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Significance of multi-task deep
learning neural networks for
diagnosing clinically significant
prostate cancer in plain
abdominal CT
Yujun Geng1†, Xinlei Zhang1†, Ming Zhang2, Jingwen Li1,
Meng Yang1, Junzhang Tian1 and Xiaofen Ma1*

1Department of Nuclear Medicine, The Affiliated Guangdong Second Provincial General Hospital of
Jinan University, Guangzhou, China, 2Department of Nuclear Medicine, Meizhou People’s Hosptal
(Meizhou Academy of Medical Sciences), Meizhou, China
Objective: Early detection and timely surgical intervention are crucial in reducing

mortality rates associated with clinically significant prostate cancer (csPCa).

Currently, clinical diagnostics primarily depend on magnetic resonance

imaging (MRI) and nuclear medicine, with the potential diagnostic value of

abdominal computed tomography (CT) remaining underexplored. This study

aims to evaluate the effectiveness of multi-task deep learning neural networks in

identifying early-stage prostate cancer using CT scans.

Methods: In this study, we enrolled 539 patients from the Department of

Radiology (N=461) and Nuclear Medicine (N=78). We utilized a multi-task deep

learning network model (MTDL), based on the 3DUnet architecture, to segment

and analyze the collected abdominal plain CT images. The predictive

performance of this model was compared with a radiomics model and a

single-task deep learning model using ResNet18. A diagnostic nomogram was

then developed using the multi-task deep learning approach, incorporating

prediction results and PSAD, age. The diagnostic performance of the different

models was evaluated using the receiver operating characteristic (ROC) curve

and the area under the curve (AUC).

Results: The 461 patients from the Department of Radiology were divided into

training and test sets at a ratio of 6:4, while the patients from the Department of

Nuclear Medicine formed the validation set. Our MTDL nomogram demonstrated

AUCs of 0.941 (95% confidence interval [CI]: 0.905valceedi 0.912 (95% CI:

0.904valceedi and 0.932 (95% CI: 0.883valceed in the training, test, and

validation cohorts, respectively. This study indicates that combining abdominal

CT with a multi-task neural network model effectively diagnoses csPCa, offering

superior diagnostic performance compared to clinical models. Additionally, the

multi-task neural network model outperformed both the single-task neural

network model and the radiomics model in diagnostic accuracy.
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Conclusion: Our study demonstrated that the MTDL nomogram can accurately

predict the presence of prostate cancer using abdominal CT scans, offering

significant value for the early diagnosis of prostate cancer.
KEYWORDS

prostate cancer, multi-task deep learning, machine learning, neural networks,
computed tomography
Introduction

Prostate cancer (PCa) is one of the most prevalent malignant

tumors worldwide, ranking highest in incidence among male

cancers. It accounts for approximately 11% of all cancer-related

deaths, second only to lung and bronchial cancer (1). Early-stage

prostate cancer often progresses silently, with noticeable symptoms

typically appearing only at advanced stages. Therefore, early

detection and timely surgical intervention are essential for

effective management of the disease (2).

Currently, prostate-specific membrane antigen density (PSAD)

is widely used for screening and diagnosing prostate cancer (3, 4).

However, this serological marker has significant limitations. Firstly,

elevated PSAD levels are also observed in patients with chronic

prostatitis and benign prostatic hyperplasia (BPH) (5, 6). Secondly,

many early-stage prostate cancer patients do not exhibit increased

PSA values or significant gland enlargement (7). Magnetic

Resonance Imaging (MRI) is commonly employed in diagnosing

clinically significant prostate cancer (csPCa) (8, 9). However, it has

drawbacks such as high costs and observer variability. Additionally,

studies indicate that MRI has low diagnostic accuracy for lesions in

the prostate’s central and transitional zones (10, 11). With

advancements in molecular imaging, PET/CT has become crucial

for disease diagnosis and treatment selection, offering high accuracy

(12–14). Nevertheless, the preparation cost of nuclear medicine

drugs used in PET/CT is relatively high. Furthermore, the technique

requires high liver and kidney function from patients, limiting its

widespread application.

CT is one of the most widely used medical imaging techniques

today, offering significantly lower examination costs compared to

MRI and PET/CT. However, its limited density and soft tissue

resolution make it challenging to detect cancerous lesions within the
tase; AUC, Area under

I, Confidence interval;

protein; CT, Computed

PSAD, Prostate-specific

ient; csPCa, clinically

graphy; ROC, Receiver

EN, Sensitivity; SPE,

en; MRI, Magnetic
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prostate gland. Additionally, benign prostate conditions like

chronic prostatitis and benign prostatic hyperplasia can also cause

gland enlargement (7, 15), making CT less common in clinical

practice for prostate cancer diagnosis. With advancements in

artificial intelligence and radiomics (16), new image recognition

techniques have emerged, such as diagnosing benign and malignant

lung nodules (17) and analyzing tumor microenvironments (18),

These developments make detecting prostate cancer via abdominal

CT scans a possibility. If histological differences exist between

prostate cancer and other benign glandular tissues, they might be

difficult for the naked eye to discern but could potentially be

detected by computer vision. This study aims to explore

this potential.

