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Application of deep learning
based on convolutional neural
network model in multimodal
ultrasound diagnosis of
unexplained cervical lymph
node enlargement
Shanshan Jiang1, Naiqian Zhang2, Chen Li2, Lingxia Tong2

and Xiuhua Yang 1*

1Department of Qunli Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin,
Heilongjiang, China, 2Department of Ultrasound, Jilin Cancer Hospital, Changchun, Jilin, China
This study retrospectively analyzed the multimodal ultrasound features and

clinical characterist ics of 586 patients with unexplained cervical

lymphadenopathy who were treated at three hospitals between October 2019

and December 2022. Statistically significant differences were found in the clinical

and ultrasound features of all patients, including location, shape, margin, and

color Doppler flow imaging (CDFI) (p<0.05). Deep learning models, particularly

convolutional neural networks (CNNs), demonstrated great potential in

classifying cervical lymph node pathologies using multimodal ultrasound

images, including 2D imaging, color Doppler flow imaging (CDFI), and

elastography. First, we pre-trained four convolutional neural networks using a

public medical image dataset. Then, we fine-tuned the models for three-class

classification of lymph nodes into metastatic, lymphoma, and benign using 2D,

CDFI, and elastography images from the patients’ lymph nodes. The pre-trained

ResNet model performed excellently, with an elastography AUC of 0.925,

outperforming other models. Elastography became the most reliable feature

extraction dataset, significantly enhancing the model’s accuracy in distinguishing

between benign, lymphoma, and metastatic lymph nodes. Ablation experiments

showed that pre-training significantly improved accuracy compared to non-pre-

trained models. Grad-CAM visualization provided valuable interpretability,

revealing how the model focuses on specific areas corresponding to each

pathology. Based on this model, we developed a user-friendly server,

CV4LymphNode (https://hwwlab.com/webserver/cv4lymphnode). This study

highlights the potential of deep learning in accurately classifying cervical lymph

node pathologies.
KEYWORDS

deep learning, color Doppler flow imaging(CDFI), elastography, lymph node
classification, webserver
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1 Introduction

The cervical lymph nodes primarily function to collect lymphatic

fluid from the head, thoracic duct, and associated lymphatic vessels.

Enlargement of these lymph nodes may indicate the presence of local

or systemic diseases. Common conditions associated with cervical

lymphadenopathy include reactive hyperplasia, tuberculosis,

metastatic malignancies, and lymphoma. Patients frequently seek

medical attention due to cervical lymph node enlargement. With the

rising incidence and mortality rates of malignancies, accurately

assessing the nature of lymph nodes has become critically important

for tumor staging, treatment planning, and prognostication (1).

Ultrasound imaging, owing to its high resolution, convenience, and

noninvasiveness, serves as the first-line modality for evaluating cervical

lymph node disorders. High-frequency ultrasound and color Doppler

ultrasound are routinely utilized (2, 3). However, on conventional two-

dimensional gray-scale and color Doppler images, certain benign and

malignant superficial lymph nodes may exhibit similar features,

complicating the distinction between benign and malignant nodes.

Consequently, the specificity of differential diagnosis is reduced,

making accurate diagnosis more challenging. To address these

limitations, strain elastography (SE) has emerged as a potential

adjunct. SE has been successfully employed in the evaluation of

conditions such as chronic hepatitis and thyroiditis, demonstrating a

positive correlation between SE parameters and tissue stiffness (4, 5).

Nevertheless, studies investigating the application of ultrasound

elastography in assessing abnormal cervical lymph nodes have

yielded inconsistent results (6–8). Moreover, reliance on fine-needle

aspiration biopsy to determine the pathology of enlarged lymph nodes

carries the risk of procedural complications. Thus, there is an urgent

need for a noninvasive and accurate method to diagnose unexplained

cervical lymphadenopathy (9).

