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The value of a combined model
based on ultra-radiomics and
multi-modal ultrasound in the
benign-malignant differentiation
of C-TIRADS 4A thyroid nodules:
a prospective multicenter study
Shuai Cui1†, Qifan Liu1†, Hailong Wang1, Husha Li1, Wei Li1,
Chenlong Li2, Leilei Bi3, Yang Mu4, Wenjing Guo1,
Jundong Yao1* and Zhoulong Zhang1

1Department of Ultrasound, The First Affiliated Hospital, College of Clinical Medicine of Henan
University of Science and Technology, Luoyang, China, 2Department of Ultrasound, General Hospital
of Pingmei Shenma Medical Group, Pingdingshan, China, 3Department of Ultrasound, Xiangyang
Hospital of Traditional Chinese Medicine, Xiangyang, China, 4Department of Ultrasound, The Fourth
Affiliated Hospital of Xinjiang Medical University, Urumqi, China
Objective: To establish a combined model based on ultrasound radiomics

combined with multimodal ultrasound and evaluate its value in diagnosing

benign and malignant nodules classified as Chinese-Thyroid Imaging Report

and Data System (C-TIRADS) 4A.

Methods: Prospective collection of data from 446 patients with thyroid nodules

classified as C-TIRADS 4A between December 2023 and August 2024. Based on

the enrollment timeline, patients were divided into a training set (n=312) and a

test set (n=134) in a 7:3 ratio. Using clinical information, multimodal ultrasound

features, and radiomics features, a radiomics model was constructed using the

Random Forest (RF) machine learning algorithm. Logistic regression was

employed to develop the multimodal ultrasound model and the combined

model. The predictive efficiency and accuracy of these models were evaluated

using Receiver Operating Characteristic (ROC) curves, calibration curves, and

Decision Curve Analysis (DCA). The diagnostic efficacy of junior physicians

assisted by the ultrasound radiomics model was compared with that of senior

physicians. DeLong’s test was performed to compare the diagnostic

performance of the models.

Results: Multivariate analysis revealed that age (≤51 years), Sound Touch

Elastography mean stiffness (STE Mean), orientation (vertical), margin (blurred),

and margin (irregular) were independent risk factors for papillary thyroid

carcinoma, and the multimodal ultrasound model was established. Based on 17

ultrasound radiomics features, a radiomics model was constructed using the RF

machine learning algorithm. The combined model was developed by combining

the two aforementioned models. In the training set, the areas under the curve

(AUC) of the multimodal ultrasound model, ultrasound radiomics model, and

combined model were 0.852, 0.940 and 0.956, respectively. In the test set, the

AUC were 0.804, 0.832 and 0.863, respectively. DeLong’s test showed that the
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combined model performed best in the training set, and in the test set, the

combined model outperformed the multimodal ultrasound model but showed

no significant difference compared to the radiomics model. DCA indicated that

the combined model achieved higher net benefits within a specific threshold

probability range (0.15-0.90).

Conclusion: The combined model exhibits robust diagnostic capability in

distinguishing benign from malignant thyroid nodules classified as C-TIRADS 4A.
KEYWORDS

C-TIRADS 4A, multimodal ultrasound, ultrasound radiomics, papillary thyroid cancer,
benign or malignant
1 Introduction

Thyroid cancer is one of the fastest-growing malignancies in

terms of incidence worldwide. Over the past three decades, its global

incidence has risen significantly, currently ranking as the seventh

most common cancer globally (1, 2). Papillary thyroid cancer (PTC)

accounts for more than 80% of all thyroid cancer cases (3).

Although its prognosis is relatively favorable, the issue of

overtreatment during diagnosis and management has become

increasingly prominent.

Ultrasound examination has become the preferred imaging tool

for risk assessment of thyroid nodules due to its non-invasive, real-

time, and reproducible advantages. The establishment of the

Chinese-Thyroid Imaging Report and Data System (C-TIRADS)

has provided an important framework for standardizing the risk

assessment of thyroid nodule malignancy (4). However, the

malignancy risk of C-TIRADS 4A nodules spans a relatively wide

range (2%-10%) (5, 6), leading to a significant number of patients

undergoing unnecessary fine-needle aspiration biopsies or surgeries

due to diagnostic uncertainty. This not only increases healthcare

costs but may also cause patient anxiety. Therefore, there is an

urgent need for a more precise differentiation method to optimize

the management strategy for C-TIRADS 4A nodules.

Currently, the traditional C-TIRADS primarily relies on the

morphological features of grayscale ultrasound (such as margins,

echogenicity, calcifications, etc.) for risk stratification. However, the

introduction of multimodal ultrasound techniques, including

elastography, Color Doppler Flow Imaging (CDFI), and contrast-

enhanced ultrasound, has provided multidimensional information
ADS, Chinese-Thyroid

thyroid cancer; DCA,

, Receiver Operating

deviation; STE, Sound

train Elastography; CV,

e Negative Rate; PPV,

e.
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for assessing nodule stiffness, vascular characteristics, and

microcirculation. For example, Gong et al. (7) demonstrated that

combining grayscale ultrasound with contrast-enhanced ultrasound

improved the diagnostic the areas under the curve (AUC) from 0.844

to 0.897. Additionally, Nattabi et al. (8) further showed that nodule

stiffness measured by ShearWave Elastography (SWE) is significantly

positively correlated with malignancy risk. Nevertheless, these

techniques still heavily depend on physician experience, and there

are notable differences in diagnostic consistency among physicians of

varying experience levels, with the learning curve for junior

physicians being particularly challenging.

