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Background: Mitochondria-related genes (MitoRGs) play a critical role in the

pathogenesis of various cancer types. This study aims to develop a novel

prognostic model based on a MitoRGs signature for patients with diffuse large

B cell lymphoma (DLBCL).

Methods: Clinical data and gene expression profiles of DLBCL patients were

obtained from four datasets in the Gene Expression Omnibus (GEO) database.

The Least Absolute Shrinkage and Selection Operator (Lasso) Cox regression

analysis, along with multivariate Cox regression analysis, was employed to

develop a prognostic MitoRGs signature for patients with DLBCL within the

training cohort. The prognostic efficacy of the model was assessed using Kaplan-

Meier survival analysis and Receiver Operating Characteristic (ROC) curve

analysis. The validation cohorts were used to substantiate the model’s

predictive capability. Single-sample gene set enrichment analysis (ssGSEA) was

employed to examine immune infiltration across various risk groups, and the

sensitivities to potential therapeutic agents for patients with DLBCL were also

assessed. The role of the mitochondrial-related gene PCK2 in cell proliferation

and apoptosis was investigated under varying glucose concentrations.

Results: An eight-MitoRG signature exhibited independent prognostic

significance and robust predictive capability for the survival outcomes of

DLBCL patients. Notably, it effectively predicted prognosis across various

DLBCL patient subgroups and enhanced the prognostic utility of the

International Prognostic Index (IPI) score. Analyses utilizing ssGSEA and

assessments of drug sensitivities identified distinct patterns of immune

infiltration and differential responses to therapeutic agents among patients

stratified into various risk groups. Moreover, a prognostic nomogram

integrating age, IPI score, and MitoRGs signature was further developed,

demonstrating enhanced prognostic accuracy and clinical applicability for
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DLBCL patients. In addition, research on phosphoenolpyruvate carboxykinase 2

(PCK2) indicated that silencing PCK2 expression inhibits cellular proliferation and

induces apoptosis under conditions of low glucose.

Conclusion: We developed an innovative prognostic MitoRGs signature to

predict outcomes and enhance the prognostic utility of the IPI score in DLBCL,

offering a novel perspective for the treatment of DLBCL.
KEYWORDS

diffuse large b cell lymphoma (DLBCL), mitochondrial-related genes (MitoRGs),
prognosis, international prognostic index (IPI), phosphoenolpyruvate carboxykinase
2 (PCK2)
Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most prevalent

form of non-Hodgkin lymphoma (NHL), with around 150,000 new

cases diagnosed annually (1). More than 60% of DLBCL patients

receive standard treatment, typically the R-CHOP regimen, which

combines rituximab, cyclophosphamide, doxorubicin, vincristine,

and prednisone, achieving long-term remission. However, nearly

one-third of DLBCL patients experience refractory or relapse (R/R)

due to the significant heterogeneity of DLBCL (2, 3). Recently,

many new therapies have emerged for DLBCL patients, particularly

those with R/R. These include CD19-directed chimeric antigen

receptor T-cell (CD19 CAR-T) and bispecific antibodies (BsAbs),

but their broader application is restricted by issues such as

accessibility, high costs and toxicity-related adverse events

(AEs) (4).

Clinically, common prognostic evaluation systems like the

International Prognostic Index (IPI), revised IPI (R-IPI) and the

National Comprehensive Cancer Network-IPI (NCCN-IPI) rely on

clinical variables for predicting the prognosis in DLBCL patients

due to their simplicity. However, they overlook genetic alterations,

which limits the accuracy of these predictions (5, 6). Studies have

shown significant differences in gene expression profiles and genetic

alterations in DLBCL, leading to significant variation in clinical

presentation and response to therapy (7). For instance, germinal

center B-cell-like (GCB) and activated B-cell-like (ABC) subtypes,

based on gene expression profiling, has been foundational in

understanding the prognosis of DLBCL, and DLBCL patients

with ABC subtype generally have worse outcomes compared to

those with the GCB subtype (8, 9). In recent years, more genetic

subtypes of DLBCL have been identified, providing deeper

understanding and therapeutic directions (10, 11). Additionally,

some prognostic models linked the immune-related genes and

tumor microenvironment-related genes have also been developed,

enabling more precise guidance for personalized treatment in

DLBCL patients (12, 13).
02
Mitochondria-related genes (MitoRGs) play crucial roles in

normal physiological processes and function including the

regulation of cellular energy production, reactive oxygen species

(ROS) management, calcium homeostasis, lipid biosynthesis and

modulation of redox signaling pathways (14, 15). In tumor

development, alterations in mitochondrial function and MitoRGs

expression are recognized as important contributors to cancer

progression (16). A key factor in this process is the Warburg

effect (or aerobic glycolysis), where cancer cells primarily rely on

glycolysis for energy production, even in the presence of oxygen.

This metabolic reprogramming contributes to the proliferation,

metastasis and chemoresistance of tumor cells, commonly

observed in many types of cancer (17). In DLBCL, dysfunction of

MitoRGs has become a key focus of research due to the important

role mitochondria play in cellular metabolism, apoptosis, and

inflammation. For instance, B-cell CLL/Lymphoma 2 (BCL2), a

well-known MitoRG, is associated with double-hit, triple-hit and

double expressor DLBCL, which are linked to a particularly

aggressive clinical course and poor prognosis (18). Therefore,

studying MitoRGs in DLBCL could provide valuable insights into

the molecular mechanisms of the disease and open new pathways

for targeted therapies focused on mitochondrial dynamics.

However, a prognostic signature based on MitoRGs for the

survival of DLBCL patients has not yet been established or reported.