Deep learning neural networks are at the forefront of disease

prediction, demonstrating robust capabilities in image classification

(17, 18), segmentation (19), synthesis (20, 21), and detection across

numerous studies (22). These predictive models have shown

potential to outperform traditional radiomics-based models (23–

25). However, current single-task models typically use

convolutional neural networks (CNNs) to extract image features,

followed by predictions through multi-layer linear models, often

without requiring segmentation masks for regions of interest.

Without these masks, models may focus on irrelevant areas,

leading to errors and poor generalization (24). Additionally, the

black-box nature of deep learning limits reproducibility, resulting in

unstable outcomes. Subtle changes can severely degrade

performance, causing single-task models to achieve high accuracy

on internal datasets but suffer from overfitting and reduced

accuracy on external datasets. Increasing sample sizes could

mitigate this, but the unique and scarce nature of medical data

makes it challenging. Recently, multi-task deep learning models

have emerged, performing disease prediction alongside

segmentation of regions of interest (22, 26). This approach allows

the segmentation task to guide the CNN in extracting relevant

features, while also retaining information outside the region of

interest to enhance prediction accuracy. However, the effectiveness

of multi-task deep learning for predicting prostate cancer using CT

has not yet been validated in large patient cohorts.

In this study, we aim to assess the effectiveness of multi-task

deep learning in predicting prostate cancer using abdominal CT

images from radiology and nuclear medicine departments. We

utilized a cutting-edge multi-task prediction model based on the
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3DUnet framework (27), which predicts cancer risk for patients

suspected of having prostate cancer and segments the prostate

gland. Additionally, we developed a diagnostic nomogram based

on multi-task deep learning to enhance the accuracy and

generalizability of clinically significant prostate cancer predictions.

We will also compare the performance of multi-task deep learning

models, single-task deep learning models, and radiomics models in

diagnosing clinically significant prostate adenocarcinoma using

abdominal CT.
Materials and methods

This retrospective study was approved by the institutional

review boards of The Affiliated Guangdong Second Provincial

General Hospital of Jinan University, and the requirement for

obtaining informed consent was waived.
Participants

From July 2017 to June 2024, we included abdominal CT images

from 578 patients in the Department of Radiology and PET/CT

images from 110 patients in the Department of Nuclear Medicine at

Guangdong Second Provincial General Hospital (Figure 1). Each

patient had definitive pathological biopsy results confirmed in

subsequent clinical follow-ups. For those diagnosed with prostate

cancer, a Gleason score was required, with scores of 7 or higher

indicating clinically significant prostate cancer. The inclusion

criteria were: (1) Elevated PSA levels, enlarged prostate volume,

or abnormal nodule signs on MRI, ultrasonography, or digital rectal

examination; (2) A time interval of less than 4 weeks between CT

and biopsy. The exclusion criteria were: (1) CT scans performed
Frontiers in Oncology 03
after surgery or other treatments; (2) Severe disease in other organs

with metastasis; (3) Poor image quality or presence of significant

metal or motion artifacts; (4) Incomplete clinical data or unavailable

images and laboratory data (Supplementary Table S1).

Finally, 461 patients from Radiology and 78 patients from

Nuclear Medicine were enrolled in this study. Patients from

Radiology were randomly divided into a training set (n=276) and

an test set (n=185) with a 6:4 ratio, while patients from Nuclear

Medicine (n=78) were used as validation set and used merely for

evaluation purpose.
PET/CT image scanning and results
acquisition

Patients from Radiology underwent conventional CT (uCT960

+ scanner; United Imaging Healthcare, Shanghai, China) with 120

kV in our research. The scanning range included the region from

theapex of the diaphragm to the mid-thigh for the CT. A spiral CT

scan (tube voltage, 120 kV; tube current, 150–300 mA; layer

thickness and reconstruction layer thickness, 3 mm) was

performed with the 512×512 matrix; field of view (FOV) =

512×512 mm2; slice thickness = 1.0 mm; and 250 transverse

sections without gaps. CT images were obtained with 0.5 mm

collimation and reconstructed into axial images every 2.0 mm on

a 512×512 matrix using iterative reconstruction algorithms

associated with each vendor’s CT scanner. We collected these CT

images at our local center’s PACS system.

Patients from Nuclear Medicine underwent conventional PET/

CT (uMI780 scanner; United Imaging Healthcare, Shanghai, China)

with 120 kV in our research. The scanning range included the

region from the skull top to the mid-thigh for the PET/CT. A spiral

CT scan (tube voltage, 120 kV; tube current, 100–500 mA; layer
FIGURE 1

Flow diagram of the inclusion and exclusion of cases.
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thickness and reconstruction layer thickness, 3.0 mm) was

performed first, and the radiotracer 18F-FDG (3.7 MBq/kg body

mass) was intravenously injected. After 60 minutes, PET images (4

beds, each scanned for 2.5 minutes, with a 150×150 matrix, a layer

thickness of 2.68 mm) were acquired. PET image attenuation

correction and iterative reconstruction were performed using CT

data, with 2 iterations and a subset of 20. PET reconstruction was

performed using an ordered subset expectation maximization

(OSEM) and setting a spectrum of parameters, for instance, VUE

Point FX module (United Imaging Healthcare), 3 iterations, 24

subsets, matrix 192×192, slice thickness of 3.27 mm, pixel size of

3.65×3.65×3.27 mm3 with a filter (6.4 mm), and all necessary

correction methods including attenuation and scatter correction.
Imaging segmentation and feature
extraction

We imported the CT images of all patients into the open-source

software package 3D-slicer software (https://www.slicer.org) (28).

