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Machine learning-based
ultrasound radiomics for
predicting risk of recurrence
in breast cancer
Wei Fan1†, Hao Cui2†, Xiaoxue Liu2, Xudong Zhang1,
Xinran Fang2, Junjia Wang2, Zihao Qin2, Xiuhua Yang1*,
Jiawei Tian2* and Lei Zhang1*

1Department of Ultrasound Medicine, the First Affiliated Hospital of Harbin Medical University,
Heilongjiang, China, 2Department of Ultrasound Medicine, the Second Affiliated Hospital of Harbin
Medical University, Heilongjiang, China
Purpose: To develop a radiomics model based on ultrasound images for

predicting risk of recurrence in breast cancer patients.

Methods: In this retrospective study, 420 patients with pathologically confirmed

breast cancer were included, randomly divided into training (70%) and test (30%)

sets, with an independent external validation cohort of 90 patients. According to

St. Gallen recurrence risk criteria, patients were categorized into two groups,

low-medium-risk and high-risk. Radiomics features were extracted from a

radiomics analysis set using Pyradiomics. The informative radiomics features

were screened using theminimum redundancymaximum relevance (mRMR) and

the least absolute shrinkage and selection operator (LASSO) algorithms.

Subsequently, radiomics models were constructed with eight machine learning

algorithms. Three distinct nomogram models were created using the features

selected through multivariate logistic regression, including the Clinic-Ultrasound

(Clin-US), Clinic-Radiomics (Clin-Rad), and Clinic-Ultrasound-Radiomics (Clin-

US-Rad) models. The receiver operating characteristic (ROC), calibration, and

decision curve analysis (DCA) curves were used to evaluate the model’s clinical

applicability and predictive performance.

Results: A total of 12 ultrasound radiomics features were screened, of which

wavelet.LHL first order Mean features weighed more and tended to have a high

risk of recurrence. The higher the risk of recurrence, the higher the radiomics

score (Rad-score) in all three sets (training, test, and external validation set, all p <

0.05). Rad-score is equally applicable in four different subtypes of breast cancer.

In the test set and external validation set, the Clin-US-Rad model achieved the

highest AUC values (AUC = 0.817 and 0.851, respectively). The calibration and

DCA curves also demonstrated the good clinical utility of the combined model.
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Conclusion: The machine learning-based ultrasound radiomics model were

useful for predicting the risk of recurrence in breast cancer. The nomograms

show promising potential in assessing the recurrence risk of breast cancer. This

non-invasive approach offers crucial guidance for the diagnosis and treatment of

the condition.
KEYWORDS
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1 Introduction

Breast cancer is the most common type of cancer worldwide, and it

continues to be the primary cause of cancer-related mortality among

women (1, 2). Although many standardized diagnostic methods and

treatment modalities have been advanced, many patients remain at risk

of recurrence and metastasis (3). Current methods for assessing

recurrence risk, such as Genetic tests (e.g., Oncotype DX 21-gene

Recurrence Score and Mammaprint), are valuable but limited by their

invasiveness, high cost, and postoperative nature (4). The St. Gallen

International Expert Consensus has gained prominence in treating and

managing breast cancer (5–7). According to this criteria, patients with

breast cancer can be classified into low-, medium-, and high-risk

categories (8). This criterion relies heavily on postoperative

pa tho l og i c a l find ing s , su ch a s h i s t o l og i c a l g r ade ,

immunohistochemistry, and the status of the axillary lymph nodes.

However, there are some critical gaps in preoperative noninvasive risk

assessment. Preoperative accurate assessment of recurrence risk is crucial

for guiding personalized treatment strategies (9–11). For patients with

high-risk need more aggressive interventions, while patients with low-

medium risk need avoid overtreatment. Medical imaging provides

extensive information regarding the lesion and can be utilized to assess

the tumor’s biological behavior comprehensively. Moreover, medical

imaging is a noninvasive, cost-effective, and easily accessiblemethod (12).

Currently, the absence of image-based tools for recurrence risk prediction

limits clinical decision-making. Therefore, there is an urgent need to

develop a more convenient and appropriate preoperative noninvasive

method for predicting breast cancer recurrence risk.

Ultrasound is a convenient, economical, universally applicable,

and real-time dynamic examination method that has become the

preferred method for diagnosing breast lesions in China (13, 14).

Meanwhile, ultrasound features are strongly associated with the

recurrence risk of breast cancer. Breast cancer at high risk of

recurrence is associated with growth orientation, margin,

posterior acoustic pattern, and breast imaging reporting and data

system (BI-RADS) grade. For example, Wang et al. (15) showed that

vertically growing triple-negative breast cancer has a short relapse-

free survival. Zhang et al. (16) showed that breast cancers with

indistinct margins are more aggressive and have a higher risk of

recurrence. Luo et al. (17) demonstrated a correlation between

posterior echo enhanced and high-risk indicators of breast cancer,
02
which means a high risk of recurrence and a poor prognosis.

Presently, there is lack of methods to integrate BI-RADS

ultrasound features into models to predict recurrence risk of

breast cancer.