To address this gap, we developed a novel prognostic signature

based on MitoRGs for DLBCL patients, which offers new insights

into the role of MitoRGs.
Materials and methods

Data source and preprocessing methods

The workflow diagram of this study is shown in Figure 1. A total of

1136 mitochondria-related genes (MitoRGs) were obtained from the

MitoCart3.0 database (https://www.broadinstitute.org/mitocarta) (19).
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Clinical data and gene expression profiles of DLBCL patients from

four datasets (GSE56315, GSE10846, GSE11318 and GSE87371)

were downloaded from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/). 33 normal B-cell

samples from the GSE56315 dataset include subtypes: naïve B-

cells, centrocytes B-cells, centroblast B-cells, memory B-cells, and

plasmablasts B-cells, all derived from healthy human tonsil tissue.

Our analysis grouped these normal B-cell subtypes together as a

single control group to provide a broad comparison against 55

DLBCL samples in GSE56315.

GSE10846 was served as the training cohort, whereas GSE11318

and GSE87371 datasets were designated as the validation cohorts.

The “sva” R package was used to remove batch effects of the four

GSE datasets.
Analysis for the differentially expressed
MitoRGs in DLBCL patients

Differential expression analysis of 1136 MitoRGs in the

GSE56315 dataset was performed using “Limma” R package. The
Frontiers in Oncology 03
screening conditions were set as |Log2Fold Change (FC)| > 1 and

adjust. p-value < 0.05. The “ComplexHeatmap” R package was used

to visualize the differential genes, and the “ggplot” R package was

used to draw the volcano map of these genes.
Construction of the prognostic MitoRGs
signature for the DLBCL patients

We conducted a Least Absolute Shrinkage and Selection Operator

(Lasso) Cox regression analysis on the GSE10846 dataset to identify

the MitoRGs associated with overall survival (OS) in DLBCL patients.

Furthermore, we applied multivariate Cox regression analysis to

identify prognostic genes and obtained the regression coefficient

(coef) and hazard ratio (HR) for each gene. We calculated the

prognostic risk score for each patient using the formula: risk score =

S (expression of gene x coef). Using the “survminer” R package, we

classified DLBCL patients into low-risk and high-risk groups based on

the optimal cut-off values of the risk score. Kaplan-Meier survival

curves were used to investigate the survival difference between the low-

risk and the high-risk groups. The sensitivity and specificity of the

prognostic model were examined by the Receiver Operating

Characteristic (ROC) curve. Subsequently, the univariate and

multivariate Cox regression analyses were used to evaluate the

independent prognostic role of MitoRGs signature and multiple

clinical factors, such as age, gender, DLBCL subtype, IPI score. The

validation cohorts were used to confirm the previous analyses.
Analyses for the immune infiltration,
immune checkpoint expression and
drug sensitivity

We performed single-sample gene set enrichment analysis

(ssGSEA) using the ‘GSVA’ R package to compare immune

infiltration in DLBCL patients across different risk groups. This

analysis calculated the infiltration scores for 24 immune cells. Next,

we analyzed the expression of immune checkpoints between the two

groups. Additionally, we utilized the ‘pRRophetic’ R package, along

with gene expression data from the Genomics of Drug Sensitivity in

Cancer (GDSC) (https://www.cancerrxgene.org/) (20), to predict

drug sensitivity in patients from both groups.
Construction of the nomogram based on
the prognostic MitoRGs signature

A nomogram was created using the risk score from the

MitoRGs signature, age, and IPI score, based on the GSE10846

dataset with the “rms” R package. The sensitivity and specificity of

the nomogram in predicting the 1-, 3-, and 5-year survival of

DLBCL patients were analyzed using the ROC curve. Calibration

curves and decision curves analysis (DCA) were employed to assess

the reliability and clinical practicality of the model, respectively. The
FIGURE 1

Flowchart of the study.
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validation cohorts were utilized to confirm the prognostic

significance of the nomogram.
Study for the PCK2 gene

To explore the functional role of MitoRGs within the signature,

univariate Cox regression analysis was conducted to assess the

impact of individual genes on the OS of DLBCL patients in the

GSE10846 dataset, and the PCK2 gene was investigated in the

subsequent study. In addition, GEPIA 2 database (http://

gepia2.cancer-pku.cn/) (20) was used to compare the expression

of PCK2 gene in 47 DLBCL patients and 337 normal samples. The

Human P r o t e i n A t l a s (HPA ) d a t a b a s e ( h t t p s : / /

www.proteinatlas.org/) (21) was used to investigate the expression

of PCK2 gene in multiple cancer cell lines.
Cells culture

DLBCL cell lines (U-2932, SU-DHL4, SU-DHL6) were sourced

from the department of hematology, West China Hospital, Sichuan

University, and were purchased from ATCC by professor Yongqian

Jia. DLBCL cells were cultured in the RPMI-1640 (BasalMedia

Technologies, China, L210KJ) medium, and human embryonic

kidney 293T (293-T) cells were cultured in the DMEM (BasalMedia

Technologies, China, L110KJ) medium, supplemented with 10% fetal

bovine serum (FBS) and antibiotics (100 U/mL penicillin and 0.1 mg/

mL streptomycin) at 37°C in a humidified incubator containing 5%

CO2. For high- and low-glucose experiments, glucose-free RPMI-1640

with 2mM glutamine (BasalMedia Technologies, China, L270KJ) was

supplemented with 20/1 mM (high/low) glucose (BasalMedia

Technologies, China, S261JV), 10% FBS and antibiotics.
PCK2 knockdown and real-time
quantitative polymerase chain
reaction assay

Small interfering RNAs (siRNAs) targeting PCK2, as well as a

negative control (si-NC), were synthesized and purchased from

Tsingke (Beijing, China). The transfection reagent EZ trans siRNA

(Life-iLab, Shanghai, China, AC04L051) was utilized in accordance

with the manufacturer’s instructions to knock down PCK2.

