatmap’,

‘survminer’ and ‘ggplot2’ packages. P<0.05 was considered

significant. All statistical analyses were performed in R (v4.3.1).
Data download

Raw 5hmC-seq data from 51 localized and 7 adjacent normal

prostate samples were obtained from European Genome-Phenome

(https://ega-archive.org/datasets/EGAD00001008462; Study ID:

EGAS00001004942). Gene expression data for prostate cancer

samples were downloaded from TCGA (https://tcga-xena-

hub.s3.us-east-1.amazonaws.com/download/TCGA.PRAD.

sampleMap%2FHiSeqV2_PANCAN.gz).
Results

Demographic and clinicopathological
characteristics of study group

The Puerto Rican population is a genetically admixed with an

ancestry structure composed primarily of European, African and

Indigenous American ancestries. In a study of 49 PHR H/L PCa

patients, the average ancestry was European (65.8%), African (21.9%),

and Indigenous American (12.3%) (39). The mean age at diagnosis for

PR H/L men with PCa was 62.8 years (Table 2). Seventy-six percent of

all patients (n = 67) had a low Gleason score (6 or 7 (3 + 4)) and were

classified as a low-risk group while 24% of all patients (n = 22) had a

high Gleason score (7 (4 + 3) or 8−10) and were classified as a high-risk

group. As expected, a significantly different distribution in the clinical

stage was detected between the two groups (p=0.02). There were no

statistically significant differences between the two groups regarding

prostate-specific antigen (PSA) levels. The study workflow was divided

into two parts (Figure 1). The first part involves a comparison of tumor

tissues with adjacent normal controls in PR H/L men and further

integration with previously published 5hmC and gene expression
frontiersin.org
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datasets of PCa patients from mixed origin. The second part involves

risk analysis in PR H/L men with PCa to discover significantly different

methylated genes with concordant transcriptomics signatures

associated with PCa aggressiveness in PR H/L men. We also

validated the DMGs by testing their 5hmC and gene expression

levels association with poor survival in PCa patients of mixed origin.
Differentially methylated genes in PCa
tumors from PR H/L men

To identify differentially methylated genes in PR H/L men, we

first compared normalized read counts from 22 tumor samples with

24 adjacent normal samples in an unpaired manner, and identified

808 DMGs (FDR<0.05, log2FC>|0.4|) (Figure 2A, Supplementary

Table 1). The most noticeable DMGs included hypermethylated

genes (AGR3, FAM13A, NLRP8, AGAP6, RHPN2, DGAT2L6) and

hypomethylated genes (IRF2BP1, GPS1, NALT1, HIC1, MAPK7,

XKR5, MYBPHL and GNAO1). Since these DMGs may play a key

role in PCa, we performed pathway analysis to reveal the biological

pathways involved in PCa biology for PR H/L men. This analysis

showed that cell cycle, meiosis, cell division, and DNA repair-related

pathways were most upregulated in tumor samples compared to

adjacent normal samples (Figure 2B, Supplementary Table 2).

This indicates that tumors were highly dysregulated with a lack of

apoptotic genes and pathways typically important for regulating

growth and survival.
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5hmC and gene expression signature in
PCa

Since 5hmC abundance is directly correlated with gene

expression levels, we investigated 808 DMGs’ expression changes

in the TCGA prostate cancer dataset. This analysis identified 59

common DMGs (80.1%, (FDR<0.05, DGE>|1|) with significant

5hmC and gene expression changes in the same direction

(Figures 3A, B). This same direct ion epigenetic and

transcriptomic changes (59 genes) in PR H/L men include tumor

suppressor genes such as DKK3 and PRDM8 with downregulated

5hmC and GE (gene expression) levels (Supplementary Table 3A).

