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Introduction: The nuclear receptor TR4 binding protein, TRA16, has been

implicated in lung carcinogenesis; however, its broader role across diverse

human cancers remains poorly understood. Understanding TRA16 ’s

involvement in cancer biology could uncover novel regulatory mechanisms

and potential therapeutic targets.

Methods: We conducted a comprehensive pan-cancer analysis of TRA16

expression and function across multiple human malignancies. Gene co-

expression networks, pathway enrichment, transcription factor analysis,

organoid modeling, and intercellular communication profiling were employed.

Tumor mutation burden (TMB) and microenvironmental features were also

assessed in relation to TRA16 expression, stratified by TP53 mutation status.

Results: Correlation analysis identified the cell cycle as the top enriched pathway

among TRA16-associated genes, with key transcription factors, including RB-

E2F, MYC, and TP53, regulating genes co-expressed with TRA16. In liver cancer

organoid models, TRA16 and its co-expressed genes were significantly

upregulated. Intercellular communication analysis showed that TRA16-positive

cells exhibited increased autocrine signaling and overall signaling activity.

Importantly, patients with high TRA16 expression demonstrated elevated TMB

and decreased stromal and immune features.

Discussion: These findings highlight TRA16 as a potential master regulator of

oncogenic processes, contributing to tumor progression through coordinated

regulation of cell cycle genes, intercellular signaling, and genomic instability. Our

results provide new insights into TRA16’s role across cancers and support its

potential as a novel oncogene.
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Introduction

Nuclear receptors are a family of transcription factors

characterized by their ligand-binding and DNA-binding domains.

Ligand binding to nuclear receptors enables the transactivation of

downstream genes that play key roles in shaping and maintaining

the hallmarks of cancer (1). For instance, a significant proportion of

breast cancers express estrogen and progesterone receptors, both of

which are crucial for cancer cell proliferation (2). Similarly, prostate

cancer progression is driven by androgen and androgen receptor

signaling (3).

In addition to ligands, various coactivators and corepressors

contribute to the transcriptional regulation of nuclear receptors (4).

Testicular orphan nuclear receptor 4-associated protein 16 (TRA16)

was initially identified as a corepressor of TR4 (5). Previous studies

have shown that TRA16 promotes non-small cell lung cancer (NSCLC)

by activating estrogen receptor beta and inhibiting testicular orphan

nuclear receptor 2 (6). While TRA16 overexpression has been

implicated in lung carcinogenesis, its role in other cancer types

remains largely unexplored.

Recent pan-cancer studies have highlighted the potential

to uncover shared cancer characteristics that could inform

personalized cancer treatments (7). Advances in next-generation

sequencing and single-cell sequencing technologies have led to the

generation of massive cancer profiling datasets (8). These datasets

have allowed researchers to revisit long-standing questions in

cancer biology (9). In this study, we conducted a pan-cancer

analysis of TRA16 using data from The Cancer Genome Atlas

(TCGA) and the single-cell atlas of human cancers, providing new

insights into the role of TRA16 in carcinogenesis.
Materials and methods

Pre-processing of single cell datasets

For GSE156625 (liver cancer), the pre-processed integrated

dataset was downloaded, and only cells from the tumor atlas were

used for this study. A total of 4,756 cells were retained for the final

analysis, with cell annotations matching those from the original

publication. For GSE182109 (glioma), four samples (GSM5518630,

GSM5518631, GSM5518632, GSM5518638) were integrated using

canonical correlation analysis (CCA). The FindIntegrationAnchors

and IntegrateData functions in Seurat were employed with the top

50 principal component analysis (PCA) dimensions. Cells with

detected gene counts between 100 and 7,500 were retained for

downstream analysis. Cells with more than 50,000 total UMI counts

or with over 20% mitochondrial gene content were filtered out.

Nearest neighbors were identified using the FindNeighbors function

with the top 20 PCA dimensions, and cell clusters were defined

using the FindClusters function with a resolution parameter of 1.

Clusters were annotated based on the average expression of classic

cell-type-specific markers.

For GSE125449 (liver cancer), two datasets (Set1 and Set2) were

used to create Seurat objects, which were then integrated using CCA
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with the top 50 PCA dimensions. The original cell-type annotations

were retained, with “unclassified” and “HPC-like” cells filtered out.