In recent years, the rapid advancement of computer technology has

led to significant progress in the application of deep learning in medical

imaging. For example, in the classification of ultrasound images,

DeepThy-Net constructed a multimodal thyroid cancer classification

model using ultrasound and pathological data, achieving an area under

the curve (AUC) of 0.905 (10). Another study employed a CNN-long

short-term memory (LSTM) network combining elastography, B-

mode, and Doppler images, attaining a classification accuracy of

98.26% for pancreatic lesions (11). Training classification models on

large datasets of labeled ultrasound images is expected to enhance both

diagnostic efficiency and accuracy. For instance, in a study identifying

thyroid nodules, radiologists supplemented with ThyGPT significantly

outperformed peers using conventional methods in diagnostic

sensitivity (12). Similarly, the Y-Net model was shown to assist

sonographers in improving the accuracy of classifying metastatic

cervical lymph nodes (13).

However, studies applying deep learning specifically to classify

lymph node ultrasound images remain scarce, with most research

focusing instead on segmentation tasks. Among the few classification

studies, one utilized ResNet to classify 1,000 lymph node ultrasound

images from 728 patients, achieving an AUC of 0.902 (14). Another

study applied Swin Transformer to classify 2,268 images from 1,146

patients into six categories, achieving an accuracy of 80.65% (15). CLA-
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HDM achieved an AUC of 0.873 in classifying 763 lymph node

ultrasound images and improved the diagnostic accuracy of six

radiologists with varying levels of experience (16). Nevertheless, these

studies often relied on single ultrasound modalities, and their datasets

and source codes were not publicly available, limiting their clinical

applicability. In addition, recent findings suggest that pretraining on

ultrasound images can significantly enhance downstream classification

performance (13). Given the availability of several public ultrasound

datasets from other anatomical sites, leveraging such datasets for

pretraining may offer a promising approach.

In this study, we retrospectively analyzed the multimodal

ultrasound imaging characteristics and clinical features of patients

with unexplained cervical lymphadenopathy. We developed a lymph

node ultrasound image classification model using a pretraining strategy

and established a user-friendly web-based platform to provide intuitive

and quantitative predictions of lymph node pathology. Our work aims

to offer valuable support for rapid clinical diagnosis and treatment

decision-making.
2 Materials and methods

Our workflow is illustrated in Figure 1, which proceeds from left to

right through statistical analysis of case samples, processing of

ultrasound case images, processing of the pretraining dataset, deep

learning model architecture and evaluation, interpretable analysis, and

the prediction web server.
2.1 Patient cases

The study included 586 patients with unexplained cervical lymph

node enlargement who received treatment at three hospitals—Jilin

Province Cancer Hospital, the Second People’s Hospital of Jilin

Province, and the First Affiliated Hospital of Harbin Medical

University—from October 2019 to December 2022. All patients

provided signed informed consent for ultrasound examination and

puncture biopsy, and the study was approved by the ethics committee

of each hospital.

Inclusion criteria:
1. The main symptom was cervical lymph node enlargement

of unknown cause.

2. All patients underwent puncture or surgical treatment to

obtain pathological tissue, and pathological diagnosis

results were used as the gold standard.
Exclusion criteria:
1. Presence of metastases in other parts of the body.

2. Lack of pathological examination.

3. History of prior treatment.
Ultrasound images were acquired by two certified physicians, each

with more than 10 years of experience in diagnosing lymph node
frontiersin.org
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diseases, using GE Doppler ultrasound machines: GE LOGIQ S8

Doppler ultrasound machine (General Electric Company, Boston,

USA). A 5–13 MHz linear array probe was used on patients in the

supine position, and the ultrasound images were adjusted to achieve the

best lymph node imaging effect. Gray scale, color Doppler, and strain

elastography static images with typical ultrasonic characteristics on the

maximum longitudinal section were obtained for all patients with

cervical lymph node swelling. The entire lymph node was

dynamically scanned, and the morphological findings were recorded.