Two experienced radiologists, each with over seven years in the

Radiology department, used the software to delineate the entire

prostate as the region of interest (ROI). Any discrepancies were

resolved through discussion between the physicians. Using the
Frontiers in Oncology 04
open-source Python package PyRadiomics, we extracted a total of

1,155 radiomic features and assessed the correlation between the

two patient groups. These features included 28 morphological

features, 20 original first-order features, 24 gray-level co-

occurrence matrix (GLCM) features, 14 gray-level dependence

matrix (GLDM) features, 16 gray-level run-length matrix

(GLRLM) features, 16 gray-level size-zone matrix (GLSZM)

features, 5 neighboring gray-level dependence matrix (NGLDM)

features, and 1,032 features derived from wavelet and Laplacian of

Gaussian (LoG) transformations. For more details, please refer

to Figure 2.
Feature selection and calculate PSA density

We used the Lasso regression method to select features and

build a multiple linear regression model. Feature selection and

model construction were performed on an independent training set

and subsequently validated using both test and validation sets. A

total of 45 groups of radiomic features were selected for model

construction in this study.

PSAD was calculated by dividing the total PSA (ng/ml) by the

prostate volume (ml). This study used the prolate ellipsoid formula

based on CT images to calculate prostate volume, measuring three
FIGURE 2

Overall analysis flow chart of this research.
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diameters directly on the CT image and using the formula: width ×

height × length × p/6 (29). Prostate volume measurements were also

conducted using the 3D Slicer software.
Images preprocessing and DL model
development

We selected ResNet-18 (Supplementary Figure S3) as our

single-task neural network architecture. It includes one input

convolutional layer, eight residual convolutional blocks

(comprising 16 convolutional layers), and one fully connected

layer. We optimized the network parameters using the Binary

Cross Entropy (BCE) loss function and updated parameters with

the Adam optimizer, set at a learning rate of 0.00001.

For the multi-task diagnostic prediction model, we modified the

3D-Unet (Supplementary Figure S3) as the foundational

framework. After the main four down-sampling modules, we

applied average pooling and connected the results to a multi-layer

linear model for prediction. This approach allows the model to

output both prediction results and the mask of the region of

interest. We utilized the Tversky loss function to optimize

segmentation results, setting a to 0.7 and b to 0.3 to enhance the

segmentation sensitivity of our CNN model. The final loss function

combines both classification and segmentation losses. We used the

Adam optimizer with a learning rate of 0.00001 and a batch size of

5. The evaluation metrics include Area Under the Curve (AUC),

accuracy (ACC), sensitivity (SEN), and specificity (SPE).

Tversky loss (Lseg) = 1 − ½(opred * label + aabe=(opred

 * label + aa (1 − label) * pred + br label * (1 − pred))�

BCE loss (Lcls) = −oy � log(yhat) + (1 − y)� log(1 − yhat)

Ltotal  =  Lcls  +  Lseg

Before training the deep learning neural network model, we

preprocessed the images and performed data augmentation to

enhance the model’s generalization ability. The augmentation

techniques included flipping, cropping, rotating, shifting, and

sharpening. Specifically, 40% of the images were randomly

selected for horizontal and vertical flipping. The cropping range

was set between 0-10%, while the shift magnitude was set to ±15%.

For rotation, angles were adjusted by ±30°. We employed the

Gradient-weighted Class Activation Mapping (Grad-CAM) (30)

technique to visualize the output features of the last convolutional

layer of the deep learning network. This helps us understand the

model’s focus and ensures that its predictions are primarily based

on the prostate. To prevent overfitting, we added batch

normalization layers after each convolutional kernel and included

Dropout layers with a rate of 0.35 in the fully connected layers,

which are more susceptible to overfitting. The training process is

halted if the loss function decreases in the training set but not in the

test and validation sets for more than 25 epochs. For details on the

model training process, please see Supplementary Figure S1.
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Subsequently, the deep learning scores were combined with

clinically significant variables (P<0.05) identified through univariate

logistic regression analysis to construct a Nomogram diagnostic

model. Given the class imbalance in our study population—where

malignant cases constituted only 34.32% of all cases, especially in

the training and validation sets—we employed the SMOTE

algorithm. This approach balanced the number of positive and

negative samples and expanded the size of the validation set,

thereby enhancing the credibility of the results.
Statistical analysis

Continuous parameters are described using the median or mean

(with range), while categorical variables are presented as frequency

(with percentage). Differences between the training, internal

validation, and external validation cohorts are analyzed using the

Mann-Whitney test, chi-square test, or Fisher’s exact test.