Total RNA was extracted using the RNA extraction kit

(Tiangen, Beijing, China, DP451), and reverse transcribed into

cDNA using the FastKing RT Kit (Tiangen, Beijing, China,

KR116). The expression of PCK2 was quantitatively detected by

the RT-qPCR assay using the SYBR Green Pro Taq HS Mix

(Accurate Biology, Changsha, Hunan AG11701). Primers for

PCK2 as follows: forward primer: TGCCAGGCTGGA

AAGTGGAGTGT; reverse primer: GCAACCCCAAAGAAGCC
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GTTCTCA. GAPDH was used as an inner control with forward

primer: AATGAAGGGGTCATTGATGG; reverse primer:

AAGGTGAAGGTCGGAGTCAA. The relative expression of

PCK2 was calculated using the 2-DDct method.
Cell counting kit-8 assay and cell
apoptosis analysis

Following 48 hours of PCK2 knockdown or not, DLBCL cells

were incubated under different culture conditions for 24, 48, and 72

hours, 10 ml of CCK-8 reagent (Oriscience, Chengdu, China, CB101)
was added to each well and incubated for an additional three hours.

The optical density (OD) value was measured at 450 nm absorbance

to detect the cell proliferation using the Tecan InfiniteMNano reader

(Tecan Group Ltd, Männedorf, Switzerland).

To detect the cell apoptosis, DLBCL cells, with or without PCK2

knockdown, were incubated for another 48 hours in distinct culture

conditions. Cells were collected and washed once with cold PBS,

and stained with Annexin V and PI solution (Abbkine, Wuhan,

China, KTA0002) at room temperature for 15 minutes, avoiding

light exposure. The percentage of apoptotic cells was assessed using

the ACEA NovoCyte flow cytometer (Agilent Technologies, Santa

Clara, California, USA).
Statistical analyses

The R software (v4.4.0) was utilized for statistical analyses and

plotting. Univariate and multivariate Cox regression analyses were

performed to evaluate the prognostic value of clinical factors and

risk model for DLBCL patients. Chi-Square test was used to

investigate the relationship between different risk groups and

clinical factors. Comparisons of numeric data between or among

groups were analyzed using the student’s t-test, ANOVA test or

Mann-Whitney U test, whichever was available. p < 0.05 was the

threshold for significance.
Results

Differentially expressed MitoRGs in
DLBCL patients

The clinical information of the samples from the GSE datasets

used in this study is displayed in Table 1. We downloaded 1136

MitoRGs from the MitoCart3.0 database to identify differentially

expressed MitoRGs in DLBCL patients. After matching these genes

with the GSE56315 dataset, we identified a total of 1096 MitoRGs.

We compared the expression levels of the 1096 MitoRGs in 55

DLBCL samples and 33 normal B cell samples from GSE56315. This

analysis revealed 305 differentially expressed genes, with 116 up-
frontiersin.org
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regulated and 189 down-regulated, as shown in the heatmap

(Figure 2A) and volcano plot (Figure 2B).
Construction of the prognostic
MitoRGs signature

To screen the MitoRGs related to the overall survival (OS) of

DLBCL patients, we used Lasso Cox regression analysis to obtain 46

MitoRGs (Figures 3A, B). Further, we used multivariate Cox

regression analysis to obtain eight genes suitable for the MitoRGs

signature (Figure 3C). In multivariate Cox regression, all the variables

satisfied the proportional hazards (PH) hypothesis (p > 0.05) and

multicollinearity of covariates (variance inflation factor < 2). We

calculated each patient’s risk score using the expression levels of the

eight identified genes and their corresponding coef from the

multivariate Cox regression analysis. The formula is as follows:
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Risk score = (ACP6 x 0.4656) + (ALDH4A1 x 0.34447) +

(C15orf61 x 0.432) – (COX7A1 x 0.48195) + (PCK2 x 0.54897) +

(PDK4 x 0.48174) + (PUSL1 x 0.44141) - (THNSL1 x 0.21016).
Predictive role of MitoRGs signature for OS
of DLBCL patients

Based on the risk score and optimal cut-off value derived from the

MitoRGs signature, we categorized the DLBCL patients in the

GSE10846 dataset into low-risk (n=245) and high-risk (n=169).

The distribution of risk score for patients is depicted in Figure 4A.

Additionally, there were more death events as the risk score increased

(Figure 4D). Kaplan-Meier survival analysis revealed that the survival

of patients in the high-risk group was significantly shorter than that

in the low-risk group (HR=4.26, p < 0.001) (Figure 4G). The above

results were verified in the GSE11318 dataset (Figures 4B, E, H) and
TABLE 1 Clinical information of DLBCL patients from the GSE datasets.