The emergence of radiomics offers a novel approach to

addressing the aforementioned challenges. This technology

extracts high-throughput deep imaging features (such as texture,

morphology, heterogeneity, etc.) and combines them with machine

learning algorithms to construct objective quantitative models. It

has already demonstrated remarkable potential in the differential

diagnosis of tumors such as breast cancer and liver cancer (9–11). In

the field of thyroid imaging, the application of ultrasound radiomics

is still in its exploratory stages. However, preliminary studies

suggest that it can effectively capture malignant features that are

difficult to identify using traditional methods, such as

microstructural heterogeneity within nodule (12). Nevertheless,

the complementary nature of multimodal ultrasound parameters

(e.g., vascular characteristics, elasticity modulus) and radiomics

features has not yet been fully explored, and there is a lack of

validation based on multicenter data.

This study aims to develop a machine learning model that

integrates multimodal ultrasound features and ultrasound

radiomics for the differentiation of benign and malignant thyroid

nodules classified as C-TIRADS 4A. Through prospective

multicenter data validation, the diagnostic performance of the

model and its potential to assist junior physicians will be

evaluated. The goal is to reduce unnecessary invasive procedures,

shorten the learning curve for junior physicians, and enhance their

diagnostic capabilities, thereby optimizing clinical decision-

making processes.
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2 Materials and methods

2.1 Study population

Prospectively collect data from patients with thyroid nodules

classified as C-TIRADS 4A by ultrasound in multicenter medical

institutions from December 2023 to August 2024. The inclusion

criteria were as follows: ① age ≥ 18 years; ② ultrasound diagnosis of

single or multiple C-TIRADS 4A nodules; ③ undergoing fine-needle

aspiration biopsy (FNA) combined with BRAF V600E gene testing or

surgical resection with definitive pathological results. The exclusion

criteria were as follows: ① poor-quality ultrasound images

(suboptimal image quality or insufficient resolution); ② history of

neck surgery, cancer, or pregnancy; ③ incomplete clinical

information; ④ non-PTC malignancies. A total of 446 patients were

ultimately included, with 314 cases from The First Affiliated Hospital

of Henan University of Science and Technology, 53 cases from

General Hospital of Pingmei Shenma medical group, 48 cases from

Xiangyang Hospital of Traditional Chinese Medicine, and 31 cases

from The Fourth Affiliated Hospital of Xinjiang Medical University.

Based on the enrollment timeline, patients were divided into a

training set and a test set in a 7:3 ratio. Figure 1 illustrates the

patient enrollment flowchart. This study received approval from the

Ethics Committee of the First Affiliated Hospital of Henan University

of Science and Technology (2024-03-K0160), All participants

provided written informed consent, in compliance with regulations

of the institution and the guidelines of the Declaration of Helsinki.
2.2 Ultrasound image acquisition

Prior to data collection, all ultrasound physician underwent

centralized training on C-TIRADS 4A classification criteria,
Frontiers in Oncology 03
including grayscale ultrasound features (e.g. , margins,

echogenicity, calcifications) and multimodal parameters (e.g.,

elastography thresholds). All participating centers utilized

identical ultrasound systems (Mindray Resona I9) equipped with

linear array probes (frequency range: 7.5–12 MHz). Imaging

parameters were standardized across centers, including gain (60–

70 dB), depth (2.5-3.5 cm), dynamic range (50–60 dB), and

mechanical index (MI: 0.8-1.0). The patient was positioned

supine, with the neck fully extended to expose the thyroid area.

Grayscale images, color Doppler images, and dynamic images of

nodules were collected in both transverse and longitudinal sections.

Elastography settings were uniformly configured to ensure

consistent Young’s modulus calculations. Subsequently, three

types of elastography images were acquired: Sound Touch

Elastography (STE), Strain Elastography (SE), and Sound Touch

Quantification (STQ). All images are stored in DICOM format.
2.3 Ultrasound image analysis

Ultrasound image feature was conducted by two doctors, Jundong

Yao and Wei Li, both possessing 10 years of experience in ultrasonic

diagnosis of thyroid diseases. They independently analyzed the images

without access to the patients’ clinical information or pathological

results. In cases of differing opinions, a third doctor, Zhoulong Zhang,

who has over 30 years of experience in ultrasound diagnosis, made the

final decision. This study evaluates several features of nodules, including

maximum diameter of the nodule, multiplicity (solitary/multiple),

margin (smooth/ill-defined/irregular), halo sign (present/absent),

composition (cystic-solid/solid/predominantly solid), echogenicity

(isoechoic/markedly hypoechoic/hypoechoic/hyperechoic/

heterogeneous), echo texture (homogeneous/heterogeneous),

orientation (vertical/parallel), calcification (absent/coarse calcification/
FIGURE 1