Ultrasound radiomics, is an emerging method to extract high-

throughput features from medical ultrasound images based on

machine learning algorithms (18, 19). Ultrasound radiomics

features can already differentiate between benign and malignant

breast tumors, predict axillary lymph node metastases, and

determine the histological grade of breast cancer (20–22). A

relatively small number of studies have been conducted on the

application of ultrasound radiomics to predict breast cancer

recurrence and metastasis. Hence, it is important to investigate

the correlation between ultrasound radiomics features and breast

cancer recurrence risk. Additionally, nomograms serve as a visual

tool to integrate multiple risk features into a single, easy-to-

interpret graphical representation, which enhances their clinical

utility and predictive accuracy (23).

Here, we aimed to establish a preoperative, non-invasive

radiomics model that combined BI-RADS ultrasound and clinical

features to predict the risk of breast cancer recurrence. By

integrating these complementary features into an easy-to-

interpret nomogram, our model enables personalized risk

stratification, facilitating clinically tailored treatment decisions.

Furthermore, we evaluated the predictive efficacy of different

feature combinations to identify the one most closely associated

with clinical practice.
2 Methods

Figure 1 is the research flowchart. The present study utilized

radiomics to predict the risk of recurrence in breast patients in

combination with radiomics, BI-RADS ultrasound, and

clinical features.
2.1 Patients

Patients were continuously recruited from the Second Affiliated

Hospital of Harbin Medical University (Institution 1) from January
frontiersin.org
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2017 to December 2021. The inclusion criteria were as follows: (1)

pathologically confirmed invasive breast cancer; (2) preoperative

ultrasound examination with complete ultrasound images; (3)

available postoperative pathology and immunohistochemistry

information. The exclusion criteria included the following: (1)

patients who received neoadjuvant chemotherapy; (2) patients

with additional malignancies; (3) bilateral lesions; (4) non-mass
Frontiers in Oncology 03
lesions with no delineation of boundaries. To validate the model, an

external validation cohort was independently collected from the

Third Affiliated Hospital of Harbin Medical University (Institution

2) between 2020 and 2021, following the same inclusion and

exclusion criteria. Finally, we enrolled 420 patients and randomly

assigned them to the training (n = 294) and test sets (n=126) using a

ratio of 7:3. Five-fold cross-validation was performed on the
FIGURE 2

Flow chart of patient enrolment.
FIGURE 1

The pipeline of this study. (mRMR, Max-Relevance and Min-Redundancy; LASSO, least absolute shrinkage and selection operator; Rad-score,
Radiomics score).
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training set, with the test set and external validation cohort (n=90,

Institution 2) reserved for final evaluation (Figure 2).

According to St. Gallen risk criteria, patients were classified into

high-risk and low-medium risk categories based on axillary lymph

node status and molecular characteristics. Patients classified as low-

to-medium risk were considered to have similar treatment regimens

and clinical outcomes (5). Patients allocated to the high-risk category

had ≥4 positive axillary nodes (≥4 N+) or 1–3 positive axillary nodes

(1–3 N+) and were either estrogen receptor (ER−)/progesterone

receptor (PR−) or HER2+. Patients allocated to the low-to-medium

risk category were node-negative or had 1–3 positive nodes (1–3 N+)

and were ER+ and/or PR+ and HER2− (24).
2.2 Clinicopathological characteristics
collection

Clinical variables included age. The pathological and

immunohistochemical variables included the following: tumor

size, tumor histologic grade, lymph node metastasis, vascular

invasion, ER, PR, and HER2. An ER- or PR-positive expression

label was required for at least 1% nuclear staining in the tumor for

immunohistochemistry (25). A HER2 positive expression diagnosis

required a HER2 score of 3+ or 2+ and a positive fluorescence in

situ hybridization (FISH) result (26); a value of 0 or 1+ was regarded

as HER2 negative.

Breast cancers were classified into distinct molecular subtypes

based on the expression of the ER, PR, and HER2: luminal A (HR-

positive/HER2-negative), luminal B (HR-positive/HER2 positive),

which expresses at least one HR, HER2, and has high levels of the

Ki-67 protein, HER2-enriched (HR-negative/HER2-positive), and

basal-like breast cancer (HR-negative/HER2-negative) (27).
2.3 Ultrasound Image acquisition and
image segmentation

Ultrasound machines have been used for all examinations,

including HIVISION AVIUS (Hitachi, Japan) and Aixplorer

(SuperSonic Imagine, France), with corresponding high-frequency

(5–12 MHz) probes. Obtaining two-dimensional images of the

largest transverse and long-axis cross sections is customarily

necessary. Two radiologists with more than 5 years of combined

experience analyzed all ultrasound images. They were not involved

in image acquisition and were unaware of the final diagnosis of each

patient. If there were any discrepancies, the two experts discussed

them and reached a consensus. The ACR BI-RADS Atlas (2013) was

used to analyze the two-dimensional (2D) ultrasound images (28).

The BI-RADS ultrasound features were included as follows: shape,

orientation, margin, posterior acoustic pattern, calcification, echo

pattern. Additionally, we also gained the Adler grade (0, 1, 2, and 3)

(29), which is a measure of the blood flow determined using

vascular distribution.