We also examined the shared 5hmC candidate genes between PCa

patients of the PR H/L population and mixed origin. To identify

DMGs in the population with mixed origin, we performed 5hmC

methylation analysis in 51 localized PCa and 7 normal samples

retrieved from the previously published study dataset (8). This

analysis showed 129 DMGs shared between two populations

(Figures 3A, C, Supplementary Table 3B). We also observed that

the previous 5hmC study showed 171 genes with the same

directional gene expression signature in the TCGA dataset. Eight

DMGs in PR H/L men have the same direction changes as the other

two datasets. Importantly, we found 628 potentially unique 5hmC

genes in PR H/L men with PCa (Supplementary Table 3C). These

unique differentially methylated genes in PR H/L men include

hypomethylated genes such as IRF2BP1, HIC1, NALT1, MAPK11

and hypermethylated genes such as CDC25C, FLT3, NME5, LDHC
TABLE 2 Clinicopathological Characteristics of Puerto Rican prostate cancer patients.

Patients Clinical Characteristics (n=88)

Total (88) Aggressive (22) Indolent (66) P value

Race White 78 18 60 0.48

Black 7 3 4

Others 3 1 2

Stage T1 or T2 72 16 56 0.02

T3 13 7 6

Gleason score 6 42 0 42

7 (3 + 4) 25 0 25

7 (4 + 3) 12 12 0

8-9 9 9 0

Age 62.8 ± 6.67 64.8 ± 5.5 60.8 ± 8.3 0.07

PSA 6.70 ± 4.3 7.51 ± 4.8 6.96 ± 5.5 0.73

Decipher 0.21

0.0-0.45 39 11 28

0.46-0.60 19 3 16

0.61-1.0 22 9 13

Family history 12% 13% 12% 0.91
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FIGURE 2

Significant DMGs associated with DNA damage and cell-cycle related pathways in PCa patients of PR H/L origin. (A) The volcano plot indicates
DMGs in tumor samples (n=22) compared to adjacent normal (n=24); padj<0.05. (B) GSEA plot showing top 30 pathways significantly (padj<0.05)
altered in tumor tissues compared to adjacent normal tissues. The color intensity represents level of significance.
FIGURE 1

Study workflow. DEGs, Differentially expressed genes; DMGs, Differentially Methylated Genes; GE, Gene Expression; PFS, Progression free survival.
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compared to normal samples. Further, we checked whether the

5hmC profile is associated with PCa aggressiveness in PR H/L men.
5hmC-gene signatures in aggressive
tumors

Based on the Gleason score, we classified as 7 aggressive tumors

and 15 indolent tumors in 22 tumor samples from PR H/L men. To

detect DMGs associated with high-risk aggressive tumors, we

evaluated the difference in 5hmC levels between the two groups

and identified 111 DMGs (P<0.05) (Figure 4A). Among those

DMGs, the most noticeable genes included hypomethylated genes

(CCDC122, NUDT15, BCCIP, and KLK10) and hypermethylated

genes (PVT1, TRMT12, RPL30, UBR5, COX6C, ARMC2) in

aggressive PCa patients (Supplementary Table 4A). These genes

were previously reported for their role in aggressive PCa biology. To

check the functional implication of these 111 DMGs, we examined

whether their 5hmC levels were positively correlated with their

transcriptomic levels. Out of these 111 DMGs, we confirmed 5hmC

hypomethylated genes (CCDC122, P=0.089 and NUDT15, P=0.004)

and hypermethylated genes (TRMT12, P=0.003; PVT1, P=0.267,

RPL30, P=0.24 and UBR5, P=0.27) with same direction GE levels in

PR H/L PCa patients (n=86) (Figures 4B, C, Supplementary

Tables 4A, B). These candidate genes in aggressive tumors reveal

their significance as potential biomarkers or targets in aggressive

PCa patients of PR H/L origin.
Association of 5hmC levels with poor
progression-free survival

The concordant 5hmC and gene expression signature in

CCDC122, NUDT15, TRMT12, PVT1, RPL30, and UBR5 may be

responsible for poor survival in PCa patients. However, we could

not gather clinical follow-up survival data for PR H/L PCa patients.
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Hence, we examined the association of these genes with survival in

PCa patients of mixed origin. We have used the 5hmC data

generated from cfDNA for another study for survival analysis

(37). We found that lower levels of CCDC122 and NUDT15 and

higher levels of PVT1, RPL30, TRMT12, and UBR5 were

significantly associated or trending towards significance while

associated with poor PFS in PCa of mixed origin (Figure 5A,

Supplementary Table 5A). The consistent findings across diverse

DNA sources (tissue biopsy and cfDNA) from PCa patients affirm

the significance of altered methylation levels in these genes as

reliable indicators for predicting a worse prognosis.