Flowchart of patient enrollment.
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microcalcification/indeterminate punctate echogenic foci/peripheral

calcification), relationship to capsule (>2 mm/≤2 mm/extracapsular

extension), and CDFI classification according to Alder (levels 0/I/II/

III). The region of interest (ROI) for elastography is defined bymanually

tracing the contours of nodules using a specialized machine. The shell

denotes a machine-generated boundary that extends 2 mm beyond the

nodule following the tracing process. By outlining the nodule area, the

systemautomatically calculates the STEmean stiffness (STEMean), STE

maximum stiffness (STE Max), STE minimum stiffness (STE Min),

STE standard deviation (STE SD), SE mean stiffness (SE Mean), SE

maximum stiffness (SE Max), SE minimum stiffness (SE Min),

SE standard deviation (SE SD), STQ mean stiffness (STQ Mean), STQ

maximum stiffness (STQ Max), STQ minimum stiffness (STQ Min),

STQ standard deviation (STQ SD).
2.4 Pathological analysis

Ultrasound-guided fine-needle aspiration biopsy was

performed by ultrasonologists who had completed standardized

training and obtained qualification certificates. A 23G fine needle

was utilized to efficiently extract samples from the thyroid lesion

under ultrasound guidance. The cells were preserved in a liquid-

based culture medium for subsequent genetic analysis. The test

samples were then sent for pathological examination and genetic

testing. A pathological diagnosis of PTC is deemed positive. The

BRAF V600E mutation (a key genetic driver of PTC) is strongly

associated with tumor aggressiveness, extrathyroidal extension, and

lymph node metastasis (13). Its detection enhances diagnostic

specificity for malignancy. If the BRAF V600E mutation is

detected, it is recorded as positive; if not, it is noted as negative.

All results were followed up for 6 months.
2.5 Model building

2.5.1 Construction of the multimodal ultrasound
model

Univariate logistic regression analysis was conducted on the

selected variables, which included gender, age, and ultrasound

image characteristics such as STE Mean, STE Max, STE Min, STE

SD, SE Mean, SE Max, SE Min, SE SD, STQ Mean, STQ Max, STQ

Min, STQ SD, maximum diameter of the nodule, multiplicity,

margin, halo sign, composition, echogenicity, echo texture,

orientation, calcification, relationship to capsule and CDFI of the

nodule. Variables with a p-value < 0.05 were considered risk factors.

Subsequently, a multi-factor logistic regression analysis was

performed, and independent risk factors were identified through

stepwise forward logistic regression to construct a multimodal

ultrasound model (Multi-model).

2.5.2 Construction of the ultrasound radiomics
model

An ultrasound physician with 5 years of diagnostic experience

(Husha Li) selected representative thyroid nodule images from each
Frontiers in Oncology 04
patient who met the inclusion criteria, utilizing the RadiAnt

DICOM Viewer 2021.1 software (Medixant, Poznan, Poland), and

saved the selected images in DICOM format (Figure 2A). Another

ultrasound physician with 5 years of experience in ultrasound

diagnosis, Hailong Wang, manually depicted the ROI images of

the selected patients using the polygon mode in ITK-SNAP software

(www.itksnap.org) without understanding the pathological results

(Figures 2B, C). The DICOM images and segmented ROIs were

subsequently imported into the radiomics software PyRadiomics for

feature extraction, resulting in radiomics feature. The extracted

radiomics features were normalized to conform to a N ~ (0, 1)

distribution (Figure 2D). The Spearman correlation coefficient was

employed to assess the correlation between features. For features

exhibiting a correlation coefficient greater than 0.9, only one of the

correlated features was retained, yielding radiomics feature

selection. LASSO regression was applied for cross-validation and

to determine the optimal penalty coefficient lambda. Features with a

zero coefficient were excluded, and further dimensionality

reduction was conducted to derive final radiomics features

(Figures 2E, F). The features with non-zero coefficients were

aggregated into a formula to compute the final radiomics score

(see Supplementary Figure S1). The Random Forest (RF) algorithm

was used to build the ultrasound radiomics model (Rad-model).

2.5.3 Construction of the combined model
Based on the Multi-model and the Rad-model, a combined

model (Com-model) was established by means of Logistic

regression analysis and a nomogram was subsequently plotted.
2.6 Verification and clinical application of
the nomogram

Receiver Operating Characteristic (ROC) curves were generated,

and the AUC was calculated to assess the discriminatory performance

of the model. Calibration curves were plotted, and the Hosmer-

Lemeshow goodness-of-fit test was utilized to evaluate the calibration

ability of the nomogram. The Brier score was computed to assess the

overall performance of the model. Decision Curve Analysis (DCA) was

constructed, and the clinical utility of the nomogram was estimated by

calculating the net benefit across a range of threshold probabilities.
2.7 Rad-model assisted diagnosis

Fifty thyroid nodule images were randomly selected from

enrolled patients and evaluated by 10 junior physicians (ultrasound

diagnosis experience ≤3 years) and 10 senior physicians (ultrasound

diagnosis experience >10 years) without knowledge of patient

information. The 50 cases of thyroid nodules were assessed for

benign and malignant conditions, as well as pathological results,

and were re-evaluated one week later with the assistance of Rad-

model prediction probability. The AUC was calculated to assess the

diagnostic performance of both senior and junior physicians before

and after the incorporation of ultrasound Rad-model assistance.
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2.8 Statistical analyses