Two radiologists with a free, open-source imaging platform (3D

Slicer 4.8.1, https://www.slicer.org) performed manual
Frontiers in Oncology 04
segmentation of ultrasound images. Only the largest of the

multiple lesions was sketched, and the region of interest (ROI)

was manually segmented along the entire tumor region, layer by

layer. Since this study was to acquire images for two different

machines, preprocessing was essential at the initial stage of feature

extraction to address potential heterogeneity introduced by

differences in imaging parameters, hardware characteristics, and

image acquisition protocols. To minimize variability and ensure

consistency, we implemented a standardized preprocessing pipeline

that included resampling, intensity normalization, and

noise reduction.

Using an eight-level quantization representation (30), the

acquisition area was resampled using a trilinear interpolation

algorithm to achieve a constant inclination and a specific

isotropic resolution (voxel size = 1×1×1 mm³). Intensity

normalization was performed by linearly scaling pixel values to a

fixed range (0–255) to harmonize intensity distributions across

images from both devices. Additionally, a Gaussian smoothing filter

(kernel size = 3×3×3, s = 1) was applied to reduce noise while

preserving image texture features during preprocessing.
2.4 Radiomics features extraction,
selection, and model development

2.4.1 Radiomics features extraction
The extracted radiomics features include the following: (a)

shape-based features; (b) first-order statistics features; (c) gray

level cooccurrence matrix-based features (GLCM); (d) gray level

run-length matrix-based features (GLRLM); (e) gray level size zone

matrix (GLSZM); (f) neighboring gray tone difference matrix

(NGTDM); (g) gray level dependence matrix (GLDM); and (h)

transform-filtered features (including square, square root,

logarithm, exponential, gradient, Laplacian of Gaussian, wavelet).

The feature extraction was performed in Pyradiomics (v.3.0.1;

https://www.python.org).

2.4.2 ICC assessment
The intra-class correlation coefficient (ICC) was used to

calculate the concordances between inter-observers in order to

assess the consistency of radiomics features. To assess

interobserver agreement, two radiologists carried out the

segmentation process independently at the same time. An ICC

score of more than 0.75 suggested that the ROIs were in

good agreement.

2.4.3 Radiomics features selection
Prior to feature selection, each radiomics feature was

standardized to achieve a normal distribution and enhance

discrimination between different data sets. Initially, features with

ICCs below 0.75 were excluded to prevent redundancy.

Subsequently, redundant and irrelevant features were eliminated

using the mRMR algorithm. Finally, LASSO regression analysis was

used to further select the most significant features. The tuning

parameter (lambda) in the LASSO model was determined using 10-
frontiersin.org
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TABLE 1 Baseline characteristics of patients in the training, test, and external validation cohorts.

Characteristics Total (n=420) Training set (n=294) Test set (n=126) External validation set (n=90) p

Age (y) 0.245

<50 166 (39.5) 122 (41.5) 44 (34.9) 30 (33.3)

≥50 254 (60.5) 172 (58.5) 82 (65.1) 60 (66.7)

Tumor size (cm) 0.591

<2 198 (47.1) 134 (45.6) 64 (50.8) 44 (48.9)

≥2 222 (52.9) 160 (54.4) 62 (49.2) 46 (51.1)

Molecular subtypes 0.969

Luminal A 190 (45.2) 129 (43.9) 61 (48.4) 41 (45.6)

Luminal B 111 (26.4) 79 (26.9) 32 (25.4) 24 (26.7)

HER2-enriched 67 (16.0) 50 (17.0) 17 (13.5) 12 (13.3)

Basal-like 52 (12.4) 36 (12.2) 16 (12.7) 13 (14.4)

Tumor histologic grade 0.937

I 27 (6.4) 17 (5.8) 10 (7.9) 6 (6.67)

II 211 (50.2) 150 (51) 61 (48.4) 44 (48.9)

III 182 (43.4) 127 (43.2) 55 (43.7) 40 (44.4)

Estrogen receptor 0.444

Positive 127 (30.2) 94 (32) 33 (26.2) 64 (71.1)

Negative 293 (69.8) 200 (68) 93 (73.8) 26 (28.9)

Progesterone receptor 0.690

Positive 152 (36.2) 104 (35.4) 48 (38.1) 54 (60.0)

Negative 268 (63.8) 190 (64.6) 78 (61.9) 36 (40.0)

HER2 0.630

Positive 269 (64) 184 (62.6) 85 (67.5) 33 (36.7)

Negative 151 (36) 110 (37.4) 41 (32.5) 57 (63.3)

Lymph node metastasis 0.176

Yes 232 (55.2) 162 (55.1) 70 (55.6) 50 (55.6)

No 188 (44.8) 132 (44.9) 56 (44.4) 40 (44.4)

Vascular invasion 0.274

Yes 372 (88.6) 263 (89.5) 109 (86.5) 15 (16.7)

No 48 (11.4) 31 (10.5) 17 (13.5) 75 (83.3)

Tumor shape 0.993

Round, oval 14 (3.3) 10 (3.4) 4 (3.2) 3 (3.33)

Irregular 406 (96.7) 284 (96.6) 122 (96.8) 87 (96.7)

Growth orientation 0.785

Parallel 305 (72.6) 211 (71.8) 94 (74.6) 23 (25.6)

Vertical 115 (27.4) 83 (28.2) 32 (25.4) 67 (74.4)

Margin 0.617

Circumscribed 23 (5.5) 14 (4.8) 9 (7.1) 5 (5.56)

(Continued)
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fold cross-validation. Specifically, lambda was chosen based on the

“1-SE rule” (one standard error rule), which selects the most

parsimonious model within one standard error of the lambda

value that minimizes the cross-validation error. Features with

non-zero coefficients were selected with the optimal lambda for

further analysis.