Lymph nodes are small, oval or bean-shaped organs with a smooth

surface. They vary in size from a few millimeters to several centimeters

and are typically gray-white or pale pink in color. All ultrasound images

were stored for further analysis. To ensure consistency in image

analysis, the cervical lymph node images were retrospectively

analyzed independently by two doctors in a blind manner, and any

differences were discussed to reach a consensus. Finally, the

corresponding two-dimensional (conventional ultrasound or grayscale

ultrasound) ultrasound, color Doppler, and elastography images were

collected for analysis in this study.
Frontiers in Oncology 03
According to the Chinese Guidelines for Superficial Organ

Ultrasound, gray scale ultrasound was used to evaluate the shape,

edge, boundary, and internal echo of the lymph nodes. Color Doppler

flow imaging (CDFI) was used to display the characteristics of the

internal blood flow of the lymph nodes (17). Ultrasound elastography

was employed to determine the hardness of the lesion and surrounding

tissue. Based on the standard Asteria method (18), strain elastic

imaging (EI) results were scored from 1 to 4. The ultrasonic

diagnosis of lymph nodes was determined by the findings from these

three modes (19). Subsequently, deep neural networks were used for

training and prediction. Conventional ultrasound provides 2D images

in black and white that are used to show the structure of the body’s

internal organs and tissues. Doppler ultrasound can show the direction

and speed of blood flow and is usually color-coded. Elastic ultrasound

assesses the elasticity and hardness of a tissue by measuring how much

the tissue deforms when pressure is applied to produce an image. All

methods in this experiment were performed in accordance with the

relevant guidelines and regulations and conformed to the 3R principles

and ARRIVE guidelines.
FIGURE 1

Workflow of the study.
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2.2 Dataset

In this study, we first created a pre-trained ultrasound dataset,

consisting of five sub-datasets: AULI (Liver) (20), OCAU

(Abdominal) (21), BUSI (Breast) (22), DDTI (Thyroid) (23), and

EDCU (Heart, https://aimi.stanford.edu/datasets/echonet-

dynamic-cardiac-ultrasound). The detailed information for these

sub-datasets can be found in Table 1.

For our fine-tuning dataset—the lymph node ultrasound

dataset—due to the small size of the dataset, we performed five-

fold cross-validation. In each fold, the training set was used by the

deep learning network to learn complex patterns that represent

different phenotypes and disease changes, while the validation set

was used to evaluate the model’s diagnostic and generalization

performance. BLN represents benign lymph nodes (label 0),

Lymphoma represents lymphoma (label 1), and MLN represents

metastatic lymph nodes (label 2). 2D, elastography, and CDFI

ultrasound images were input into the model and trained into

three different sub-models.

All images were resized to a uniform size of 384x384 to ensure

consistency in the input data. On the training set, we used random

over-sampling to balance the data.
2.3 Algorithms

We selected the four most popular deep learning models:

ConvNeXt, EfficientNet, ResNet, and ViT (24). Torchvision

(https://pytorch.org/vision/stable/models.html) provides the

performance of these mainstream models trained on the

ImageNet-1K dataset. These four models perform excellently in

image classification tasks and are widely applied in the field of

medical image classification.

ConvNeXt is a modernized convolutional neural network, and

in this study, we adopted the largest version of the ConvNeXt series

(ConvNeXt-Large) from Torchvision. EfficientNet-B7 is the largest

and most powerful version of the EfficientNet series, which utilizes a

compound scaling strategy to jointly optimize network depth,

width, and input resolution, greatly improving classification

performance. Additionally, we introduced Vision Transformer

(ViT), using 16×16 patch sizes to divide the images. ViT has

gained widespread attention in recent years, effectively modeling
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global dependencies in images through the self-attention

mechanism, exhibiting excellent performance. ResNet152 is a

deeper variant in the ResNet series, employing deep residual

learning to mitigate the vanishing gradient problem in deep

networks. Although it has a higher computational complexity, it

demonstrates strong performance in complex tasks by increasing

the network depth.