All statistical tests were conducted using SPSS 27.0, MedCalc

(version 20.100), and R statistical software (version 4.0.2). We

convert some continuous variables into categorical variables based

on the ROC curve. Independent sample t-tests, chi-square tests, or

Mann-Whitney U tests were employed to compare differences in

age, nodule size, and multimodal ultrasound imaging

characteristics between the training set and the test set. Logistic

regression was utilized to construct Multi-model and Com-model,

while the RF was adopted to establish Rad-model. ROC curves for

the three models were generated using MedCalc. ROC analysis

was performed, employing the Youden index to identify the

optimal cut-off value for calculating the AUC, sensitivity,

positive predictive value (PPV), negative predictive value (NPV)

and accuracy. Internal validation of the models was performed

using Bootstrap with 1000 resamplings. DeLong’s test was

performed to compare the diagnostic performance of the

models. A difference was considered statistically significant

when P < 0.05. We utilized the “rms” and “pec” packages to

build nomograms and calibration curves, the “caret” package

for bootstrap validation, and the “ramda” and “ggDCA”

packages to draw clinical decision curves for analysis using R

statistical software.
Frontiers in Oncology 05
3 Results

3.1 Characteristics of patients

This study included a total of 446 patients out of 490 patients

with thyroid nodules. The set comprised 98 males and 348 females,

with an average age of 50.09 ± 12.30 years. Based on the order of

enrollment, the patients were divided into a training set (n=312)

and a test set (n=134) in a ratio of 7:3. Within the training set, there

were 172 benign cases and 140 malignant cases, while the test set

contained 79 benign cases and 55 malignant cases. The maximum

diameter of nodules in the training and test set was 10.10 ± 7.60 mm

and 10.72 ± 7.30 mm. The baseline characteristics of the patients are

presented in Table 1. There was no statistically significant difference

between the two groups (P > 0.05).
3.2 Construction and performance of the
model

3.2.1 The Multi-model
Univariate logistic regression analyses showed that age (≤51 years)

(OR: 2.863, 95% CI: 1.796-4.563), gender (female) (OR: 0.496, 95% CI:

0.283-0.869), STE Mean (OR: 1.046, 95% CI: 1.024-1.069), STE Max
FIGURE 2

Flowchart of Ultrasound Radiomics Model Construction. CV stands for cross-validation, and MSE stands for mean square error. (A) Selection of
representative thyroid nodule images. (B) Manual delineation of the ROI. (C) Example of a segmented ROI after manual delineation. (D) Normalization of the
extracted radiomics features to conform to a standard normal distribution. (E) Application of LASSO regression for feature selection. (F) Final selection of
radiomics features after dimensionality reduction.
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(OR: 1.012, 95% CI: 1.004-1.021), STE Min (OR: 1.025, 95% CI: 1.001-

1.050), STE SD (OR: 1.064, 95% CI: 1.015-1.115), SE Mean (OR: 0.058,

95% CI: 0.006-0.596), STQ Mean (OR: 1.026, 95% CI: 1.011-1.041),

STQ Max (OR: 1.011, 95% CI: 1.003-1.019), STQ SD (OR: 1.064, 95%

CI: 1.026-1.103), maximum diameter (≤7.4 mm) (OR: 1.851, 95% CI:

1.177-2.903), margin (ill-defined) (OR: 9.704, 95% CI: 4.584-20.593),

margin (irregular) (OR: 13.382, 95% CI: 7.254-24.684), halo sign

(present) (OR: 0.224, 95% CI: 0.075-0.670), composition (solid) (OR:

9.792, 95% CI: 2.236-42.882), echogenicity (markedly hypoechoic)

(OR: 3.219, 95% CI: 1.861-5.569), echogenicity (hypoechoic) (OR:

4.809, 95% CI: 2.261-10.229), orientation (vertical) (OR: 7.875, 95%
TABLE 1 Baseline characteristics of patients in the training set and
test set.

Characteristic
Training set
(n = 312)

Test set
(n = 134)

P

Age (years) 49.70 ± 14.04 50.79 ± 13.07 0.443

Gender 0.166

Male 63 (20.2%) 35 (26.1%)

Female 249 (79.8%) 99 (73.9%)

STE Mean (kPa) 32.82 ± 11.70 32.44 ± 11.94 0.445

STE Max (kPa) 63.69 ± 28.62 68.22 ± 38.03 0.476

STE Min (kPa) 14.93 ± 9.67 13.45 ± 8.78 0.353

STE SD (kPa) 9.39 ± 4.97 10.54 ± 6.59 0.391

SE Mean (%) 0.20 ± 0.11 0.19 ± 0.11 0.142

SE Max (%) 0.58 ± 0.70 0.53 ± 0.33 0.161

SE Min (%) 0.05 ± 0.06 0.06 ± 0.07 0.094

SE SD (%) 0.10 ± 0.08 0.10 ± 0.07 0.910

STQ Mean (kPa) 35.98 ± 16.12 34.62 ± 14.31 0.510

STQ Max (kPa) 61.68 ± 34.08 66.85 ± 43.08 0.524

STQ Min (kPa) 19.73 ± 13.39 17.76 ± 11.26 0.499

STQ SD (kPa) 9.43 ± 7.17 10.55 ± 8.97 0.656

Maximum diameter of
nodules (mm)