Univariate and multivariate logistic regression analyses are

conducted using SPSS (version 26.0). All nomograms are

developed based on multivariate analyses in R 4.3.0. The area

under the curve (AUC), accuracy (ACC), sensitivity (SEN),

specificity (SPE), and 95% confidence interval (95% CI) are

calculated to compare each model. The DeLong test is employed

to compare the ROC curves of the models across groups. A p-value

of less than 0.05 is considered statistically significant.
Results

Patient clinical characteristics

The demographic and clinical characteristics of the patients are

detailed in (Table 1). The median ages for the training, test, and

validation cohorts are 70 years (range 50–89 years), 70 years (range

46–90 years), and 69 years (range 47–91 years), respectively. Across these

three cohorts, there were no statistically significant differences in Age

(P=0.558), tPSA (P=0.291), gland volume (P=0.917), PSAD (P=0.183),

ALP (P=0.630), and CRP (P=0.862). Based on the results of pathological

biopsy, clinical follow-up, or surgical procedures, the proportions of

malignancy (Gleason score >= 7) in the training, test, and validation

groups were 30.43% (84/276), 40.00% (74/185), and 29.49% (23/78),

respectively. There were no significant differences in the distribution of

benign and malignant differences among the groups (P=0.213, 0.288).
Performance of clinical model, radiomics
model, single-task deep learning model
and multi-task deep learning

We established a clinical prediction model based on 6 clinical

radiological features and a radiomics prediction model based on 45

radiomics features. The AUC, accuracy, sensitivity, specificity of

Clinical model (Table 2) were 0.790 (95% CI: 0.782-0.856), 0.708

(95% CI: 0.641-0.750), 0.770 (95% CI: 0.670-0.864), 0.667 (95% CI:

0.579-0.754) in test set and 0.739 (95% CI: 0.634-0.840), 0.782 (95%
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CI: 0.705-0.859), 0.655 (95% CI: 0.529-0.780), 0.909 (95% CI: 0.833-

0.985) in validation set (Figure 3).

The AUC, accuracy, sensitivity, specificity of Radiomics model

were 0.844 (95% CI: 0.789-0.900, P = 0.202), 0.746 (95% CI: 0.619-

0.730), 0.905 (95% CI: 0.839-0.972), 0.649 (95% CI: 0.560-0.738) in

test set and 0.810 (95% CI: 0.715-0.896, P = 0.292), 0.800 (95% CI:

0.725-0.875), 0.873 (95% CI: 0.785-0.961), 0.727 (95% CI: 0.610-

0.845) in validation set (Figure 3).

The AUC, accuracy, sensitivity, specificity of Single-task deep

learning model were 0.769 (95% CI: 0.700-0.832, P = 0.662), 0.654
Frontiers in Oncology 06
(95% CI: 0.596-0.708), 0.905 (95% CI: 0.839-0.972), 0.487 (95% CI:

0.394-0.580) in test set and 0.775 (95% CI: 0.676-0.861, P = 0.573),

0.782 (95% CI: 0.705-0.859), 0.891 (95% CI: 0.809-0.973), 0.673

(95% CI: 0.549-0.797) in validation set (Figure 3).

The AUC, accuracy, sensitivity, specificity of Multi-task deep

learning model were 0.904 (95% CI: 0.855-0.948, P = 0.006), 0.865

(95% CI: 0.834-0.928), 0.730 (95% CI: 0.629-0.831), 0.955 (95% CI:

0.916-0.994) in test set and 0.864 (95% CI: 0.760-0.921, P = 0.042),

0.836 (95% CI: 0.767-0.906), 0.982 (95% CI: 0.947-1.000), 0.691

(95% CI: 0.569-0.813) in validation set (Figure 3).
TABLE 2 Univariate logistic regression analysis (clinical model) for csPCa prediction on the training, test and validation cohorts.

Characteristics Training group Test group Validation group

OR (95%CI) P value OR (95%CI) P value OR (95%CI) P value

tPSA 1.52 (0.14-1.17) 0.327 2.62 (1.02-4.75) 0.002 1.03 (0.58-2.99) 0.262

Volume 0.07 (0.01-0.52) 0.822 1.44 (0.79-2.19) <0.001 0.34 (0.02-1.23) 0.448

PSAD 7.11 (2.72-11.87) 0.002 0.99 (0.59-2.72) 0.224 0.91 (0.13-3.67) 0.394

Age 0.58 (0.22-0.96) 0.002 0.41 (0.04-0.81) 0.035 0.69 (0.01-1.43) 0.055

ALP 1.03 (0.20-2.07) 0.026 0.53 (0.07-1.23) 0.104 1.61 (0.12-4.24) 0.171

CRP 0.01 (0.00-0.36) 0.986 0.03 (0.00-0.53) 0.889 0.07 (0.00-0.67) 0.805
tPSA, Total prostate-specific antigen; ALP, Alkaline phosphatase; CRP, C-reactive protein; PSAD, Prostate-specific antigen density; OR, Odds ratio, 95% CI, 95% confidence interval (2.5–97.5%);
P value less than 0.05 was in bold.
TABLE 1 Demographic and clinical characteristics of patients (N=539).