2.4.4 Radiomics model development and Rad-
Score calculation

Efficient features were utilized to develop machine learning

models employing eight classifiers, namely logistic regression (LR),

gradient boosting tree (GBT), artificial neural network (ANN),

support vector machine (SVM), random forest (RF), Naive Bayes

(NB), k-nearest neighbor (KNN) and adaptive boosting (AdaBoost)

to differentiate high recurrence risk from low-medium recurrence

risk using the training set. Hyperparameters for all machine learning

models were tuned via grid search with 5-fold cross-validation to

optimize performance: LR (C=1.0), GBT (distribution = ‘bernoulli’,

n.trees = 2000, shrinkage = 0.01), ANN (size=4,decay=5e-4,

maxit=200), SVM (kernel=‘radial’,cost=1, gamma=0.1), RF (n.trees

= 500, mtry = sqrt(ncol(train1) - 1), importance = TRUE), NB

(var_smoothing=default value), KNN (k=tuned during grid search),
Frontiers in Oncology 06
AdaBoost (n.trees = 2000). The one with the best diagnostic

performance was selected to develop the final radiomics model and

then calculate the Radiomics score (Rad-score).
2.5 Nomogram construction

2.5.1 Feature selection using logistic regression
Age as one of the clinical features was used as a covariate in our

column chart. In the training set, BI-RADS ultrasound features associated

with the risk of breast cancer recurrence were identified using univariate

and multivariate logistic regression analysis. The features involved a

backward-stepwise multivariate logistic regression to quantify the effect of

Rad-score, age, and ultrasound risk informative features in predicting

breast cancer recurrence risk. Collinearity was taken into consideration,

and risk variables with p > 0.05 were disregarded.

2.5.2 Model development and nomogram
construction

To systematically evaluate the predictive performance of

different feature sets, we developed three different models based

on statistically significant clinical, BI-RADS ultrasound features and
TABLE 1 Continued

Characteristics Total (n=420) Training set (n=294) Test set (n=126) External validation set (n=90) p

Margin 0.617

Indistinct 397 (94.5) 280 (95.2) 117 (92.9) 85 (94.4)

Posterior
acoustic pattern

0.705

No-shadowing 276 (65.7) 190 (64.6) 86 (68.3) 57 (63.3)

Shadowing 144 (34.3) 104 (35.4) 40 (31.7) 33 (36.7)

Calcification 0.826

Absent 228 (54.3) 159 (54.1) 69 (54.8) 52 (57.8)

Present 192 (45.7) 135 (45.9) 57 (45.2) 38 (42.2)

Echo pattern 0.320

Hypoechoic 350 (83.3) 248 (84.4) 102 (81) 70 (77.8)

Heterogeneous 70 (16.7) 46 (15.6) 24 (19) 20 (22.2)

Adler grade 0.583

0-1 191 (45.5) 132 (44.9) 59 (46.8) 46 (51.1)

2-3 229 (54.5) 162 (55.1) 67 (53.2) 44 (48.9)

BI-RADS grade 0.802

3-4b 178 (42.4) 127 (43.2) 51 (40.5) 36 (40.0)

4c-5 242 (57.6) 167 (56.8) 75 (59.5) 54 (60.0)

Risk of recurrence 0.921

Low-medium risk 282 (67.1) 197 (67) 85 (67.5) 50 (55.6)

High risk 138 (32.9) 97 (33) 41 (32.5) 40 (44.4)
fronti
y, years old; HER2, human epidermal growth factor receptor 2; BI-RADS, Breast Imaging-Reporting and Data System.
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the Rad-score: (1) Clin-US model, (2) Clin-Rad model, and (3)

Clin-US-Rad model. Each model was constructed and validated to

identify the optimal feature combination for predicting breast

cancer recurrence risk.
2.6 Nomogram evaluation

The ROC curve was applied to evaluate the discrimination

performance of different models. To compare the AUC values of

these models and assess whether their differences were statistically

significant, the DeLong test was performed. The Hosmer-

Lemeshow test was used to assess the nomogram’s goodness of fit.

The calibration curve was used to evaluate the nomogram’s

predictive accuracy regarding the agreement between the

predicted probability and the actual probability of breast cancer

recurrence. The net benefits at various threshold values were

calculated using a decision curve analysis (DCA) to assess the

therapeutic usefulness of the nomogram. Additionally, the
Frontiers in Oncology 07
accuracy, sensitivity, specificity, positive predictive value (PPV),

and negative predictive value (NPV) were also calculated.
2.7 Statistical analysis

Statistical analyses were performed using SPSS (Version 25.0,

IBM) and R software (Version 4.4.3, https://www.r-project.org). The

t-test or Mann–Whitney U test was used to compare quantitative

variables. Categorical variables between the training and test groups

were compared using the Chi-square or Fisher’s test. Furthermore,

multiple logistic regression analysis with a forward stepwise

selection was used to identify a significant signature for predicting

the high risk of recurrence. Odds ratios (ORs) with relative 95%

confidence intervals (CIs) were calculated to determine the

relevance of all potential predictors for the high risk of recurrence.