10.10 ± 7.60 10.72 ± 7.30 0.063

Maximum diameter of
nodules (<7.4 mm)

161 (51.6%) 57 (42.5%) 0.079

Multiplicity 0.422

solitary 272 (87.2%) 113 (84.3%)

multiple 40 (12.8%) 21 (15.7%)

Margin 0.970

smooth 132 (42.3%) 55 (41.0%)

ill-defined 50 (16.0%) 22 (16.5%)

irregular 130 (41.7%) 57 (42.5%)

Halo sign 0.481

absent 288 (92.3%) 121 (90.3%)

present 24 (7.7%) 13 (9.7%)

Composition 0.557

cystic-solid 21 (6.7%) 9 (6.8%)

solid 264 (84.6%) 109 (81.3%)

predominantly solid 27 (8.7%) 16 (11.9%)

Echogenicity 0.116

isoechoic 98 (31.4%) 48 (35.8%)

markedly hypoechoic 45 (14.4%) 11 (8.2%)

hypoechoic 164 (52.6%) 67 (50.0%)

(Continued)
TABLE 1 Continued

Characteristic
Training set
(n = 312)

Test set
(n = 134)

P

Echogenicity 0.116

hyperechoic 1 (0.3%) 5 (3.7%)

heterogeneous 4 (1.3%) 3 (2.3%)

Echo texture 0.713

homogeneous 29 (9.3%) 11 (8.2%)

heterogeneous 283 (90.7%) 123 (91.8%)

Orientation 0.813

parallel 190 (60.9%) 80 (59.7%)

vertical 122 (39.1%) 54 (40.3%)

Calcification 0.774

absent 157 (50.3%) 73 (54.5%)

coarse calcification 25 (8.0%) 13 (9.7%)

microcalcification 101 (32.4%) 38 (28.3%)

indeterminate punctate
echogenic foci

28 (9.0%) 10 (7.5%)

peripheral calcification 1 (0.3%) 0 (0%)

Relationship
to capsule

0.540

>2 mm 118 (37.8%) 48 (36.1%)

≤2 mm 163 (52.2%) 68 (50.4%)

extracapsular extension 31 (10.0%) 18 (13.5%)

CDFI 0.398

0 135 (43.3%) 51 (38.1%)

I 123 (39.4%) 63 (47.0%)

II 44 (14.1%) 18 (13.4%)

III 10 (3.2%) 2 (1.5%)

Benign and malignant 0.455

benign 172 (55.1%) 79 (59.0%)

malignant 140 (44.9%) 55 (41.0%)
fronti
Data are expressed as number of patients (%) unless otherwise specified. Percentages may not
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CI: 4.697-13.203), calcification (coarse calcification) (OR: 0.218, 95%

CI: 0.085-0.558), calcification (microcalcification) (OR: 0.204, 95% CI:

0.119-0.350) is a risk factor for PTC.

Multivariate logistic regression analysis showed that age (≤51

years) (OR: 2.752, 95% CI: 1.546-4.900), STE Mean (OR: 1.036, 95%

CI: 1.010-1.062), margin (ill-defined) (OR: 6.187, 95% CI: 2.700-

14.178), and margin (irregular) (OR: 7.011, 95% CI: 3.545-13.865),

orientation (vertical) (OR: 3.515, 95% CI: 1.926-6.415) were

independent risk factors for PTC (Table 2). The AUC of the Multi-

model in the training set was 0.852 (95% CI: 0.808-0.890), sensitivity

was 82.14%, specificity was 79.65%, PPV was 76.67%, and NPV was

84.57%. In the test set, the AUC of theMulti-model was 0.804 (95% CI:

0.726-0.867), sensitivity was 72.73%, specificity was 79.75%, PPV was

71.43%, and NPV was 80.77% (Figure 3 and Table 3).

3.2.2 The Rad-model
A total of 1,562 features related to radiomics were extracted

initially. After applying dimensionality reduction, 17 features were

selected (Figure 4), and the Rad-model was developed using the RF

algorithm. The AUC of the Rad-model in the training set was 0.940

(95% CI: 0.907-0.963), sensitivity was 88.57%, specificity was

84.30%, PPV was 82.12%, and NPV was 90.06%. In the test set,

the AUC of the Rad-model was 0.832 (95% CI: 0.758-0.891),

sensitivity was 72.73%, specificity was 86.08%, PPV was 78.43%,

and NPV was 81.93% (Figure 3 and Table 3).
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3.2.3 The Com-model
The Com-model was developed by integrating the Multi-model

and the Rad-model. The AUC of the Com-model in the training set

was 0.956 (95% CI: 0.926-0.976), sensitivity was 90.00%, specificity

was 97.79%, PPV was 96.92%, and NPV was 92.31%. Internal

validation was performed using 1000 bootstrap resampling

iterations, resulting in an average AUC of 0.954 for the Com-

model. In the test set, the AUC of the Com-model was 0.863 (95%

CI: 0.793-0.917), sensitivity was 70.91%, specificity was 89.87%,

PPV was 82.98%, and NPV was 81.61% (Figure 3 and Table 3).
3.3 Verification and clinical application of
the nomogram

A nomogram was created to estimate the probability of PTC.