Characteristics Training group
(N=276)

Test group (N=185) Validation group
(N=78)

P-value*

Age (years) 70 (50-89) 70 (46-90) 69 (47-91) 0.558

tPSA(ng/ml) 7.63 (3.2-20.9) 7.56 (3.3-27.3) 13.5 (6.9-27.0) 0.291

Volume(cm3) 11.75 (83.8-166.2) 10.97 (79.2-162.4) 11.57 (77.6-163.3) 0.917

PSAD(ng/ml/cm3) 0.12 (0.06-0.28) 0.12 (0.06-0.35) 0.18 (0.10-0.68) 0.183

ALP(U/L)* 70.5 (58.0-86.0) 71.0 (57.0-86.0) 74.5 (57.0-91.0) 0.630

CRP(mg/L)* 3.55 (0.60-13.83) 3.10 (0.50-15.31) 3.15(0.52-9.71) 0.862

Pathology 0.213

BPH* 54 (19.57%) 57 (30.81%) 30 (38.46%)

Prostatitis 8 (2.90%) 7 (3.78%) 14 (17.95%)

BPH & Prostatitis* 128 (46.38%) 43 (23.24%) 11 (14.10%)

Gleason Score 6 2 (0.72%) 4 (2.16%) 0 (0.00%)

Gleason Score 7* 20 (7.25%) 28 (15.14%) 3 (3.85%)

Gleason Score 8* 29 (10.51%) 22 (11.89%) 6 (7.69%)

Gleason Score 9* 20 (7.25%) 17 (9.19%) 11 (14.10%)

Gleason Score 10* 15 (5.43%) 7 (3.78%) 3 (3.85%)
Normally distributed continuous variables are represented as mean ± variance; abnormally distributed continuous variables are represented as median (interquartile range, IQR); categorical
variables are represented as the number of cases (percentage, %); tPSA, total prostate-specific antigen; BPH, Benign prostate hyperplasia; ALP, Alkaline phosphatase; CRP, C-reactive protein;
PSAD, prostate-specific antigen density; Gleason score is greater than or equal to 7, we consider it to be a patient with clinically significant prostate cancer (csPCa), otherwise it is benign; P-value
less than 0.05 was considered statistically significant. The bold text represents the row and column names in the tables. If a number within the table is bolded, it indicates that the differences
between the data are of clinical statistical significance.
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Establishment of prediction nomogram
model

Given that single-task deep learning network models (Resnet-

18) underperform compared to multi-task deep learning network

models in diagnosis, we will use the predictions from the multi-task

deep learning model for further analysis in our subsequent

discussions. In this study, none of the parameters we examined

showed significant correlations with the final pathological results in

the training, testing, and validation sets. However, in the
Frontiers in Oncology 07
independent training set, PSAD, Age, and ALP demonstrated

independent predictive factor (P<0.05) in predicting the csPCa

(Table 2). However, since the OR value for ALP is only 1.03, its

impact on the results is minimal. To mitigate the risk of overfitting,

we included PSAD, Age, and MTDL as factors in a multivariable

logistic regression model to construct a hybrid model.

Based on the multivariate analysis, we built the prediction

nomogram (Figure 4) with PSAD, Age, and DL. Multivariate

logistic regression analysis showed that DL (B = 5.62, 95% CI: 2.74-

8.55, p = <0.001), Age (B = 0.07, 95% CI: 0.01-0.14, p = 0.021), and
FIGURE 4

Nomogram for hybrid model prediction of clinically significant prostate cancer. We developed a nomogram using the training set, incorporating Age,
PSAD, and the predicted probabilities from the multi-task deep learning model to estimate the likelihood of csPCa. To use the nomogram, first
determine the predicted probability from the neural network model for the patient and draw a vertical line to the “points” axis to find the
corresponding score. Repeat this process for Age and PSAD, then sum the points from these three covariates. Finally, locate this total on the “total
points” axis and draw a vertical line down to assess the probability of the patient having csPCa.
FIGURE 3

ROC curves. These curves illustrate the performance of different models, including the clinical model, radiomics model, single-task deep learning
model, multi-task deep learning model, and nomograms, in both the test (A) and validation (B) sets.
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PSAD (B = 5.13, 95% CI: 4.27-7.26, p < 0.001) were independently

associated with predicting csPCa (Table 3). The AUC of the

nomogram was 0.941 (95% confidence interval (CI): 0.905-0.970,

P<0.001), 0.912 (95% CI: 0.904-0.969, P = 0.002), and 0.932 (95%

CI: 0.883-0.970, P <0.001) in the training, test, and validation cohort

(Table 4). The calibration curves (Figure 5) in the test and validation

sets indicate that the nomogram possesses good predictive diagnostic

performance. The p values of the Hosmer–Lemeshow test in the test

set and the validation set were 0. 413 (c2 = 66.85), 0.278 (c2 = 50.10),

respectively (p > 0.05). The results of the Cohen’s test indicate that the

consistency between the predicted outcomes of the Nomogrammodel

and the actual results is relatively strong with Kappa is 0.751 (0.650-

0.852) and 0.765 (0.658-0.864) in the test set and the validation set.
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Visualization of the DL signature