GSE10846 (n=414) GSE11318 (n=200) GSE87371 (n=221)

Age (y), (Median, IQR) 62.5 (14-92) 64 (14-88) 60 (19-87)

Gender

Female/Male/NA 172/224/18 110/90 116/105

Subtype

GCB/ABC/PMBL/Unclassified 183/167/NA/64 70/73/30/27 84/83/20/34

Stage

I//II/III/IV/NA 66/122/97/121/8 25/50/32/55/38

LDH ratio NA

Normal/Elevated/NA 173/178/63 68/76/56

ECOG NA

<2 /≥2/NA 296/93/25 122/39/39

Extra-nodal sites NA

≤1/ >1/NA 353/30/31 134/28/38

IPI

0-1/2/3/4-5/NA 132/96/59/34/93 54/39/28/21/58 74/45/53/46

Treatment regimen

CHOP-like 181 220 0

R-CHOP-like 233 0 179

ACVBP-like 0 0 6

R-ACVBP -like 0 0 36

Status

Dead/Alive 165/249 112/88 53/168
NA, Not available; IQR, Interquartile Range; GCB, Germinal Center B-cell-like DLBCL; ABC, Activated B-cell-like DLBCL; PMBL, Primary Mediastinal B-cell Lymphoma; CHOP,
Cyclophosphamide + Doxorubicin +Vincristine + Prednisone; R-CHOP, Rituximab + CHOP regimen; ACVBP, Doxorubicin +Cyclophosphamide + Vincristine + Bleomycin + Prednisone; R-
ACVBP, Rituximab + ACVBP regimen.
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GSE87371 dataset (Figures 4C, F, I). In order to test the predictive

effect of MitoRGs signature on OS of patients, ROC curve analysis

was performed. In GSE10846 dataset, the area Under the Curve

(AUC) of MitoRGs signature for predicting 1-, 3-, and 5- years OS

was as follows: 0.780 (95%CI 0.727-0.784), 0.787 (95%CI 0.736-

0.837) and 0.789 (95%CI 0.729-0.849) (Figure 4J). The validation

analysis in the validation dataset also suggested good prediction

results (Figures 4K, L).
Independent prognostic role of MitoRGs
signature for OS of DLBCL patients

We examined the independent prognostic role of the MitoRGs

signature in the OS of DLBCL patients by cleaning the clinical data

from the training cohort and two validation cohorts, excluding those

with incomplete information and primary mediastinal B-cell

lymphoma (PMBL) subtype due to its unique molecular biological

features. Next, we analyzed the relationship between clinical

information of patients and the risk score (Table 2). In the

GSE10846 dataset, a higher proportion of low-risk patients were

aged ≤ 60 years, had the GCB subtype, were at stage I/II, exhibited a

normal lactate dehydrogenase (LDH) ratio, had ≤ 1 extra-nodal site,

scored 0-2 on the IPI, and were alive. For the GSE11318 dataset, the

proportion of patients in the low-risk group with GCB subtype and

being alive was also higher than that in the high-risk group.

Additionally, patients with age ≤ 60 years, GCB subtype, stage I/II,

IPI 0-2 score, and being alive were more frequently observed in the

low-risk group in the GSE87371 dataset. Subsequently, we analyzed
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the risk score alongside multiple clinical factors in both the training

cohort and validation cohorts. Univariate Cox regression was used to

analyze the influence of various factors on the OS of DLBCL patients,

and it was found that the risk score was one of the important factors

(Figures 5A, C, E). Furthermore, we selected four factors, including

the risk score, age, subtype, and IPI score, for multivariate Cox

regression analysis in these three datasets. The findings revealed that

the risk score of the MitorRGs signature served as an independent

prognostic factor for OS in DLBCL patients, with HRs of 2.7050,

2.0668, and 1.4881 (all p<0.05) (Figures 5B, D, F).
Prognostic performance of the MitoRGs
signature in different subgroups of
DLBCL patients

As the survival of DLBCL patients is affected by many factors,

such as age. Therefore, Kaplan-Meier survival analyses were

conducted in the GSE10846 dataset to evaluate the predictive ability

of the risk score for OS in different subgroups of DLBCL patients. As

presented in Figure 6, except for the subgroup of extra-nodal sites > 1,

the OS of patients in the high-risk group was significantly shorter than

that of the low-risk group across various subgroups, including age,

ECOG score, LDH ratio, stage, IPI score, subtype, and treatment

regimen (all p < 0.05). Additionally, subgroup survival analyses were

conducted using the validation cohorts GSE11318 (Supplementary

Figure S1) and GSE87371 (Supplementary Figure S2), which

confirmed that the risk score had strong predictive capability for OS

in various subgroups of DLBCL patients.
FIGURE 2

Screening for differentially expressed MitoRGs in the GSE56315 dataset. (A) The heatmap shows the differentially expressed mitochondrial-related
genes. (B) The Volcano plots of the differentially expressed mitochondrial-related genes (MitoRGs). FDR, False Discovery Rates.
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MitoRGs signature supplements the
prognostic role of IPI score in DLBCL

The IPI score is the most commonly used method for evaluating

the prognosis of DLBCL patients in clinical settings, but it does not

always accurately distinguish between all patient. In the GSE10846

dataset, Kaplan-Meier curves using the IPI score could not

differentiate survival between patients with IPI scores of 3 and

those with scores of 4-5, whereas the risk score of the MitoRGs

signature was able to do so (Figures 7A, D). Similar results were

found in the validation cohorts. The Kaplan-Meier curves of the IPI

scores with 2 and 3 in the GSE11318, and the IPI scores with 0-1

and 2 in the GSE87371 could not predict the prognosis of these

patients (Figures 7B, C). However, the risk score of the MitoRGs

signature could also exactly assess their survival (Figures 7E, F).