Using the nomogram derived total score, we stratified patients into

low (≤54, malignancy probability ≤15%), intermediate (54-68,

malignancy probability15-50%), and high-risk (>68, malignancy

probability >50%) categories. For high-risk nodules, immediate

FNA or surgery is recommended. Intermediate-risk cases may

benefit from selective FNA guided by clinical factors, while low-

risk nodules warrant surveillance, avoiding unnecessary biopsies.

(Figure 5). The calibration plot in Figure 6 illustrates the

comparison between the predicted positive rate derived from the
TABLE 2 Results based on univariate and multivariate logistic regression analysis of the training set.

Characteristic
Univariate analysis Multivariate analysis

95% CI P 95% CI P

Age ≤ 51 (years) 1.796-4.563 <0.001 1.546-4.900 <0.01

Gender

Male Reference

Female 0.283-0.869 0.014

STE Mean (kPa) 1.024-1.069 <0.001 1.010-1.062 0.006

STE Max (kPa) 1.004-1.021 0.004

STE Min (kPa) 1.001-1.050 0.037

STE SD (kPa) 1.015-1.115 0.009

SE Mean (%) 0.006-0.596 0.017

SE Max (%) 0.386-1.246 0.221

SE Min (%) 0.001-1.044 0.053

SE SD (%) 0.006-2.622 0.181

STQ Mean (kPa) 1.011-1.041 <0.001

STQ Max (kPa) 1.003-1.019 0.004

STQ Min (kPa) 0.998-1.032 0.091

STQ SD (kPa) 1.026-1.103 <0.001

Maximum diameter of nodules (mm) 0.940-1.001 0.057

(Continued)
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TABLE 2 Continued

Characteristic
Univariate analysis Multivariate analysis

95% CI P 95% CI P

Gender

Maximum diameter of
nodules (<7.4 mm)

1.177-2.903 0.008

Multiplicity

solitary Reference

multiple 0.405-1.564 0.508

Margin

smooth Reference

ill-defined 4.584-20.539 <0.001 2.700-14.178 <0.01

irregular 7.254-24.684 <0.001 3.545-13.865 <0.01

halo sign

absent Reference

present 0.075-0.670 0.007

Composition

cystic-solid Reference

solid 2.236-42.882 0.002

predominantly solid 0.272-10.024 0.585

Echogenicity

isoechoic Reference

markedly hypoechoic 1.861-5.569 <0.001

hypoechoic 2.261-10.229 <0.001

hyperechoic 0 1.000

heterogeneous 0.097-9.789 0.982

Echo texture

homogeneous Reference

heterogeneous 0.843-4.351 0.121

Orientation

parallel Reference

vertical 4.697-13.203 <0.001 1.926-6.415 <0.01

Calcification

absent Reference

coarse calcification 0.085-0.558 0.001

microcalcification 0.119-0.350 <0.001

indeterminate punctate echogenic foci 0.228-1.256 0.151

peripheral calcification 0 1.000

Relationship to capsule

>2 mm Reference

(Continued)
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nomogram and the actual observations. According to the Hosmer-

Lemeshow goodness-of-fit test, both the training set (P = 0.913) and

the test set (P = 0.854) show a strong fit. The Brier scores for the

training and test sets are 0.08 and 0.15, respectively, indicating

that our prediction model demonstrates overall robustness. The

DCA shows that the model offers considerable advantages within

the range of 0.15 to 0.90 (Figure 7). To further assess the

effectiveness of the models, we performed statistical comparisons

of the ROC curves using DeLong’s test (Table 4). The findings

indicate that in the training set, the Com-model was the most

effective. In the test set, the Com-model surpassed the Multi-model,

with no significant difference noted when compared to the

ultrasound Rad-model.
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3.4 Effectiveness of the Rad-model
assistance

Before utilizing the Rad-model for diagnostic assistance, the

AUC for junior physicians was 0.748, while that for senior

physicians was 0.837 (Table 5 and Figure 8). Following the

implementation of the Rad-model, the average AUC for junior

physicians significantly increased to 0.851, and for senior

physicians, it improved to 0.862. DeLong’s test indicated a

significant enhancement in the diagnostic performance of junior

physicians after model assistance (<0.001), suggesting that the Rad-

model effectively shortened their learning curve. Furthermore, there

was no significant difference in AUC between senior and junior
TABLE 2 Continued

Characteristic
Univariate analysis Multivariate analysis

95% CI P 95% CI P

Relationship to capsule

≤2 mm 0.522-1.355 0.476

extracapsular extension 0.553-2.697 0.620

CDFI

0 Reference

I 0.607-1.615 0.968

II 0.282-1.166 0.125

III 0.118-1.917 0.296
FIGURE 3

ROC Curves of the Com-Model in the Training (A) and Test Set (B).
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physicians after receiving model assistance, indicating that the

model successfully narrowed the diagnostic gap between

physicians with varying levels of experience (Table 6).
4 Discussion

This study integratedmultimodal ultrasound imaging features with

ultrasound radiomics analysis to develop and validate a Com-model for

the preoperative differentiation of benign and malignant thyroid

nodules classified as C-TIRADS 4A. Experimental data demonstrated

that the model achieved an AUC of 0.956 in the training set and 0.863

in the test set, showcasing reliable diagnostic performance. This model

enables rapid and accurate differentiation of benign and malignant C-

TIRADS 4A thyroid nodules, thereby effectively reducing the risk of

unnecessary biopsies for benign nodules.