Further, we aimed to investigate whether transcriptomic levels

of these genes are also associated with poor PFS in PCa patients. We

examined gene expression and survival data from TCGA PCa

database (n=497). We found that lower GE levels of CCDC122

and NUDT15, and higher GE levels of PVT1, RPL30, TRMT12, and

UBR5 showed a clear trend of association with poor prognosis in

PCa patients (Figure 5B, Supplementary Table 5B). Our findings

revealed a uniform directional cfDNA 5hmC and tissue GE

signature of CCDC122, NUDT15, PVT1, RPL30, TRMT12, and

URB5. These genes are associated with poor survival in mixed

PCa populations. This further solidifies the role of these candidate

genes in aggressive PCa biology.
Discussion

Despite high PCa-specific mortality, Puerto Rican Hispanic/

Latino (PR H/L) men remained an understudied population (3).

Although PCa is slowly growing, around 20-30% of cases show an

aggressive phenotype potentially leading to metastasis and poor

survival outcomes. Considering PCa racial and ethnic health

disparities, we aim to investigate 5hmC changes in PR H/L PCa

patients and their role in the aggressiveness of the disease. Our

analysis revealed 59 genes having the same direction of epigenetic

and transcriptomic changes in tumor tissue of PR H/L men.
FIGURE 3

Integration of 5hmC candidate genes from PR H/L PCa patients with UCSF 5hmC and GE dataset from PCa patients of mixed origin. (A) Van diagram
showing overlapping candidate genes with UCSF 5hmC and TCGA GE datasets (padj<0.05). (B) GE (TCGA PCa dataset) and (C) 5hmC (UCSF study on
PCa patients) changes in the same direction as PR H/L men.
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Further, we found 111 DMGs associated with PCa aggressiveness

with six candidate genes having concordant epigenetic-

transcriptomics signatures associated with PCa aggressiveness in

PR H/L men. Finally, we demonstrated these candidate genes’

5hmC and gene expression levels for their association with poor

PFS in PCa patients. Our findings provide an essential insight into

the epigenetic landscape of PCa in the PR H/L patient population.

Some of the genes identified in this study are associated with various

cancers including PCa, and affect multiple biological processes, such

as immune pathways, cell signaling, metabolism, DNA repair,

proliferation, and cell cycle (Supplementary Table 2).

Our data indicates significant alterations in the 5hmC profile in

PCa tissues compared to adjacent normal tissues. The

hypermethylated genes include androgen-regulated gene (AGR3),

and the PCa proliferation-related gene (RHPN2). The

hypomethylated genes include tumor suppressor genes (BTG2,

DKK3 and PRDM8), transcriptional repressor (HIC1, IRF2BP1),

apoptosis related gene (MAPK7) and methyltransferases (PRDM8.

PRDM16, PRDM13, KMT5C, FAM86B2, TRMT61A). AGR3

overexpressed in PCa tissues vs benign prostate tissues and
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cancer/benign tissues vs tissues obtained following castration,

meaning that androgens regulate these genes and are potentially

involved in prostate carcinogenesis (40). It is also reported that

AGR3 is responsible for the activation of the Wnt/b-catenin
pathway in human colorectal cancer cells, which is an important

mechanism for stemness and cell proliferation in cancer cells (41).

Mainly, AGR3 potentially acts as a negative regulator of AR,

inhibiting the activation of genes crucial for controlling prostate

cancer growth. In co-cultured cell line experiments, a previous

study demonstrated that RHPN2, a miR-205 target, positively

regulates PCa cell proliferation, invasion, and migration (42).