These findings suggest that the MitoRGs signature could

supplement the prognostic role of the IPI score in DLBCL patients.
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Investigation of immune cell infiltration
and drug sensitivity

To investigate the immune cell infiltration in DLBCL patients

in different risk groups, we used the ssGSEA method to analyze the

infiltration of 24 immune cells in different groups of patients. The

results suggested that patients in the high-risk group had less

infiltration of macrophages, dendritic cells (DCs), T helper cells, T

follicular helper (TFH) cells, while had more plasmacytoid

dendritic cells (pDCs) and Th2 cells (Figure 8A). Then, for the

expression of immune checkpoints, the expression of CD28,

CD86, ICOS, PDCD1LG2 (PD-L2), TIGIT, and TNFRSF9 was

higher in the low-risk group, and BTLA, CD274 (PD-L1),

LGALS9, and TNFSF18 was higher in the high-risk group

(Figure 8B). Subsequently, we further analyzed the sensitivity of

patients in the low- and high-risk groups to various potential

therapeutic agents and presented several representative
FIGURE 3

Construction of the prognostic MitoRGs signature. (A) Lasso coefficient profiles plots coefficient paths of 305 candidate MitoRGs associated OS of
DLBCL patients. (B) Partial likelihood deviance from cross-validation plotted against log lambda values, with dashed lines representing the optimal
lambda values. (C) Forest plots of the multivariate Cox regression analyses for the eight MitoRG significantly associated OS of DLBCL patients.
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therapeutic agents. As shown in Figure 8C, patients in the low-risk

group responded better to AKT inhibitor VIII, Bleomycin,

Cisplatin, and LFM.A13, while those in the high-risk group were

more sensitive to Etoposide, Lenalidomide, Rapamycin, and

Vorinostat (Figure 8D).
Frontiers in Oncology 08
Establishing of the nomogram

A nomogram is a tool that predicts patient prognosis by

combining various clinical factors. We selected age, IPI score, and

risk score from the MitoRGs signature in the GSE10846 dataset.
FIGURE 4

Prediction of the prognostic MitoRGs signature in DLBCL patients. (A–C) The distribution of risk scores in the training cohort (GSE10846) and
validation cohorts (GSE11318 and GSE87371). (D–F) The distribution of survival time and status of patients in the training and validation cohorts.
(G–I) Kaplan-Meier survival curves comparing OS between low- and high-risk groups in the training and validation cohorts. (J–L) Time-dependent
ROC curves for predicting 1-, 3-, and 5-year OS in the training cohort and validation cohorts, with corresponding AUC values and 95% confidence
intervals (95%CI).
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TABLE 2 Association between clinical parameters of DLBCL patients and MitoRGs signature.

GSE10846 (n=306) GSE11318 (n=142) GSE87371 (n=201)

Low risk (n=100) High risk (n=101) p-value

0.002

58 (28.9%) 37 (18.4%)

42 (20.9%) 64 (31.8%)

0.229

44 (21.9%) 53 (26.4%)

56 (27.9%) 48 (23.9%)

< 0.001

55 (27.4%) 29 (14.4%)

25 (12.4%) 58 (28.9%)

20 (10%) 14 (7%)

0.004

38 (18.9%) 20 (10%)

62 (30.8%) 81 (40.3%)

NA NA

NA NA

NA NA

41 (20.4%) 21 (10.4%) < 0.001

25 (12.4%) 16 (8%)
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Low risk (n=183) High risk (n=123) p-value Low risk (n=82) High risk (n=60) p-value

Age, n (%) 0.006 0.486

≤ 60y 99 (54.1%) 47 (38.2%) 39 (47.6%) 25 (41.7%)

> 60y 84 (45.9%) 76 (61.8%) 43 (52.4%) 35 (58.3%)

Gender, n (%) 0.615 0.969

Female 78 (42.6%) 56 (45.5%) 38 (46.3%) 28 (46.7%)

Male 105 (57.4%) 67 (54.5%) 44 (53.7%) 32 (53.3%)

Subtype, n (%) < 0.001 0.022

GCB 96 (31.4%) 38 (12.4%) 42 (29.6%) 18 (12.7%)

ABC 59 (19.3%) 66 (21.6%) 26 (18.3%) 32 (22.5%)

Unclassified 28 (9.2%) 19 (6.2%) 14 (9.9%) 10 (7%)

Stage, n (%) 0.006 0.260

I-II 98 (53.6%) 46 (37.4%) 42 (51.2%) 25 (41.7%)

III-IV 85 (46.4%) 77 (62.6%) 40 (48.8%) 35 (58.3%)

LDH ratio, n (%) < 0.001 0.071

Normal 109 (59.6%) 48 (39%) 44 (53.7%) 23 (38.3%)

Elevated 74 (40.4%) 75 (61%) 38 (46.3%) 37 (61.7%)

ECOG, n (%) < 0.001 0.515

< 2 151 (82.5%) 80 (65%) 64 (78%) 44 (73.3%)

> 2 32 (17.5%) 43 (35%) 18 (22%) 16 (26.7%)

Extra-nodal,
n (%) 0.223 0.802

≤ 1 172 (94%) 111 (90.2%) 67 (81.7%) 50 (83.3%)

> 1 11 (6%) 12 (9.8%) 15 (18.3%) 10 (16.7%)

IPI, n (%) < 0.001 0.345

0-1 93 (50.8%) 33 (26.8%) 36 (43.9%) 18 (30%)

2 52 (28.4%) 38 (30.9%) 20 (24.4%) 19 (31.7%)
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These factors were used to construct a nomogram to predict the 1-, 3-

, and 5-year prognosis of DLBCL patients. The results indicated that

risk score significantly contributes to the total score of the nomogram

(Figure 9A). Using the new risk score from the nomogram, we can

categorize DLBCL patients into low-risk and high- risk groups.

Patients in the high-risk group had a significantly shorter OS

compared to those in the low-risk group (HR = 5.41, p < 0.001)

(Figure 9B). ROC curve analyses indicated that the nomogram

effectively predicts the 1-, 3-, and 5-year OS of DLBCL patients,

with AUC values of 0.815 (95%CI 0.756-0.874), 0.826 (95%CI 0.774-

0.878), and 0.825 (95%CI 0.763-0.887), respectively (Figures 9C–E).