This study confirmed that age is an independent risk factor for

PTC. The results showed that the risk of malignancy in nodules was

significantly higher in patients aged ≤51 years, a finding consistent

with the research by Wang et al. (14) This phenomenon may be

attributed to increased public health awareness and the widespread

adoption of regular health checkups, enabling more cases to be

identified at an early stage of the disease. Additionally,
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advancements in modern diagnostic techniques have significantly

improved the detection rate of PTC. The study included only

patients aged 18 and above, as the number of patients under 18

undergoing thyroid surgery in multicenter institutions was minimal

(most of these patients had already received treatment in pediatric

specialty hospitals). The exclusion of adolescent patients aimed to

avoid analytical bias caused by potential biological differences

between adults and adolescents, thereby ensuring the accuracy of

the research data and the validity of the conclusions.

A higher ultrasound elasticity score indicates a greater likelihood

of malignancy in nodules (15, 16), reflecting that malignant nodules

typically exhibit higher stiffness compared to benign ones. Research

by Luo et al. (17) demonstrated that the combination of SWE with

American College of Radiology Thyroid Imaging Reporting and Data

System (ACR TI-RADS) significantly improves the efficiency and

accuracy of diagnosing thyroid nodule characteristics. Similarly,

Zhang et al. (18) found that adding elastography to multimodal

ultrasound for predicting the benign or malignant nature of C-

TIRADS 4A nodules significantly enhances diagnostic consistency,

sensitivity, and specificity, outperforming any single method. In this

study, STE Mean is an important risk factor. This result further

validates the effectiveness and importance of ultrasound elastography

in assisting the differentiation of benign and malignant thyroid
TABLE 3 Predictive performance of the three models in the training set and test set.

Variables
The Multi-model The Rad-model The Com-model

Training set Test set Training set Test set Training set Test set

AUC 0.852 0.804 0.940 0.832 0.956 0.863

95% CI 0.808-0.890 0.726-0.867 0.907-0.963 0.758-0.891 0.926-0.976 0.793-0.917

Sensitivity (%) 82.14 72.73 88.57 72.73 90.00 70.91

Specificity (%) 79.65 79.75 84.30 86.08 97.79 89.87

PPV (%) 76.67 71.43 82.12 78.43 96.92 82.98

NPV (%) 84.57 80.77 90.06 81.93 92.31 81.61

FNR (%) 17.86 27.27 11.43 27.27 10.00 29.09
FIGURE 4

Coefficients of the 17 selected features (see Supplementary Figure S2).
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FIGURE 6

Calibration Curves of the Com-Model in the Training Set (A) and Test Set (B).
FIGURE 7

Clinical Decision Curves of the Com-Model in the Training Set (A) and Test Set (B).
FIGURE 5

Nomogram of the Com-Model.
TABLE 4 Delong test of three models.

Variables

The Multi-model -
The Rad-model

The Rad-model -
The Com-model

The Com-model -
The Multi-model

Training set Test set Training set Test set Training set Test set

Z 3.64 0.65 2.42 1.55 5.34 2.16

P <0.001 0.52 0.02 0.12 <0.001 0.03
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nodules. Specifically, by integrating ultrasound elastography with

various other ultrasound features, the model developed in this

study not only improves the accuracy of thyroid nodule

characterization but also enhances the reliability of clinical

decision-making, helping to reduce unnecessary invasive procedures.

Vertical orientation (where the longitudinal growth of the

nodule exceeds its transverse growth) is considered an

independent risk factor for malignant thyroid nodules (19, 20).

From a histological perspective, this phenomenonmay be attributed

to the active division of tumor cells in the anterior-posterior

direction within malignant nodules, while remaining relatively

quiescent in other directions. This aggressive growth pattern aims

to increase the tumor’s surface area, thereby facilitating more

efficient nutrient acquisition and accelerating its growth process.

Additionally, blurred or irregular margins are one of the critical

imaging features for assessing the nature of thyroid nodules (21).

Studies have shown that the BRAF V600E mutation is the most

prevalent genetic alteration in PTC, present in approximately 60–

80% of cases. This mutation constitutively activates the MAPK/ERK
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signaling pathway, promoting uncontrolled cell proliferation and

tumorigenesis and promotes the invasiveness and metastatic

potential of tumor cells, thereby influencing the morphological

appearance of the nodules. Specifically, it leads to blurred, jagged,

or spiculated margins, which are often indicative of malignancy.

The BRAF V600E mutation has been confirmed to be associated

with the high aggressiveness and poor prognosis of PTC (21, 22).