We used the ‘glmnet’ package for the LASSO logistic regression

study. The ‘pROC’ software package was used to analyze ROC

curves and perform the DeLong test to compare the AUC values of
TABLE 2 Univariate and Multivariate Logistic regression analysis in the training set.

Characteristics Univariate analysis Multivariate analysis

OR (95%CI) p OR (95%CI) p

Age

(≥50 vs.<50) 1.313(0.797-2.162) 0.285

Tumor shape

(Round, oval vs. Irregular) 2.011(0.419-9.654) 0.383

Growth orientation

(Parallel vs. Vertical) 0.822(0.482-1.401) 0.471

Margin

(Smooth vs. Lobulate) 3.081(0.676-14.049) 0.146

Boundary

(Circumscribed vs. Indistinct) 7.131(2.962-17.169) <0.001* 4.685(1.612-13.612) 0.005*

Posterior echo

(No attenuation vs. Attenuation) 1.775(1.075-2.932) 0.025

Calcification

(Absent vs. Present) 1.164(0.715-1.895) 0.541

Internal echo

(Hypoechoic vs. Mixed-echoic) 0.376(0.168-0.842) 0.017* 0.222(0.070-0.703) 0.010*

CDFI level

(0-1 vs. 2-3) 0.670(0.411-1.093) 0.109

BI-RADS grade

(3-4b vs. 4c-5) 3.598(2.086-6.206) <0.001* 3.689(1.787-8.739) 0.001*

Rad-score 5.130(3.341-7.877) <0.001* 0.191(0.113-0.324) <0.001*
Data in brackets are the 95% confidence intervals.
*p < 0.05 indicates that the predictive variable is independently associated with High risk of breast cancer recurrence.
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different models for statistical significance. Moreover, the

nomogram and calibration curves were generated using the ‘rms’

package. The Hosmer–Lemeshow test and DCA were performed

using the ‘generalhoslem’ and ‘rmda’ packages, respectively. p < 0.05

was considered statistically significant.
3 Results

3.1 Baseline characteristics

The baseline characteristics of the patients in the training, test, and

external validation sets are shown in Table 1. Overall, 420 patients were

included in this study. The patients were randomly divided into the

training set (n = 294) and the test set (n = 126) at a ratio of 7:3.

Additionally, an external validation set consisting of 90 patients from a

separate cohort was included to validate the generalizability of the

model. No statistically significant differences were observed in

clinicopathological or two-dimensional BI-RADS ultrasound features

among the training, test, and external validation sets.
3.2 Clinical and BI-RADS ultrasound
features selection

In the training set, univariate and multivariate logistic

regression analyses were performed. The results showed that
Frontiers in Oncology 08
margin, echo pattern, and BI-RADS grade were significant BI-

RADS ultrasound features for di fferent ia l d iagnos is

(p<0.05) (Table 2).
3.3 Radiomics features extraction and
selection

A total of 1314 features were extracted from each ROI in the US

images. The entire collection of features comprised 14 shape-based,

18 first-order, 24 GLCM, 16 GLRLM, 16 GLSZM, 14 GLDM, 5

NGTDM features, and 1027 features derived from wavelet filter

images. Subsequently, ICC analysis was performed, 420 features

with an ICC value over 0.75 were chosen for radiomics modelling.

Then, using the mRMR algorithm 100 features were retained.

Finally, the 12 non-zero coefficient features were produced in

feature selection using the LASSO method. The process of

features selection and the selected 12 features with their

contribution coefficients are shown in Figure 3.
3.4 Develop a radiomics model and
construct Rad-score

According to the selected features, eight different machine

learning models including LR, GBT, ANN, SVM, RF, NB, KNN

and AdaBoost were used to construct the radiomics model, and the
FIGURE 3

LASSO algorithm for radiomics features selection and features contribution coefficients. (A) The mean-squared error log was plotted (lambda).
Dotted vertical lines were drawn at the optimal values using the minimum criteria and one standard error of the minimum criteria. The tuning
parameter for the LASSO model was determined using 10-fold cross-test and minimal standards. (B) LASSO coefficient profiles of the 50 radiomics
features. 12 features with nonzero coefficients were chosen to form the radiomics signature after the coefficients (y-axis) were plotted against log
(lambda). (C) Features and their respective contribution coefficients in process of constructing radiomics model based on training set.
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ROC were used to evaluate the different models’ predictive ability.

Both the test set and external validation set demonstrated that the

LR model performed best among the eight models, which were used

to build the final radiomics model. Feature importance rankings for

RF, GBT, and AdaBoost, the top-performing tree-based models, are

provided in Supplementary Figure 3. The radiomics model yielded

AUC values of 0.823 (95% CI: 0.774–0.871), 0.787 (95% CI: 0.704–

0.873), and 0.795 (95% CI: 0.674–0.880) in the training, test, and

external validation sets, respectively (Figure 4).