BTG2, a tumor suppressor gene upregulated by PTEN and p53,

was lower in human bladder cancer tissues than normal bladder

samples (43). DKK3 has a protective role in PCa as reported in

prostate cell lines (44) and it negatively regulates Wnt/b-catenin
signaling pathway (45). Hypomethylation of tumor suppressor

genes, such as BTG2 and DKK3, in the tumor group results in

decreased gene expression, contributing to prostate cancer

proliferation. HIC1 loss promotes PCa metastasis by triggering

epithelial-mesenchymal transition as reported in PCa cell lines,
FIGURE 4

High or low-risk PR H/L PCa patients demonstrated significantly different (P<0.05) and concordant 5hmC-GE signatures. (A) The heat map shows 111
DMGs in aggressive patients compared to indolent cases. Representative examples of genes showing association of (B) 5hmC levels (n=22) and
(C) GE levels (n=86) with aggressiveness in PR H/L PCa patients. GS was used to define the risk category of each case. Low risk, GS=<6 & 3 + 4;
High risk, GS=4 + 3 & >8.
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human PCa tissues, and animal model systems (46). In cell line study,

HIC1 also attenuates Wnt signaling, impacting the activation of genes

regulated by the canonical Wnt/b-catenin pathway (47). IRF2BP1 is a

transcriptional corepressor that belongs to the IRF2BP protein family
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(IRF2BP1, IRF2BP2, and EAP1), and EAP1 has been reported as a

novel AR coregulator in a PCa cell line study (48). Overall, our results

suggest key mechanisms involved in PCa development in this high-

risk subgroup, including upregulated signatures of negative AR
FIGURE 5

5hmC and GE levels of CCDC122, NUDT15 (low), and PVT1, TRMT12, RPL30, UBR5 (high) are significantly (P<0.05) associated with poor PFS in PCa
patients. Representative examples of genes showing association of (A) 5hmC levels in cfDNA (n=55) and (B) GE levels in tumor tissues (n=497) with
poor PFS in PCa patients of mixed origin. The independent cohorts of PCa patients were used for this analysis. Gene expression levels were retrieved
from TCGA database (n=497).
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regulation through AGR3 hypermethylation and IRF2BP1-EAP1

hypomethylation, downregulation of tumor suppressor genes (BTG2

and DKK3), and activation of the Wnt/b-catenin pathway via AGR3

hypermethylation and DKK3, HIC1 hypomethylation. Multiple

pathways, such as DNA damage sensor activity, DNA

recombination, and cell cycle-related pathways, were upregulated in

tumor samples compared to adjacent normal tissues. These epigenetic

modifications can lead to the dysregulation of key tumor suppressor

genes and oncogenes, impacting PCa proliferation, metastasis, and

treatment response. Aberrant methylation can contribute to the

heterogeneity of PCa by altering gene expression patterns, impacting

disease aggressiveness and therapeutic resistance, ultimately affecting

overall prognosis and survival in this high-risk subgroup.

The DMGs from our findings also overlapped with a previous

5hmC study (8) on PCa and gene expression dataset from TCGA.

For example, we found AGR3 and RHPN2 hypermethylation and

BTG2 and MAPK7 hypomethylation in both 5hmC datasets. We

also found upregulation of AGR3 and downregulation of DKK3,

PRDM8, and TP53AIP1 in our 5hmC study and TCGA gene

expression dataset. Interestingly, the PR H/L cohort also showed

unique differentially methylated genes, including hypomethylated

genes such as IRF2BP1,HIC1,MAPK11 and hypermethylated genes

such as CDC25C, FLT3, NME5, LDHC (Supplementary Table 3C).

These identified gene signatures in PR H/L PCa tumors are highly

associated with AR regulation. Downregulation of apoptotic and

tumor suppressor pathways leads to prostate cancer aggression,

proliferation, survival, and therapeutic resistance.