The Com-model achieved an AUC of 0.863 in the test set,

outperforming standalone C-TIRADS 4A classification [reported

AUC: 0.70-0.82 in prior studies (5, 6)] and ACR TI-RADS [AUC:

0.76-0.85 (5, 18)]. For instance, Zhang et al. (18) reported an AUC of

0.834 for ACR TI-RADS in differentiating C-TIRADS 4A nodules,

while our Com-model achieved higher specificity (89.87% vs. 76.5%)

and comparable sensitivity (70.91% vs. 72.1%). Notably, the integration

of radiomics andmultimodal ultrasound features enabled ourmodel to

capture subtle malignant characteristics (e.g., microstructural

heterogeneity) that conventional systems may overlook. Compared

to AI-driven approaches, such as TNet [AUC: 0.865 (23)] and the

CNN-based framework by Tao et al. [AUC: 0.872 (16)], our Com-

model demonstrated superior generalizability across multicenter data.

However, unlike deep learning models requiring large annotated

datasets, our radiomics framework relies on interpretable

handcrafted features, aligning better with clinical workflows.

This study compared the diagnostic performance of senior and

junior physicians in differentiating thyroid nodules before and after

the application of the Rad-model. Although junior physicians lack

extensive experience in ultrasound diagnosis, their diagnostic

accuracy significantly improved with the support of the Rad-

model, reaching a level comparable to that of senior physicians.

This not only greatly shortened the learning curve for junior
FIGURE 8

The performance of Pre- (A) and Post-diagnostic (B) Radiomic Model Assistance of junior and senior physicians.
TABLE 5 The performance of Pre- and Post-diagnostic Radiomic Model
Assistance of junior and senior physicians.

Variables

Pre-diagnostic
radiomic
model

assistance

Post-diagnostic
radiomic

model assistance

junior physicians (AUC) 0.748 0.851

Sensitivity (%) 80.12 85.63

Specificity (%) 82.71 87.24

PPV (%) 78.97 86.61

NPV (%) 83.82 86.98

senior physicians (AUC) 0.837 0.862

Sensitivity (%) 68.23 85.54

Specificity (%) 76.31 85.47

PPV (%) 71.43 83.02

NPV (%) 73.58 84.92
TABLE 6 The DeLong test for comparing Pre- and Post-diagnostic
Radiomic Model Assistance of junior and senior physicians.

Variables

Pre- and Post-diagnostic Post-diagnostic

junior
physicians

senior
physicians

junior-senior
physicians

Z 3.12 1.72 0.65

P <0.001 0.08 0.51
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physicians, accelerating their path to professional proficiency, but

also enhanced the overall efficiency and accuracy of thyroid nodule

diagnosis. These findings suggest that the Rad-model can effectively

address the challenges posed by limited clinical experience,

providing robust technical support for younger physicians and

thereby improving the overall quality of healthcare services.

The Com-model exhibited a false-negative rate of 10.00% in the

training set and 29.09% in the test set, indicating a non-negligible

risk of missing malignant cases, particularly in test set. While this

rate aligns with prior studies [e.g., Zhang et al. (24)]. To mitigate the

risks of false-negative results, we advocate for a tiered follow-up

protocol combining short-interval ultrasound surveillance and

clinical risk stratification: 6 months follow-up for intermediate-

risk cases and 12 months reassessment for low-risk cases. Future

iterations of the model will integrate dynamic imaging biomarkers

and molecular testing to further reduce FNR, ensuring early

intervention for initially missed malignancies.

Future research will focus on integrating molecular and

biochemical profiling (25) with our imaging-based model to

achieve a holistic assessment of thyroid nodules. For instance,

combining radiomic heterogeneity with BRAF V600E or TERT

promoter mutations could improve the identification of aggressive

PTC subtypes, while metabolic markers of oxidative stress may refine

angioinvasion risk prediction (26). Such multi-omics fusion aligns

with the goals of precision oncology, enabling tailored surveillance

and treatment strategies for borderline or ambiguous nodules.

Additionally, liquid biopsy-derived biomarkers (e.g., ctDNA) (27)

could complement ultrasound surveillance by providing real-time

molecular insights into nodule dynamics. This approach may bridge

the gap between static imaging assessments and the evolving

biological behavior of thyroid malignancies.

To ensure consistency across multiple centers, all participating

centers use the same ultrasound system and follow standardized

imaging protocols. In the future, we will collaborate with medical

institutions using different ultrasound systems (such as GE Logiq,

Philips EPIQ, Siemens Acuson) to collect external datasets to ensure

their applicability in the real world.

This study has several notable limitations. First, while it was

impossible to completely eliminate all subjective factors during the

analysis of multimodal ultrasound features, we addressed this by

involving multiple evaluators and applying consistency tests to

correct for potential subjective biases. Second, some cases relied on

cytopathological reports, which inherently carry a certain rate of false

negatives. To mitigate this issue, we incorporated BRAF gene testing

results and conducted a 6 months follow-up observation of patients to

more accurately assess the nature of the nodules.

5 Conclusion

In summary, we successfully developed a Com-model that

integrates the Multi-model with the Rad-model to differentiate

between benign and malignant thyroid nodules. The results

demonstrate that this Com-model exhibits significant advantages in
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distinguishing C-TIRADS 4A thyroid nodules, providing physicians

with a rapid and accurate risk assessment tool. It effectively identifies

potential malignant lesions while reducing unnecessary invasive

examinations or treatments for patients with benign nodules.
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