For the pre-trained models, we replaced the original output

head of ConvNeXt, EfficientNet, ViT, and ResNet with multi-layer

perceptron (MLP) output heads for the pre-trained ultrasound

dataset. When fine-tuning on the lymph node dataset, we

retained the backbone weights of the previously trained models,

removed the multi-task MLP head, and replaced it with a single

MLP head consisting of two linear layers connected by ReLU layer.

The first hidden layer contained 256 neurons, and the second

output layer contained 3 neurons to meet the classification task

requirements. This adjustment allowed the model to predict the

nature of cervical lymph nodes.
2.4 Training and evaluation

In this study, we employed both “learning from scratch” and

“pre-training and fine-tuning” strategies. Pre-training used multi-

task pre-training, where we divided each of the five pre-trained

ultrasound datasets into training and validation sets in a 4:1 ratio.

For each epoch, we updated the weights by sequentially learning the

five tasks, specifically using the cross-entropy loss function and the

Adam optimizer with a learning rate of 0.00005 and a batch size of

16. The validation set was then used to evaluate early stopping, with

a patience of 5 and the loss set to the average loss of the five tasks.

Finally, the results from the best epoch of the validation set were

used to evaluate the pre-training.

For fine-tuning, we applied five-fold cross-validation. For each

fold, the same learning strategy was used as described above, but

with only one MLP head for the output.

During evaluation, multiple performance metrics were

employed, including AUC, accuracy, precision, recall, F1 score,

and MCC, to compare the performance of pre-trained and non-pre-

trained models. Additionally, confusion matrices and AUC curves

were used to assess the classification accuracy across the four

models and three imaging modalities.
TABLE 1 The information of pretraining dataset.

Dataset
name

Body
part

Number
of images

Number
of classes

Name of classes
Number of
instances per class

Width Height

AULI Liver 735 3 Benign/Malignant/Normal 200/435/100 874.33 ± 163.30 667.14 ± 107.78

OCAU Abdominal 360 6
kidney/bladder/spleen/
bowel/gallbladder/liver

60/60/60 64.00 ± 0.00 64.00 ± 0.00

BUSI Breast 780 3 benign/malignant/normal 437/210/133 615.68 ± 121.98 501.45 ± 76.64

DDTI Thyroid 301 2 malignant/normal 193/108 346.86 ± 36.30 278.55 ± 16.19

EDCU Heart 218 2 closed/open 80/138 128.00 ± 0.00 128.00 ± 0.00
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2.5 Statistics analysis