A previous study on PCa patients, showed that tumor

aggressiveness is associated with dysregulation of gene expression

in prostate cancer (49). We also demonstrated that hypomethylated

genes (CCDC122, NUDT15) and hypermethylated genes (PVT1,

RPL30, TRMT12, and UBR5) have concordant gene expression

changes in PR H/L PCa patients. CCDC122 and NUDT15 are

located on the nearby cytogenetic band of 13q14.11 and 13q14.2,

respectively, and deletion of both genes is associated with PCa

growth and survival (50, 51). Notably, allelic loss at 13q14 has been

reported in 33% of human prostate tumors (52, 53) and associated

with high prostate tumor grade and stage (54, 55). We believe that

hypomethylated 5hmC and downregulated expression of these

genes in our study indicate that they could be critical 5hmC

markers of PCa in PR H/L men.

We showed that PVT1, RPL30, TRMT12, and UBR5 are 5hmC

hypermethylated and overexpressed in aggressive tumors. Previous

studies showed that these genes are important for AR regulation, PCa

growth and aggressiveness. PVT1 is located on the 8q24 along with c-

Myc which well-reported site for copy number gains in different

cancers (56). Previously, PVT1 promoter 5mC hypomethylation was

found to be associated with worse prognosis in renal cell cancer due

to PVT1-MYC upregulation (57). RPL30 (8q22.2), an overexpressed

ribosomal proteins (RPs) in human PCa tissues (58), is positively

correlated with co-amplification of 8q22-24 regions containing genes

encoding the Myc-PVT1 (8q24.21) (59, 60). TRMT12 (8q24.13), the

tRNA methyltransferase, showed strong binding by the AR in
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castrate-resistant PCa (CRPC) tissues and was overexpressed in

CRPC tissues compared to benign or untreated prostate tissues

(61). UBR5 (8q22.3) was reported as a top PCa-related E3

ubiquitin ligase in PCa tumors which is strongly associated with

PC progression and aggressiveness (62). In primary PCa biopsies, it

has been demonstrated that chromosome 8q gain is correlated with

early progression in hormonal-treated PCa (63). In our study, PVT1,

TRMT12, RPL30, and UBR5 hypermethylation demonstrates that, in

addition to 8q gain, 5hmC-based methylation and the corresponding

increase in gene expression levels are important mechanisms for the

higher activity of these genes in PR H/L men with aggressive PCa.

Further, we tested six genes (CCDC122, NUDT15, PVT1,

TRMT12, RPL30, and UBR5) in different cohorts of PCa patients

from mixed origin and demonstrated their 5hmC and gene

expression levels are associated with poor progression-free survival.

Here, the 5hmC levels were measured in cfDNA, which shows that

these gene methylation levels can be prominently detected in blood

and can be used to predict survival outcomes. The results of this

analysis bolster our findings in PR H/L men that these six genes are

associated with PCa aggressiveness and, hence, with poor PFS.

The congruent directional changes in 5hmC and gene

expression could be critical in aggressive PCa biology; hence,

validating them as potential biomarkers and therapeutical targets

for aggressive PCa among PR H/L men is worthwhile. The novelty

of our study is identifying the 5hmC candidate genes and

understanding the potential role of 5hmC in an understudied PR

H/L population with PCa. As far as we know, this is the first report

studying 5hmC methylation in this Puerto Rican population.

However, our study has some limitations, which include a small

sample size and the unavailability of tumor-normal gene expression

data. Due to this, we were not able to directly determine associations

with transcriptomic levels of 628 unique DMGs compared to

normal tissue in this population. Our ability to perform survival

analysis in PR H/L men was also restricted due to the unavailability

of clinical follow-up data. In the future, it is important to extend this

analysis to a larger cohort with follow-up information and tumor-

normal transcriptomics data to identify exclusive genes associated

with high specific mortality in PR H/L men with PCa.

In conclusion, our study identifies important gene signatures in

RP H/L men with PCa (Supplementary Table 6) and demonstrates

that CCDC122, NUDT15, PVT1, TRMT12, RPL30, and UBR5 are

associated with PCa aggressiveness in PR H/L men, hence, poor

survival outcomes. The development of biomarkers for PCa

aggressiveness will provide more effective tools for the diagnosis

of clinically significant disease and facilitate the selection of

potential therapeutical drug targets.
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