The calibration curve analyses further confirmed the predictive

accuracy of the nomogram (Figures 9F–H). DCA decision analyses

were used to evaluate the clinical utility of the nomogram, and the

results suggested that it outperformed age, IPI score, and MitoRGs

signature alone (Figures 9I–K). These findings were further

confirmed in the validation cohorts, yielding similar results

(Supplementary Figure S3).
Study for the PCK2 gene

The result of univariate Cox regression analysis indicated that

the PCK2 gene exhibited the highest HR (Figure 10A). Additionally,

the GEPIA 2 database showed that PCK2 was significantly

upregulated in DLBCL patients compared to heathy controls

(Figure 10B). We then investigated the expression of PCK2

among multiple cancer cell lines and discovered significantly

higher levels in lymphoma cell lines (Figure 10C). In comparison

to 293T cells, PCK2 expression was significantly higher in three

DLBCL cell lines: U-2932, SU-DHL4, SU-DHL6 (Figure 10D). We

transfected SU-DHL4 and SU-DHL6 cells with specific siRNAs

targeting PCK2, and observed that siRNA1 (PCK2-si1) exhibited

superior silencing efficacy (Figure 10E). Afterward, we cultured SU-

DHL4 and SU-DHL6 cells in a 20mM glucose environment, where

PCK2 silencing did not affect the proliferation of cells. Conversely,

in a 1mM glucose condition, PCK2 knockdown significantly

inhibited proliferation in a time-dependent manner (Figure 10F).

Moreover, cells apoptosis was assessed and the result revealed that

PCK2 gene knockdown did not influence cell apoptosis under the

high-glucose conditions; however, cells exhibited evident apoptosis

in low- glucose conditions (Figure 10G).
Discussion

Currently, several prognostic MitoRGs signatures have been

developed in various cancer types (21–25). In this study, we

developed a novel MitoRGs model to predict the prognosis of

DLBCL patients. We first acquired differentially expressed MitoRGs

by comparing DLBCL cells and normal B cells. Lasso Cox regression

and multivariate Cox regression were performed to construct an

eight-MitoRGs signature for predicting the OS of DLBCL patients.

The signature has demonstrated robust performance and accuracy in

predicting 1-, 3-, and 5-year OS of DLBCL patients across both
T
A
B
LE

2
C
o
n
ti
n
u
e
d

G
SE

10
8
4
6
(n
=
3
0
6
)

G
SE

11
3
18

(n
=
14

2
)

G
SE

8
73

71
(n
=
2
0
1)

Lo
w

ri
sk

(n
=
18

3
)

H
ig
h
ri
sk

(n
=
12

3
)

p
-v
al
u
e

Lo
w

ri
sk

(n
=
8
2
)

H
ig
h
ri
sk

(n
=
6
0
)

p
-v
al
u
e

Lo
w

ri
sk

(n
=
10

0
)

H
ig
h
ri
sk

(n
=
10

1)
p
-v
al
u
e

3
29

(1
5.
8%

)
28

(2
2.
8%

)
16

(1
9.
5%

)
12

(2
0%

)
20

(1
0%

)
29

(1
4.
4%

)

4-
5

9
(4
.9
%
)

24
(1
9.
5%

)
10

(1
2.
2%

)
11

(1
8.
3%

)
14

(7
%
)

35
(1
7.
4%

)

T
re
at
m
en
t,
n
(%

)
0.
00
3

N
A

N
A

0.
04
3

C
H
O
P
-l
ik
e

72
(3
9.
3%

)
70

(5
6.
9%

)
N
A

N
A

R
-C

H
O
P
-l
ik
e

11
1
(6
0.
7%

)
53

(4
3.
1%

)
49

(2
4.
4%

)
67

(3
3.
3%

)

A
C
V
B
P
-l
ik
e

N
A

N
A

9
(4
.5
%
)

5
(2
.5
%
)

R
-A

C
V
B
P
-l
ik
e

N
A

N
A

42
(2
0.
9%

)
29

(1
4.
4%

)

St
at
us
,n

(%
)

<
0.
00
1

0.
01
3

<
0.
00
1

D
ea
d

46
(2
5.
1%

)
77

(6
2.
6%

)
39

(4
7.
6%

)
41

(6
8.
3%

)
12

(6
%
)

36
(1
7.
9%

)

A
liv
e

13
7
(7
4.
9%

)
46

(3
7.
4%

)
43

(5
2.
4%

)
19

(3
1.
7%

)
88

(4
3.
8%

)
65

(3
2.
3%

)

N
A
,N

ot
av
ai
la
bl
e;
G
C
B
,G

er
m
in
al
C
en
te
r
B
-c
el
l-
lik
e
D
LB

C
L;
A
B
C
,A

ct
iv
at
ed

B
-c
el
l-
lik
e
D
LB

C
L;
C
H
O
P
,C

yc
lo
ph

os
ph

am
id
e
+
D
ox
or
ub

ic
in

+
V
in
cr
is
ti
ne

+
P
re
dn

is
on

e;
R
-C

H
O
P
,R

it
ux
im

ab
+
C
H
O
P
re
gi
m
en
;A

C
V
B
P
,D

ox
or
ub

ic
in

+
C
yc
lo
ph

os
ph

am
id
e
+
V
in
cr
is
ti
ne

+
B
le
om

yc
in

+
P
re
dn

is
on

e;
R
-A

C
V
B
P
,R

it
ux
im

ab
+
A
C
V
B
P
re
gi
m
en
.