R software (version 4.0.1) was used for statistical analysis. The

relationships between categorical variables were assessed using the

Chi-square test. For continuous variables, the Shapiro-Wilk test was

first applied to check for normality. Data that followed a normal

distribution were analyzed using the Independent t-test, while non-

normally distributed data were analyzed using the Mann-Whitney

U test. For comparisons across multiple groups, either One-way

Analysis of Variance (ANOVA) or the Kruskal-Wallis H test was

used, depending on the data distribution. A significance level of p <

0.05 or p < 0.01 was applied to all statistical tests.
2.6 Webserver implement

The backend of the CV4LymphNode website is powered by

Django (https://www.djangoproject.com/), leveraging the model-

view-controller (MVC) framework to provide real-time

responsiveness. On the frontend, the site is built with React

(https://react.dev/) and incorporates the Ant Design (Antd) UI

library (https://ant.design/).
3 Results

3.1 Data source

This study investigated the ultrasound characteristics of enlarged

cervical lymph nodes and evaluated the potential of 2D ultrasound,

color Doppler flow imaging (CDFI), and elastography in differentiating

various pathological types of lymph nodes. A total of 586 patients were

enrolled, comprising 300 cases of metastatic lymph nodes, 122 cases of

lymphoma, and 164 cases of benign lymph nodes. Ultrasound

examinations were conducted on all participants, and statistical

analyses, including t-tests and chi-square tests, were performed to

assess both clinical and ultrasound parameters. The results

demonstrated significant differences in key ultrasound features,

including elastography score, blood flow pattern, presence of hilum,

and the long-to-short axis ratio, with all P-values < 0.01. In contrast,

clinical characteristics such as age, gender, and smoking history showed

no significant differences across the pathological groups (Figures 2A–

C). These ultrasound parameters provide a reliable basis for

distinguishing between different pathological types of lymph nodes

and offer strong support for the development of machine learning-

based classification models. Specifically, metastatic lymph nodes

exhibited higher elastography scores, abnormal blood flow patterns,

and a lack of hilum, while lymphoma and benign lymph nodes

presented lower elastography scores and more uniform blood flow

patterns. These findings suggest that ultrasound-based features can be

effectively integrated into machine learning models for automated

classification of cervical lymph node pathology, facilitating accurate

diagnostic decision-making.

Figures 2D-F illustrate significant differences in elastography

scores, blood flow types, and the presence of hilum among the
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different pathological groups (P-values < 0.01). Elastography scores

reflect tissue stiffness, blood flow types indicate vascular patterns, and

hilum presence or absence correlates with lymph node structure.

Metastatic lymph nodes are most likely to exhibit elastography scores

of 3 and 4, absence of hilum, mixed and peripheral blood flow patterns,

while benign lymph nodes tend to show elastography scores of 1 and 2,

presence of hilum, and blood flow patterns that are either absent or

hilum-type. Lymphoma presents slightly weaker characteristics

compared to metastatic lymph nodes.

Further analysis of the long-to-short axis ratio and the size

parameters (long axis and short axis) revealed significant differences

across the groups (P-values < 0.01), as shown in Figures 2G-I. Box plots

demonstrated that metastatic lymph nodes had a significantly higher

long-to-short axis ratio (mean 2.6) compared to benign lymph nodes

(mean 1.2), reinforcing the importance of shape in pathological

classification. Additionally, 68% of metastatic lymph nodes displayed

mixed blood flow patterns, while lymphoma and benign lymph nodes

typically exhibited more uniform or absent blood flow. These findings

emphasize the critical role of ultrasound, particularly elastography and

blood flow evaluation, in the differential diagnosis of cervical

lymphadenopathy. The study provides a robust framework for

distinguishing metastatic tumors, lymphoma, and benign conditions,

offering valuable insights for the development of machine learning

models aimed at automated disease classification (Figures 2J, K, L).
3.2 Pretrain results

As shown in Figure 3, during the multi-task training on five

ultrasound tasks, ConvNeXt and ResNet demonstrated strong

performance, particularly achieving near-perfect results (AUC close

to 1.000) in the Abdominal and Heart tasks. Among them, ConvNeXt

performed exceptionally well in most tasks, especially in Abdominal,

with perfect precision and recall. ResNet displayed more balanced

performance across tasks, with particularly high AUC in Heart and

Liver. In contrast, ViT performed well in most tasks but showed a

significant decline in the Thyroid task, with an AUC of only 0.530,

indicating that this task presents a challenge for the model. EfficientNet

performed relatively poorly, especially in the Abdominal and Heart

tasks, revealing limitations in these specific tasks. Overall, ConvNeXt

and ResNet stood out in multi-task training, making them suitable for

most ultrasound tasks, while ViT and EfficientNet may require

optimization for specific tasks. Overall, our pre-training was

successful, The specific confusion matrices and AUC curves can be

found in Supplementary Figure S1 and Supplementary Figure S2, while

the tabular data is provided in Supplementary Table S1.
3.3 Finetune results

As shown in Figure 4, from the experimental results with and

without pretraining, pretraining significantly improved the

performance of all models across different tasks. With pretraining,

the ACC and AUC of each model showed notable improvements. For

example, the average AUC of ConvNeXt, EfficientNet, ResNet, and
frontiersin.org
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ViT across the 2D, CDFI, and elastography tasks increased from