Based on the deep features of the last convolutional layer of the

trained multi-task model, we performed Grad-CAM feature

visualization on the test and validation sets (Figure 6). The darker

the color, the greater the impact on the result. Notably, in the 23

malignant cases in the validation set, the neural network correctly

predicted 15 cases (65.22%). Among these, 11 (47.83%) cases

showed higher degree of overlap with the region of FDG tracer

accumulation (Cancerous area), while 4 (17.39%) cases, although

correctly predicted, had a lower degree of overlap between the two

regions. Additionally, we compared the heatmaps of single-task

neural networks and multi-task neural networks (Supplementary
TABLE 4 Predictive performance of clinical model, radiomics model, single-task deep learning model, multi-task deep learning model and hybrid
model on the training, test, validation sets.

Signatures AUC
(95%CI)

ACC
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

P-value*

Training set

Clinical 0.753 (0.682-0.824) 0.826 (0.781-0.871) 0.536 (0.423-0.638) 0.953 (0.923-0.983) Ref

Radiomics 0.849 (0.802-0.898) 0.804 (0.762-0.854) 0.691 (0.600-0.798) 0.854 (0.804-0.904) 0.011

Single-task DLM 0.897 (0.857-0.930) 0.801 (0.750-0.845) 0.845 (0.768-0.923) 0.781 (0.723-0.840) <0.001

Multi-task DLM 0.906 (0.859-0.948) 0.880 (0.855-0.928) 0.786 (0.657-0.843) 0.922 (0.884-0.960) <0.001

Nomogram 0.941 (0.905-0.970) 0.891 (0.850-0.925) 0.833 (0.855-0.928) 0.917 (0.878-0.956) <0.001

Test set

Clinical 0.790 (0.728-0.856) 0.708 (0.641-0.750) 0.770 (0.670-0.864) 0.667 (0.579-0.754) Ref

Radiomics 0.844 (0.789-0.900) 0.746 (0.619-0.730) 0.905 (0.839-0.972) 0.649 (0.560-0.738) 0.202

Single-task DLM 0.769 (0.700-0.832) 0.654 (0.596-0.708) 0.905 (0.839-0.972) 0.487 (0.394-0.580) 0.662

Multi-task DLM 0.904 (0.855-0.948) 0.865 (0.834-0.928) 0.730 (0.629-0.831) 0.955 (0.916-0.994) 0.006

Nomogram 0.912 (0.904-0.969) 0.891 (0.837-0.935) 0.824 (0.738-0.911) 0.919 (0.857-0.963) 0.002

Validation set

Clinical 0.739 (0.634-0.840) 0.782 (0.705-0.859) 0.655 (0.529-0.780) 0.909 (0.833-0.985) Ref

Radiomics 0.810 (0.715-0.896) 0.800 (0.725-0.875) 0.873 (0.785-0.961) 0.727 (0.610-0.845) 0.292

Single-task DLM 0.775 (0.676-0.861) 0.782 (0.705-0.859) 0.891 (0.809-0.973) 0.673 (0.549-0.797) 0.573

Multi-task DLM 0.864 (0.760-0.921) 0.836 (0.767-0.906) 0.982 (0.947-1.000) 0.691 (0.569-0.813) 0.042

Nomogram 0.932 (0.883-0.970) 0.873 (0.810-0.935) 0.946 (0.885-1.000) 0.800 (0.694-0.906) <0.001
AUC area under the curve; CI, confidence interval; DLM, deep learning model; Delong’s test to compare the differences between AUCs while p < 0.05 was considered statistically significant. The
bold text represents the row and column names in the tables. If a number within the table is bolded, it indicates that the differences between the data are of clinical statistical significance.
TABLE 3 Multivariate logistic regression analysis (Hybrid model) for csPCa prediction on the training, test and validation cohorts.

Characteristics Training group Test group Validation group

B value (95%CI) P value B value (95%CI) P value B value (95%CI) P value

Age 0.07 (0.012-0.138) 0.021 0.03 (0.012-0.079) 0.154 0.05 (0.029-0.129) 0.229

PSAD 5.13 (4.266-7.255) <0.001 1.12 (0.194-2.336) 0.046 1.50 (0.503-2.954) 0.016

DL 5.62 (2.744-8.546) <0.001 7.38 (4.131-12.344) <0.001 4.82 (2.049-9.996) 0.009
tPSA, Total prostate-specific antigen; DL, Deep learning model; PSAD, Prostate-specific antigen density; OR, odds ratio, 95% CI, 95% confidence interval (2.5–97.5%). The bold text represents
the row and column names in the tables. If a number within the table is bolded, it indicates that the differences between the data are of clinical statistical significance.
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FIGURE 5

Calibration curves of the nomogram in test and validation cohorts. The y-axis represents the actual probability, while the x-axis shows the predicted
probability by the nomogram. The calibration p-value is calculated using the Hosmera Lemeshow goodness-of-fit test , where a P-value greater
than 0.05 indicates a good match between the actual and predicted probabilities. The kappa value at the bottom represents the results of Cohen’s
consistency test (95% CI), with values greater than 0.7 indicating high consistency.
FIGURE 6