B
ol
d
va
lu
es

m
ea
n
st
at
is
ti
ca
lly

si
gn
ifi
ca
nt

di
ffe
re
nc
e.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1542829
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1542829
training cohort and validation cohorts. Meanwhile, subgroup survival

analyses based on several clinical parameters further supported the

prognostic role of the MitoRGs signature. Importantly, the signature

could supplement the prognostic role of IPI score in DLBCL patients.

Additionally, we established a nomogram model that combines age,

IPI score and the risk score from the signature to predict the

prognosis of DLBCL patients. The nomogram model provided a

better prognostic value and the results of DCA demonstrated its

practicability in clinical settings.
Frontiers in Oncology 11
The introduction of immunotherapy has greatly improved the

prognosis for DLBCL patients, making the R-CHOP the standard

first-line treatment (1). Immune cell infiltration plays a crucial role

in the therapeutic response in DLBCL. Different types of immune

cells contribute to the tumor microenvironment and influence

treatment outcomes (26). According to the MitoRGs signature,

DLBCL patients in the high-risk group exhibited less macrophages,

DCs, T cells, T helper cells and TFH cells, while exhibiting an

increase in pDCs and Th2 cells in the tumor microenvironment
FIGURE 5

Independent prognostic role of MitoRGs signature for OS of DLBCL patients. (A, C, E) Forest plots showing the univariate Cox regression analyses of
clinical parameters and risk score in training cohort (GSE10846) and validation cohorts (GSE11318 and GSE87371). (B, D, F) Forest plots of the
multivariate Cox regression analyses of clinical parameters and risk score in training cohort and validation cohorts.
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FIGURE 6

Subgroups survival analyses of the prognostic MitoRGs signature in GSE10846. (A, B) The Kaplan-Meier curves of low- and high-risk score in patients
younger and older than 60-year-old. (C, D) The Kaplan-Meier curves of low- and high-risk score in ECOG < 2 scores and ≥2 scores subgroup.
(E, F) The Kaplan-Meier curves of low- and high-risk score in LDH normal and LDH elevated subgroup. (G, H) The Kaplan-Meier curves of low- and
high-risk score in I/II stage and III/IV stage subgroup. (I, J) The Kaplan-Meier curves of low- and high-risk score in extra-nodal sites ≤1 and >1
subgroup. (K, L) The Kaplan-Meier curves of low- and high-risk score in IPI 0-2 scores and IPI 3-5 scores subgroup. (M, N) The Kaplan-Meier curves
of low- and high-risk score in GCB and ABC subgroup. (O, P) The Kaplan-Meier curves of low-risk score and high-risk score in CHOP and R-CHOP
regimen treated patients.
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(TME). This altered immune landscape may contribute to the poor

prognosis observed in these patients. A study found that high

counts of CD68(+) macrophage were associated with improved

progression-free survival (PFS) and OS for patients undergoing

dose-dense chemoimmunotherapy, suggesting that macrophages

may play a protective role in the TME of DLBCL (27).

Conversely, another study indicated that low T-cell proportions

in the TME, which often accompany reduced macrophage

infiltration, are associated with immune escape and poor survival

outcomes in DLBCL patients (28). Research indicates that the

presence of TFH cells is crucial for effective humoral immune

responses, as they play a significant role in regulating B cell

activity and antibody production (29). In contrast, the reduction

of TFH cells in high-risk DLBCL patients suggests a compromised

ability to mount an adequate immune response against the tumor.

Additionally, the skewing towards Th2 cells may indicate a shift in

the immune response that favors humoral immunity over cellular

immunity, potentially leading to tumor progression (30).

Furthermore, the role of DCs in shaping T cell responses is well-

documented. DCs can influence the differentiation of T cells into

various subsets, including TFH cells, which are essential for

germinal center formation and B cell activation (31). The

decrease in DCs in high-risk DLBCL patients may impair the

activation and differentiation of TFH cells, further exacerbating

the immune evasion by the tumor (32). Moreover, the presence of

pDCs has been associated with immune suppression in various
Frontiers in Oncology 13
cancers, including DLBCL. These cells can produce type I

interferons and other cytokines that may promote regulatory T

cell (Treg) expansion, thereby dampening anti-tumor immunity

(33). The increased levels of pDCs in high-risk DLBCL patients

could contribute to an immunosuppressive environment,

facilitating tumor growth and survival (34). In summary, these

results highlight a significant shift towards an immunosuppressive

TME that may hinder effective anti-tumor responses in the DLBCL

patients within the high-risk group. Understanding these dynamics

is crucial for developing targeted therapies that can restore immune

balance and improve patient outcomes. Furthermore, we also

analyzed the expression of ICs in the DLBCL patients across

various risk groups. The differentially expressed ICs suggested

distinct immune evasion mechanisms and potential therapeutic

strategies for each risk group. For instance, PD-L1 and PD-L2 are

the ligands for PD-1, which suppresses the function of activated T

cells (35–37), and DLBCL patients within the high-risk group may

benefit from therapy using PD-L1 inhibitors.