0.762, 0.694, and 0.736 without pretraining to 0.883, 0.862, and 0.920

with pretraining. Without pretraining, nearly all models had an ACC

below 0.7 and an AUC below 0.8, while with pretraining, almost all

models had an ACC above 0.7, and the AUC reached above 0.85. This

indicates that pretraining on ultrasound images from other organs

enhances the model’s generalization ability for downstream

ultrasound image classification tasks.

Among all the tasks, elastography ultrasound images showed the

best classification performance. Whether with or without pretraining,

the overall ACC and AUC of the elastography task were higher than

those of the 2D and CDFI tasks. For instance, the average AUC of the
Frontiers in Oncology 06
four models for elastography after pretraining was 0.92, higher than

0.883 for 2D and 0.862 for CDFI. However, we found that EfficientNet

performed better in classifying 2D images from scratch, but performed

poorly in CDFI and elastography tasks. However, pretraining

significantly helped to improve its performance.

Among the four models, ResNet performed the best in all tasks.

Whether with or without pretraining, ResNet showed stable and

superior performance. In the 2D task, ResNet achieved an AUC of

0.906; in the CDFI task, it was 0.896; and in the elastography task, it

was 0.925. Compared to the other models, ResNet achieved the

highest AUC in all tasks, demonstrating its advantage in ultrasound

image classification tasks.
FIGURE 2

Distribution of 2D, CDFI and elastic imaging pathological feature across pathological types of cervical lymph nodes.
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We selected the best-performing model—ResNet, pre-trained

on five ultrasound datasets and fine-tuned on elastography images

—as the candidate model. The confusion matrix and AUC curve for

this model are shown in the Figure 5. The prediction of benign

lymph nodes performed relatively well, with high precision and

recall of 0.88 and 0.81, respectively. The precision and recall for

lymphoma were lower, at 0.62 and 0.48, indicating that the model

may confuse benign lymph nodes with lymphoma, particularly

misclassifying lymphoma as metastatic lymph nodes. The recall for

metastatic lymph nodes was relatively high at 0.91, but the precision

was lower at 0.80, indicating that the model sometimes misclassifies

other categories as metastatic lymph nodes. Lymphoma and

metastatic lymph nodes can sometimes appear similar on

imaging, as both can lead to lymph node enlargement and

present as sclerosis, swelling, etc. Especially in the early stages, the

distinction between the two may not be obvious, making it difficult

for the model to differentiate. If the model has not learned the key

distinguishing features between lymphoma and metastatic lymph

nodes (such as irregular borders or density characteristics in

lymphoma, or different shapes in metastatic lymph nodes),

misclassification may occur. Misdiagnosing lymphoma as

metastatic lymph nodes could lead to incorrect treatment plans.

Lymphoma typically requires chemotherapy or radiotherapy, while

metastatic lymph nodes are treated based on the primary tumor.
Frontiers in Oncology 07
Inappropriate treatment could delay recovery and negatively impact

the patient’s health.
3.4 Webserver

We deployed the best performing ResNet model on the

CV4LymphNode website, as shown in Figure 6. CV4LymphNode

is a user-friendly website that allows users to upload 2D, elastic and

CDFI lymph node ultrasound images and click Submit to get

instant predictions. You can also navigate to data sets and

code repositories.
3.5 Interpretability Analysis

We used Grad-CAM (25) to analyze the visualizations of the

ResNet model on the elastography image dataset to intuitively

understand which areas of the image the model focuses on when

making diagnostic decisions. This not only helps verify the model’s

rationality and interpretability, but also provides valuable auxiliary

information to clinicians, helping them better understand and trust

the diagnostic results of the AI model. We found that the model

focused on different features for the three different types of lymph
FIGURE 3

Comparison of classification accuracy (A) and AUC values (B) among different models (ConvNeXt, EfficientNet, ResNet, and ViT) across five pretrain
ultrasound tasks (Abdominal, Breast, Heart, Liver, and Thyroid). Each group of bars represents the models’ performance on a specific task.
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nodes. For benign lymph nodes, the model focused on the non-