The radiomics model’s results were used to calculate the Rad-

score, which was significantly higher in the high-risk of recurrence

group than in the low-to-medium-risk of recurrence group in the
Frontiers in Oncology 09
training set (-0.17 ± 0.70 vs. -1.20 ± 0.95, p<0.001), the test set (-0.13 ±

0.83 vs. -1.09 ± 0.79, p<0.001), and the external validation set (-0.18 ±

0.74 vs. -1.21 ± 0.89, p<0.001). The distributions of recurrence risk

Rad-score and outcomes for each patient in the training, test, and

external validation sets are shown in Figures 5A–D. To further validate

the generality and applicability of our developed Rad-score, we

performed studies in different molecular subtypes of breast cancer.

As shown in Figure 5E, among the different molecular subtypes of

breast cancer, the radiomics score was also significantly higher in the

high-risk recurrence group than in the low-to-medium-risk recurrence

group. This suggests that our constructed Rad-score can be used to

predict the risk of recurrence in four different breast cancer subtypes.
FIGURE 4

Receiver operating characteristic (ROC) curves for predicting breast cancer recurrence risk in training, test, and external validation sets. (A) Logistic
regression (LR); (B) Gradient boosting tree (GBT); (C) Artificial neural network (ANN); (D) Support vector machine (SVM); (E) Random Forest (RF);
(F) Naive Bayes (NB); (G) K-nearest neighbor (KNN); (H) Adaptive Boosting (AdaBoost).
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3.5 Nomograms construction and
effectiveness evaluation

We constructed three distinct diagnostic nomogram models

using the informative features identified in this study: the Clin-US,

the Clin-Rad, and the combined (Clin-US-Rad) models (Figure 6).

In the training set, the Clin-US, Clin-Rad, and combined

models yielded AUC values of 0.752 (95% CI: 0.695 – 0.809),

0.820 (95% CI: 0.771 – 0.868), and 0.874 (95% CI: 0.833 – 0.943),

respectively. In the test set, the Clin-US, Clin-Rad, and combined

models yielded AUC values of 0.681 (95% CI: 0.619-0.812), 0.810

(95% CI: 0.747-0.904), and 0.817 (95% CI: 0.762-0.912),

respectively. In the external validation set, the Clin-US, Clin-Rad,

and combined models yielded AUC values of 0.729 (95% CI: 0.623-

0.815), 0.824 (95% CI: 0.704-0.849), and 0.851(95% CI: 0.754-

0.916), respectively. The DeLong test revealed that the combined

model significantly outperformed the other models in all sets
Frontiers in Oncology 10
(p<0.05) (Supplementary Figure 1). As shown in Figure 7A, the

combined model presented optimal performance and the best AUC

value in the training set. Similarly, the combined model also

demonstrated the highest AUC in the test set (Figure 7B) and the

external validation set (Figure 7C). Meanwhile, the accuracy of the

combined model was 80.6%, 78.6%, and 76.7% in the training, test,

and external validation sets, respectively (Table 3).

According to the DCA curve in Figures 7D–F, the combined

model has a larger area under the curve and a net benefit over a “ all

treated “ or “no treated “ strategy in the threshold probability range

of 0.1-1.0. The Clin-US-Rad model had the highest net benefit at a

threshold of =40%, demonstrating its clinical value in optimizing

treatment decisions. For example, a 55-year-old patient (with a 45%

predicted risk of recurrence) was advised to receive chemotherapy,

while a 45-year-old patient (with a 30% predicted recurrence risk)

avoided unnecessary chemotherapy. This suggests that the model

improves clinical benefit while reducing overtreatment.
FIGURE 5

Radiomics features and performance of the radiomics score. (A) Heat map of 12 selected radiomics features. (Separately grouped for the training, test,
and external validation sets and the high-risk group vs. low to medium risk group). (B–D) The radiomics score for each patient in the training, test, and
external validation sets. (E) Violin plot of the role of Rad-score in predicting the risk of breast cancer recurrence in different molecular subtypes. Violin
plot of the role of Rad-score in predicting the risk of breast cancer recurrence in different molecular subtypes (***p < 0.001,****p < 0.0001).
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The calibration curve of the combined model in the test set and

the Hosmer-Lemeshow test demonstrated that the bias curve closely

aligned with the ideal curve, indicating strong agreement between

model predictions and observations. Similar results were observed

in the external validation set, further supporting the robustness of

the combined model (Figure 8). For completeness, the calibration

curves of the other models in the test set and external validation set

are provided in Supplementary Figure 2, which also exhibit

favorable calibration performance.
Frontiers in Oncology 11
4 Discussion

Breast cancer is a genetically heterogeneous disease with

significant differences in recurrence risk even after standardized

treatment (31). Therefore, preoperative noninvasive predicting the

recurrence risk of breast cancer is crucial. Here, we developed the

radiomics models based on breast ultrasound images for predicting

the recurrence risk of breast cancer. Our study demonstrated that

radiomics nomograms exhibited good performance in predicting

the risk of breast cancer recurrence, and they could more

conveniently individualize the prediction of breast cancer

recurrence risk for patients preoperatively.

In this study, radiomics features within breast cancer tumors

were extracted based on two-dimensional ultrasound images, 12 of

which were associated with the risk of recurrence. The significant 12

ultrasound radiomics features were considered independent

prognostic indicators in the training, test, and external validation

sets. Among them, it is mainly composed of wavelet transform

features and contains only one shape-based original feature.