In addition, drug sensitivities for DLBCL patients within different

risk groups were further predicted. Our analysis revealed that high-

risk patients exhibited a higher IC50 for several drugs, including AKT

inhibitor VIII (Inhibitor of AKT kinase), Bleomycin (Inducing DNA

damage), Cisplatin (DNA cross-linking agents) and LFM.A13

(Inhibitor of Bruton’s tyrosine kinase), indicating reduced

sensitivity to these treatments. Conversely, these patients responded

more favorably to drugs such as Etoposide (Topoisomerase II
FIGURE 7

MitoRGs signature acts as the supplement to the IPI score for the prognostic role in DLBCL patients (A–C). The Kaplan-Meier curves of DLBCL
patients with different IPI score in training cohort (GSE10846) and validation cohorts (GSE111318 and GSE87371). (D–F) The Kaplan-Meier curves
based on the risk score of the MitoRGs signature predicted the prognosis accurately for patients with less distinction by IPI score in training cohort
(GSE10846) and validation cohorts (GSE111318 and GSE87371).
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inhibitor), Lenalidomide (Immunomodulator), Rapamycin (mTOR

inhibitor) and Vorinostat (Histone deacetylase inhibitor). Thus, our

findings suggest a more precise and personalized treatment strategy

tailored to the risk profiles of DLBCL patients.

As it is well known, cancer cells exhibit distinct metabolic

signatures and utilize much more glucose under adequate

nutritional conditions through the Warburg effect to support

their rapid proliferation, while they inevitably encounter a

nutrient-deprived tumor microenvironment (38). However,

cancer cells still maintain proliferation and survival under

stressful conditions, in which gluconeogenesis emerges as one of

the key factors (39). Gluconeogenesis generates glucose from

noncarbohydrate substrates such as lactate and amino acids, and
Frontiers in Oncology 14
PCK2 is a mitochondrial form of phosphoenolpyruvate

carboxykinase (PEPCK or PCK), which catalyzes the first rate-

limiting reaction in gluconeogenesis (40). Elevated expression of

PCK2 has been observed in several cancer types, including colon

cancer, non-small cell lung cancer (NSCLC) and hepatocellular

carcinoma (HCC) (38). Conversely, other studies have shown that

PCK2 overexpression could suppress the cancer progression in

renal cell carcinoma and melanoma (41, 42). This suggests that

the role of PCK2 may vary depending on the cancer type and

context. The endogenous apoptosis pathway, namely mitochondrial

apoptosis, is induced by varying cellular stresses such as growth-

factor deprivation, DNA damage or glucose deprivation (43).

Previous studies demonstrated that knockdown or inhibition of
FIGURE 8

Investigation of immune cell infiltration and drug sensitivity in low- and high-risk patients in GSE10846 dataset. (A) Immune cell infiltration in the
low- and high-risk patients. (B) Differential expression of immune checkpoints between low- and high-risk patients. (C) Low-risk patients. are more
sensitive to these drugs (D) High-risk patients responded better to these drugs. *p < 0.05; **p < 0.01; ***p < 0.005; ****p < 0.001.
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FIGURE 9

A nomogram developed from the MitoRGs signature to predict the OS of DLBCL patients. (A) A nomogram model predicted the 1-, 3- and 5-year
OS in the training cohort (GSE10846). (B) Kaplan-Meier curves displaying patients with low- and high-risk scores derived from the nomogram model.
(C–E) Time-dependent ROC curves of the nomogram model for predicting 1-, 3-, and 5-year OS, along with the corresponding AUC values and
95%CI. (F–H) The calibration curves of the nomogram model predicting 1-, 3-, and 5-year OS. (I–K) The Decision curve analysis (DCA) curves of
age, IPI score, MitoRGs signature and the nomogram model predicting 1-, 3-, and 5-year OS.
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PCK2 in low glucose or glucose deprivation conditions results in

mitochondrial-associated apoptotic cell death in lung cancer (38,

44). In this study, PCK2 was found to be significantly upregulated in

DLBCL patients and cell lines. Knockdown of PCK2 in DLBCL cells

did not significantly affect cell growth in high glucose conditions;

however, it remarkably inhibited cells proliferation and increased
Frontiers in Oncology 16
apoptosis in low glucose conditions. These findings suggest that

PCK2 is a potential therapeutic target for DLBCL.

Our study presents several limitations. Firstly, we utilized

DLBCL samples from GEO datasets to establish and validate the

prognostic MitoRGs signature; however, this approach lacks

confirmation from a larger, real-world cohort. Secondly, since the
FIGURE 10

Study for the mitochondrial-related gene PCK2. (A) Forest plots of the univariate Cox regression analyses of the eight genes within the MitoRGs
signature for the OS of DLBCL patients. (B) Expression of PCK2 between DLBCL patients and healthy individuals from the GEPIA2 database.
(C) Expression of PCK2 in distinct cancer cell lines in the HPA database. (D) Expression of PCK2 in various DLBCL cell lines and 293T cells detected
by RT-qPCR assay. (E) knockdown efficacy for PCK2 gene in SU-DHL4 and SU-DHL6 cell lines confirmed by RT-qPCR assay. (F) CCK-8 assay to
investigate the proliferation of DLBCL cell lines with or without PCK2 knockdown in high- and low-glucose condition. (G) Flow cytometry to
examine the apoptosis of DLBCL cell lines with or without PCK2 knockdown in high- and low-glucose condition. Glu20 refers to a culture condition
with 20 mM glucose, while Glu1 indicates a 1 mM glucose condition. NS, No significance; *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001.
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MitoRGs signature comprises eight genes, we focused solely on the

PCK2 gene for our preliminary experimental study. Future research

should explore the functional roles of other genes and further

investigate PCK2. Despite these limitations, this is the first study

to construct a prognostic MitoRGs signature for DLBCL patients,

and the risk model provides potential therapeutic targets.
Conclusion

We developed a novel prognostic MitoRGs signature for the

survival of DLBCL patients and conducted preliminary research on

the role of PAK2 gene, providing new insights into the prognosis of

DLBCL patients and the mechanism of MitoRGs. Future large-scale

clinical studies are essential to validate the clinical significance of these

findings and to identify more effective treatment strategies for DLBCL.
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