lymph node areas of the image (Figure 7A). For lymphoma, ResNet

concentrated on the lymphoma region, with little attention to other

areas (Figure 7B). For metastatic lymph nodes, ResNet focused on

the lymph node or surrounding textual information (Figure 7C).

Through these phenotypes, we can understand how EfficientNet B7

identifies lymph node types, and this also provides us with

certain references.
4 Discussion

In this retrospective study, we propose the use of deep learning-

based Convolutional Neural Network (CNN) models to identify

unexplained cervical lymphadenopathy through multimodal

ultrasound (including 2D imaging, Color Doppler Flow Imaging

(CDFI), and elastography). We conducted statistical analysis on the
Frontiers in Oncology 08
dataset used in this study, and the results are summarized as follows.

Elastography score, tumor shape, and blood flow pattern were

significantly associated with different tumor types (benign,

lymphoma, and metastatic tumors). Variations in elastography

scores reflect differences in tumor hardness, while the long-to-

short axis ratio reveals the complexity of tumor shape, and

differences in blood flow patterns highlight changes in blood

demand and angiogenesis. The statistical analysis reached

significant levels (p < 0.01). The CNN model achieved a

diagnostic AUC of 0.925 in five-fold cross-validation. This model

can effectively identify cervical lymph node lesions, supporting

timely diagnosis and distinguishing different types of cervical

lymphadenopathy. This method reduces puncture-related

complications and provides valuable guidance for treatment plans

and prognosis judgments.

In this study, we observed that benign lymph nodes are typically

oval in shape with clear boundaries and exhibit typical lymphatic
FIGURE 4

Comparison of model performance with and without pretraining across different tasks (2d, cdfi, elastic). Each subplot shows the accuracy (ACC) or
area under the curve (AUC) achieved by four models (ConvNeXt, EfficientNet, ResNet, ViT) under two conditions: pretrained and not pretrained. Bars
represent the mean metric values, with models grouped by task and evaluation metric. Pretraining generally improves performance across tasks
and models.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1542265
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2025.1542265
portal structures. In contrast, malignant lymph nodes often show

significant changes in normal architecture, which can lead to

alterations in morphology, internal echoes, and blood flow

patterns. Ultrasound images show distinct features (24, 26).

Malignant tumor cells release angiogenesis factors, leading to rich

and chaotic blood flow in metastatic lymph nodes, primarily

manifested as irregular, thickened, and twisted vessels in CDFI.

Lymphoma also exhibits mixed features, mainly visible on CDFI.

Therefore, significant differences in shape, boundaries, and CDFI

are reflected in the results. Pathologically, lymphoma is
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characterized by tumor cell proliferation and infiltration, resulting

in softer lymph nodes and lower elastography scores (27, 28). In

contrast, metastatic lymph nodes are characterized by extensive

vascular invasion, collagen generation, and calcification, leading to

hardened texture and higher elastography scores. The unique

ultrasound features and pathological characteristics of lymphoma

contribute to the higher diagnostic accuracy of 2D imaging in

distinguishing lymphoma compared to CDFI and elastography.