Comparison of heat maps from MTDL and PET/CT. The first column displays CT images of four typical cases and second row presents the
corresponding Grad-CAM heat maps, calculated from the last downsampling convolutional layer of the multi-task model. The third row shows the
PET/CT images of the same layers and “+” and “-” following the cases represent the benign or malignant diagnosis results. The last row indicates the
final predictions of the neural network. The first case is an 81-year-old prostate cancer patient with a Gleason score of 9, neural network model
predicts correctly and the network’s main focus area partially overlaps with the tracer concentration area in PET. The second case is a 74-year-old
prostate cancer patient with a Gleason score of 9, although the neural network model predicts correctly, the network’s focus area does not overlap
with the tracer concentration area in PET at all. The third case is a 60-year-old prostatitis patient, and the neural network predicts an incorrect result
(malignant). The fourth case is a 68-year-old patient with chronic prostatic hyperplasia and prostatitis, and the neural network predicts correctly.
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Figure S2). The results indicate that, compared to the single-task

neural network model, the multi-task neural network model focuses

more on the prostate tissue in the CT images.
Discussion

In this study, we developed five distinct clinical diagnostic

models capable of predicting benign prostate diseases and

clinically significant prostate cancer (Gleason score ≥ 7) using

abdominal plain CT scans. The Nomogram model, developed

with training cohort data, demonstrated strong differentiation in

the test and validation cohorts, achieving area under the curve

values of 0.912 and 0.932, and accuracy rates of 0.891 and 0.873,

respectively. These results suggest that the multi-task deep learning

network model effectively assists in predicting prostate cancer

lesions from abdominal plain CT scans, maintaining robust

diagnostic performance even when the CT images are sourced

from different departments (radiology and nuclear medicine). In

prostate cancer screening and detection, this model serves as a

valuable supplement to conventional ultrasound and MRI, aiding

clinicians in optimizing biopsies and decision-making, and

determining or eliminating the need for further biopsies.

Additionally, the heatmap generated by the neural network model

can approximately identify lesion locations, providing a crucial

basis for clinical percutaneous biopsies and reducing unnecessary

procedures. Moreover, the model we proposed is based on 3D Unet,

a widely used model for medical image segmentation. Its

architecture is relatively simple, with only four downsampling

and four upsampling layers, offering high inference efficiency. It

also has a relatively small number of parameters and moderate GPU

memory requirements, making it suitable for institutions with

limited computational resources.

Similarly, it’s worth noting that in our initial model training, we

used Dice loss as the loss function for the neural network. This

choice, along with data imbalance and other factors, led to

significant overfitting. Initially, the model’s accuracy on the test

and validation sets was only 0.85 and 0.83, with sensitivities of 0.74

and 0.78, which did not surpass the clinical model’s accuracies and

sensitivities of 0.82, 0.76 and 0.70, 0.65 on the test and validation

sets. However, after modifying the training loss function, we

resolved the overfitting issue, achieving accuracy and sensitivity of

0.89 and 0.82, and 0.87 and 0.95 on the test and validation sets,

respectively. This highlights the importance of selecting an

appropriate training strategy to enhance model performance. This

is particularly crucial for detection models of malignant lesions,

where high sensitivity is essential.

Significant advancements have been made in the diagnosis and

prognosis of prostate cancer, particularly through imaging

techniques such as ultrasonography, MRI, and PSMA-PET/CT.

Numerous studies have also focused on radiomics and deep

learning. For instance, a multicenter study by Soeterik et al. (31)

demonstrated a significant correlation between PSMA-PET/CT

parameters—such as maximum standardized uptake value

(SUVmax), total volume of PSMA (PSMA-TV), and total lesion
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of PSMA (TLP)—with the ISUP grading of prostate cancer and

postoperative grading. In recent literature, Yi et al. (32) developed a

predictive model using radiomic features of PSMA-PET/CT. By

analyzing both the standard and delayed periods of PET, they

successfully predicted prostate cancer lesions without PSMA tracer

accumulation, achieving an AUC of 0.925. Similarly, Boschheidgen

et al. (33) showed that MRI parameters, such as the length to

prostatic pseudocapsule and apparent diffusion coefficient (ADC),

could effectively predict the upgrading of prostate cancer lesions

(from ISUP 1 to ISUP ≥ 2). The B value of the MRI grade group

(mGG) was the highest. However, this study only included patients

with obvious prostate cancer lesions on MRI (PI-RADS ≥ 3),

indicating the need for more detailed research.

With the continuous advancement of artificial intelligence and

deep learning technologies, their application in the clinical field is

expanding, including clinical data processing, pathology

recognition, and the generation of medical reports using natural

language processing (34–36). These technologies are particularly

valuable for radiologists, as they can automatically identify and

summarize imaging features that are challenging or impossible for

the human eye to detect (37, 38). This capability significantly

reduces the workload of clinical physicians and facilitates

precision medicine. However, deep learning technologies have

inherent limitations, such as low interpretability and challenges in

controlling training optimization, which restrict their clinical

application. To address these issues, multi-task deep learning has

emerged as an improvement over previous single-task methods.