Wavelet transform features have proven highly effective in

capturing tumor heterogeneity, which is closely related to cancer

progression and recurrence (32, 33). Specifically, features such as

wavelet.LHL reflect fine-grained variations in tissue texture and

structure. These variations are often indicative of underlying

biological processes, including cellular proliferation, angiogenesis,

and intra-tumoral necrosis, which are key hallmarks of tumor

heterogeneity (34, 35). For instance, Yu et al. (36) predicted the

local recurrence of triple-negative breast cancer. They discovered

that the majority of the 32 extracted radiomics features came from

the wavelet transform features, which more accurately reflected

tumor heterogeneity and was in line with our findings. These

features’ ability to capture intricate structural patterns makes

them superior predictors of recurrence risk. Additionally, entropy,

another important radiomics feature, quantifies internal pixel

distribution heterogeneity and has been established as a strong

predictor of recurrence in primary breast cancer patients (37).

Taken together, our findings suggest that wavelet transform

features play an important role in reflecting tumor heterogeneity

and predicting the risk of recurrence in breast cancer patients.

As an important indicator of breast cancer recurrence risk, age

has been reported in many studies. The risk of recurrence increases

significantly with increasing patient age (38, 39). Therefore, in this

study, age was included as a covariate in the model to investigate its

effect. Margin indistinct, echo pattern hypoechoic and higher BI-

RADS grade were independent risk features for breast cancer

recurrence. BI-RADS ultrasound features with indistinct margins

suggest that breast cancer may rapidly grow and infiltrate into

surrounding tissues (40). The more pronounced this feature means

that cancer cells are more aggressive. Echo pattern hypoechoic may

be due to its rapid proliferation, and it has been shown (41) that

breast cancer cells have a high mitotic rate, resulting in the
FIGURE 6

Nomograms of different models for predicting breast cancer
recurrence risk. (A) Nomogram plots of Clin-US model for
predicting breast cancer recurrence risk. (B) Nomogram plots of
Clin-Rad model for predicting breast cancer recurrence risk. (C)
Nomogram plots of Clin-US-Rad model for predicting breast cancer
recurrence risk.
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FIGURE 7

Diagnostic performance of different models to predict the risk of breast cancer recurrence. AUC plots of different models predicting risk of breast
cancer recurrence in the training set (A), test set (B), and external validation set (C). Decision curves of different models for predicting breast cancer
recurrence risk in the training set (D), test set (E), and external validation set (F).
TABLE 3 Performance of different models for predicting breast cancer recurrence risk in training, test, and external validation sets.

Models Cohorts AUC
(95%CI)

ACC
(95%CI)

Sensitivity
(95%CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Radiomics model training 0.823
(0.774-0.871)

0.752
(0.699-0.798)

0.650
(0.541-0.745)

0.790
(0.730-0.839)

0.536
(0.437-0.632)

0.858
(0.802-0.899)

test 0.787
(0.704-0.873)

0.778
(0.698-0.842)

0.686
(0.520-0.815)

0.813
(0.721-0.879)

0.585
(0.434-0.722)

0.871
(0.783-0.926)

external
validation

0.795
(0.674-0.880)

0.733
(0.622-0.811)

0.585
(0.413-0.733)

0.857
(0.714-0.935)

0.774
(0.580-0.706)

0.711
(0.609-0.818)

Clin-US model training 0.752
(0.695-0.809)

0.707
(0.653-0.757)

0.649
(0.550-0.737)

0.736
(0.670-0.793)

0.548
(0.457-0.636)

0.810
(0.746-0.861)

test 0.681
(0.619-0.812)

0.611
(0.524-0.692)

0.561
(0.410-0.701)

0.635
(0.529-0.730)

0.426
(0.303-0.558)

0.750
(0.639-0.836)

external
validation

0.729
(0.623-0.815)

0.711
(0.623-0.784)

0.605
(0.619.-0.717)

0.816
(0.679.-0.806)

0.727
(0.666.-0.816)

0.701
(0.672.-0.803)

Clin-Rad model training 0.820
(0.771-0.868)

0.762
(0.710-0.807)

0.546
(0.447-0.642)

0.868
(0.814-0.908)

0.795
(0.736-0.844)

0.671
(0.561-0.764)

test 0.810
(0.747-0.904)

0.810
(0.732-0.869)

0.585
(0.434-0.722)

0.917
(0.840-0.960)

0.821
(0.732-0.885)

0.774
(0.602-0.886)

external
validation

0.824
(0.704-0.849)

0.767
(0.659-0.844)

0.625
(0.523-0.620)

0.868
(0.805-0.892)

0.857
(0.666-0.878)

0.725
(0.629-0.828)

Clin-US-
Rad model

training 0.874
(0.833–0.943)

0.806
(0.757-0.847)

0.639
(0.534-0.728)

0.888
(0.837-0.925)

0.833
(0.777-0.878)

0.738
(0.635-0.820)

test 0.817
(0.762-0.912)

0.786
(0.706-0.848)

0.610
(0.457-0.743)

0.871
(0.783-0.926)

0.822
(0.731-0.886)

0.694
(0.531-0.820)

external
validation

0.851
(0.754-0.916)

0.767
(0.644-0.833)

0.675
(0.506-0.709)

0.858
(0.810-0.926)

0.857
(0.740-0.905)

0.726
(0.601-0.823)
F
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AUC, Area under the ROC; ACC, Accuracy; PPV, Positive predictive value; NPV, Negative predictive value.
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production of a large number of cancer cells, which destroys the

internal normal tissue structure and changes echogenicity. This

active proliferative property is associated with the ability of the

tumor to invade and metastasize, which in turn produces more

cancer cells, resulting in hypo echogenicity inside the lesion. This

finding is consistent with the results of this study. Finally, BI-RADS

grading as an interpretive criterion for sonographers of breast

nodules, its high grade represents a higher degree of malignancy,

which in turn increases the risk of recurrence (42, 43). Taken

together, our findings further confirm the importance of BI-RADS

ultrasound features in the prediction of breast cancer recurrence

and provide a deeper understanding of it.