Deep learning models have several advantages in ultrasound image

applications: (1) they can automatically learn useful features from
FIGURE 5

(A) The confusion matrix shows the classification results of the model for benign lymph nodes, lymphoma, and metastatic lymph nodes. The
diagonal represents correctly classified samples, while the off-diagonal represents misclassified samples. (B) The AUC curve displays the model’s
performance in the three classification tasks, with an AUC value closer to 1 indicating better model performance.
FIGURE 6

CV4LymphNode website interface.
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ultrasound images, reducing the workload of manual feature

engineering; (2) they reduce subjectivity and improve analysis

accuracy; (3) they can handle images from different ultrasound

devices, ensuring the model’s strong generalization capability; (4)

they enable rapid diagnosis in seconds, significantly improving the

efficiency of diagnosing complex diseases. In recent years, deep

learning techniques have been increasingly applied to lymph node

analysis. In the Introduction, we introduced three recent works on

lymph node ultrasound classification, using ResNet, Swin Transformer,

and CLA-HDM for lymph node ultrasound images. Due to the lack of

publicly available datasets and algorithm codes, a fair comparison is

difficult. However, compared to using ResNet alone, our ablation

experiments show that pre-training improved the AUC of ResNet by

0.06. The Swin Transformer showed a 0.03 higher AUC than ResNet,

suggesting that a pre-trained ResNet could improve the AUC by at least

0.6 compared to pure ResNet, and may perform at least as well as the

Swin Transformer. Furthermore, compared to Swin Transformer, we

conducted a more extensive evaluation of lymph node ultrasound

images from CDFI and 2D modalities. In contrast to the binary

classification of benign and malignant performed by CLA-HDM, we

used a multiclass model to differentiate between benign, lymphoma,

andmetastatic lymph nodes, which better reflects the clinical diagnostic

complexity. However, their use of dual-modality images with BUS and

CDFI reminds us that using CDFI, 2D, and elastography images as

inputs might also yield good results.

This study has some limitations. Ultrasound is a manual

operation and inherently subjective, which may lead to differences

in image quality between different doctors. For example,

elastography, a technique used to assess tissue hardness, has broad

applications in medicine but also has limitations, especially

influenced by operator experience and device technical variability.
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First, the operator’s skill level directly impacts the scan quality, and

different scanning methods and pressure applications may lead to

inconsistent results. Second, different devices and imaging algorithms

may result in differences in hardness measurement, and the

maintenance and calibration of equipment may also affect the

stability of results. Additionally, tissue heterogeneity and tumor

type differences can affect the accuracy of elastography, especially

in malignant tumors, where internal angiogenesis and fibrosis may

lead to unstable measurements. Therefore, the diagnostic ability of

elastography may vary in different patients and tumor pathological

types, limiting its reliability for widespread application. Future

research could consider incorporating other imaging technologies,

such as microvascular imaging or contrast-enhanced ultrasound, or

explore modality fusion for more comprehensive research

approaches. Furthermore, since this study was conducted in three

centers, collaboration with other centers for multi-center, large-

sample prospective studies is recommended to further validate the

applicability of these results in larger populations. Another limitation

is the dataset’s imbalance. In this study, we used oversampling to

balance the training set, and to prevent overfitting, we employed an

early stopping strategy. Nevertheless, we acknowledge that our

dataset is still biased and may not represent the typical three types

of lymph nodes. Results also indicate that the distinction between

metastatic and lymphoma lymph nodes needs improvement. In the

future, we plan to expand the dataset to better represent the spatial

distribution of lymph node ultrasound images.

In conclusion, our study confirms the feasibility of using deep

learning CNN models based on ultrasound images to predict

unexplained cervical lymphadenopathy. We provide metrics such

as AUC and ACC for distinguishing between benign, lymphoma,

and metastatic lymph nodes in multimodal ultrasound images. The
FIGURE 7

Using Grad-CAM to visualize the ResNet model on an elastic image dataset, (A) benign lymph nodes, (B) lymphoma, (C) metastatic lymph nodes.
The redder the color, the more important the region, and the bluer the less important the region.
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results have significant clinical value in identifying these three

diseases, and the diagnostic consistency meets clinical needs.

Deep learning methods provide an objective and convenient

predictive tool to assist doctors in making more accurate diagnoses.
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