This approach allows neural networks to focus on specific areas

within an image, increasing interpretability and enhancing

generalization. Li et al. (24) demonstrated that a multi-task neural

network model could effectively identify muscle invasion in bladder

cancer using MRI images, achieving an AUC of 0.932. The heat map

analysis showed a more concentrated focus on lesion areas

compared to single-task networks. Chen et al. (17) developed a

multi-task deep learning model for the differential diagnosis of non-

small cell lung cancer using the TCIA database, achieving superior

results (AUC: 0.843, 0.732) compared to both radiomics (AUC:

0.819) and single-task models (AUC: 0.788, 0.690). In another

study, Gu et al. (23) demonstrated that a multi-task model

effectively predicted the survival prognosis of locoregionally

advanced nasopharyngeal carcinoma, with radiomic features from

segmentation being independent prognostic factors. These studies

align with our current research findings. Notably, in our study of 78

PET/CT cases (23 malignant), the prediction accuracy for

malignant lesions was 65.22% (15/23). By comparing PET images

with neural network heat maps, we found that the heat maps

roughly encompassed areas of high uptake in about 11 cases. This

insight could provide crucial guidance for biopsy or prostatectomy,

although further research is needed.

In current clinical practice, MRI is the most common imaging

modality for patients with suspected prostate cancer. However, it has

limitations. A PI-RADS 3 score can make it challenging for clinicians

to determine malignancy, and subtle cancerous lesions require

interpretation by experienced clinicians, who are in short supply.

Additionally, diagnostic variability among clinicians is a significant
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issue. The development of radiomics and artificial intelligence (AI)

technologies is expected to address these challenges. Recently, Cai

et al. (39) developed a multi-task deep learning model that effectively

detects clinically significant prostate cancer using MRI. Trained on

multi-center imaging data, it achieved excellent results in both

internal (AUC = 0.89) and external validation sets (AUC = 0.86),

demonstrating its potential to assist radiologists with high diagnostic

sensitivity. Similarly, Debs et al. (40) used a 3D Unet model, showing

that CNN-based detection models can outperform radiologists (TPRs

= 0.93 vs 0.87). Meanwhile, research by Schrader et al. (41) confirmed

that a modified Unet model could successfully segment and predict

abnormal lesions on prostateMRI, significantly reducing unnecessary

biopsies by approximately 49%. However, the multivariate logistic

regression-based nomogram they used involved many variables,

complicating its clinical implementation. Traditionally, CT has

been excluded from essential examinations for predicting prostate

cancer due to its low soft tissue resolution. However, recent studies

have shown that radiomic features from CT can effectively predict

bone metastasis in prostate cancer, achieving an accuracy of 0.9 in an

independent test set. In our study, we used a multi-task deep learning

model (MTDL) to predict prostate cancer based on non-contrast

abdominal CT scans, achieving an AUC of 0.904 in the test set. This

represents a new field compared to other AI studies using MRI,

providing an important reference for early-stage prostate cancer

diagnosis when patients often exhibit no clinical symptoms. CT is a

relatively common and cost-effective imaging method that can be

widely used for early detection. Additionally, the heatmaps generated

by our model can indicate lesion locations. Although we also used

radiomics models, their lower performance (AUC = 0.84) and limited

interpretability have restricted their clinical application.

PSAD is recognized as a reliable predictor of clinically

significant prostate cancer (4) (42), as demonstrated by Deniffel

et al.’s study (3), which indicated that combining PSAD could

significantly reduce unnecessary biopsies in patients with positive

findings (PI-RADS>=3) on prostate MRI. By combining PSAD with

PI-RADS scores, clinicians can better identify patients who require

a biopsy. In our study, multivariate logistic regression across the

training, test, and validation sets consistently identified PSAD as an

independent predictive factor for clinically significant prostate

cancer. Integrating PSAD with deep learning neural network

recognition results could greatly enhance the detection rate of

prostate cancer, reduce unnecessary biopsies, and importantly,

both methods are cost-effective and easily accessible.

This study has several limitations. Firstly, the cases are from a single

center, with a limited sample size and class imbalance, as positive

samples account for only about one-third of the total. Future research

should include data from multiple centers for a comprehensive

comparative analysis to enhance the reliability of the results. Secondly,

as this is a retrospective study, the data suffer from issues of completeness

and homogeneity. Approximately 10% of patients lack data on C-

reactive protein or alkaline phosphatase, which slightly affected the

results. Lastly, this study focused solely on the application of CT in

diagnosing prostate cancer and did not explore its role in clinical

treatment and risk stratification. Clinical follow-up in future research

is essential to provide clinicians with more valuable information.
Frontiers in Oncology 11
Conclusion

In summary, a multi-task deep learning neural network model

can effectively predict clinically significant prostate cancer using

abdominal CT. By incorporating PSAD and age into a nomogram,

clinicians are provided with a non-invasive, cost-effective, and

efficient method for prostate cancer detection.
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