We developed eight different machine learning models to

evaluate the ability of ultrasound radiomics features, among

which SVM, GBT, and RF can handle high-dimensional

problems. However, a general solution for nonlinear problems is

unavailable. NB only needs a few parameters, but there a large error

rate exists because prior probabilities should be computed. KNN is

easy to implement, but the uncertainty of the K value has a great

impact on the data results. Finally, artificial neural network can

process data on a large scale but the output results are challenging to

interpret, which can affect the reliability and acceptability of the

results. LR is highly interpretable, while regularization is used to

prevent filtering against noise interference, but it is limited by the

hypothesis of linearity between features and targets. In our study,

we found that the LR classifier produced the largest AUC, indicating

a linear association between ultrasound radiomics features and the

risk of breast cancer recurrence. Simultaneously, we also analyzed

the performance of the radiomics model developed using LR in

predicting the risk of breast cancer recurrence in different molecular

subtypes. Our model has also been found to work well.

In this study, we develop a radiomics model (Rad model) to

predict the risk of breast cancer recurrence. Previous studies have

shown that the application of a single marker has some limitations

in predictive performance. Therefore, we adopted a strategy

combining multiple markers to improve the prediction

performance. Zhu et al. (44) used radiomics model based on two-
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dimensional ultrasound images and combined models based on

ultrasound images and clinical information to predict Ki-67

expression in invasive ductal carcinoma of breast cancer, The

basic model’s test set AUC was 0.710, while the combined

model’s AUC increased to 0.770. Meanwhile, Du et al. (45)

established a nomogram model for predicting lymph vascular

invasion of invasive breast cancer based on ultrasound images

and clinical parameters. The model’s AUC values in the internal

and external validation test sets were, respectively, 0.890 and 0.954,

which were significantly higher than those in the ultrasound-clinical

model (AUC: 0.787, 0.804), and high prediction accuracy was

achieved. Based on the above findings, we integrated radiomics,

BI-RADS ultrasound, and clinical features into three nomogram-

visualized models to identify the optimal feature combination for

diagnosis. These nomograms are visually and quantitatively

integrating different risk features to predict the risk of breast

cancer recurrence. Take the Clin-US-Rad model as an example: a

68-year-old female with an indistinct, hypoechoic lesion, BI-RADS

4b, radiomics score 0. The above characteristics are classified into

the risk stratification, and the corresponding scores are obtained: 5

points, 11 points, 10 points, 2 points, and 68 points. The total sum is

96 points, and the total corresponding recurrence risk probability is

more than 70%. It is exciting that the results of our study showed

that all three models performed better than the single radiomics

model in prediction. In particularly, the combined model showed

the best predictive effect, further confirming the importance and

value of the combined model in breast cancer recurrence

risk prediction.

There are still some limitations in this study that need to be

discussed in depth: First, the retrospective design of patient

selection may introduce selection bias, affecting the universality of

the study results, so it needs to be further verified by prospective

studies. Secondly, the small number of high-risk patients could limit

the model’s generalizability, increase the risk of overfitting, and

result in broader confidence intervals. In the future, it is necessary to

expand the sample size to improve the reliability of the results.

Then, in this study, only two-dimensional ultrasound image data
FIGURE 8

Calibration curves of Clin-US-Rad model for predicting breast cancer recurrence risk in the test (A) and external validation sets (B).
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were used to construct the model, and the potential information of

multimodality ultrasound images was not considered. Finally, our

study has no follow-up results, and a part of follow-up results

should be added later. In general, expanding the sample size,

introducing multi-modal data and supplementing follow-up

results will be important directions for future research.
5 Conclusions

In conclusion, radiomics model based on breast ultrasound

images are a promising imaging predictor for assessing the risk of

breast cancer recurrence. The nomogram combining radiomics, BI-

RADS ultrasound, and clinical features offers clinicians a cost-

effective decision-making tool, achieving accuracy while reducing

unnecessary procedures.
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SUPPLEMENTARY FIGURE 1

DeLong’s test was performed to compare the AUCs between differentmodels

in the test set (A) and external validation set (B). (Model 1: Radiomics model;
Model 2: Clin-US model; Model 3: Clin-Rad model; Model 4: Clin-US-

Rad model)

SUPPLEMENTARY FIGURE 2

Calibration curves of different models for predicting breast cancer recurrence

risk in the test (A–C) and external validation sets (D–F).

SUPPLEMENTARY FIGURE 3

Importance ranking of key features in radiomics weighted bar charts of RF,
GBT, and AdaBoost models.
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