The remaining cells were further grouped based on TRA16 UMI

levels, and the final analysis included all eligible cells.
TCGA data mining with Gepia2

To explore the expression pattern and prognostic significance of

TRA16 across various cancer types, we conducted a comprehensive

re-analysis of TCGA datasets using the GEPIA2 (Gene Expression

Profiling Interactive Analysis 2) platform (http://gepia2.cancer-

pku.cn) (10). For survival analysis, the Survival Map and Survival

Analysis modules were used. Patients were stratified into high and

low expression groups based on the median expression level of

TRA16. Both overall survival (OS) and disease-free survival (DFS)

were assessed. The log-rank test was applied to determine statistical

significance, with a significance threshold of p < 0.05. P-values were

not adjusted for multiple testing, in line with the default

GEPIA2 settings.
Inference of cell cycle phase from single
cell data

Cell cycle scoring from single-cell transcriptomic data was

performed using the CellCycleScoring function in Seurat. Each

cell was assigned a score based on the expression levels of G2/M

and S phase markers. Cell cycle phase (G1, S, or G2/M) was

predicted based on these scores. The gene set used for cell cycle

scoring, cc.genes.updated.2019, was originally derived from a

melanoma study.
Identification of differentially expressed
genes and pathway enrichments

Differentially expressed genes (DEGs) in each cell cluster were

identified using the FindAllMarkers function in Seurat, with the

parameters test.use = “wilcox”, min.pct = 0.25, and logfc.threshold

= 0.25. Genes were further filtered by p-value < 0.05. Pathway

enrichment analysis was performed with the R package

ClusterProfiler (v4.0.5) using the DEGs as input (11). For Gene

Ontology (GO) enrichment analysis, the p-value and q-value cutoffs

were set to 0.01 and 0.05, respectively, with p-values corrected using

the Benjamini-Hochberg (BH) method. Genes with a log2 fold

change greater than 0.5 were included in the analysis, and the top 5

enriched pathways were visualized.
GSVA

GSVA analysis was conducted using the GSVA package

(v1.38.2) in R (12). Hallmark pathways were retrieved from

MSigDB (v7.4.1). The normalized data slot from the RNA assay
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was used as input for GSVA, with “Gaussian” selected as the kernel

for non-parametric estimation of the cumulative distribution

function of expression levels.
Cell-cell communication analysis

Cell-cell communication networks were reconstructed using

CellChat (13), which predicts cell-cell communication

probabilities by integrating gene expression data with curated

databases of signaling ligands, receptors, and cofactors based on a

mass action model. The communication probability for each

signaling pathway was calculated by summarizing all related

ligand-receptor interactions. Differences in overall signaling were

tested using the paired Wilcoxon test, with a significance cutoff of p

< 0.05. Significant ligand-receptor pairs and their communication

probabilities between cell groups were visualized using dot plots.
SCENIC analysis

pySCENIC (v0.11.2) was used to infer potential regulatory

transcription factors (TFs) and their target genes in cell clusters

(14). pySCENIC identifies TFs and their regulons (TF-target gene

sets) by analyzing gene expression correlations across cells, followed

by refining the regulons using enriched motif analysis. The activity

of each regulon was measured by AUCell scores, where higher

AUCell values indicate higher activity and enrichment of the

regulon in individual cells.
Analysis of TRA16 similar genes

TRA16-associated genes were identified using Pearson

correlation analysis for each of the 33 TCGA cancer datasets.

Genes that were among the top 1,000 TRA16-correlated genes in

at least 11 datasets were selected for further analysis. These genes

were subjected to pathway enrichment, protein-protein interaction

analysis, and transcription factor inference using Metascape with

default parameters (15).
Analysis of mutation patterns

Mutation data for TCGA liver cancer, melanoma, and lung

cancer were downloaded from the Genomic Data Commons (GDC)

via TCGAbiolinks (16). Query filters included data category

(“Simple Nucleotide Variation”), data type (“Masked Somatic

Mutation”), and experimental strategy (“WXS”). RNA expression

data for patient stratification were also downloaded using

TCGAbiolinks, with filters for data category (“Gene Expression”),

data type (“Gene Expression Quantification”), and experimental

strategy (“RNA-Seq”). Oncoprint plots were generated to visualize

the top mutated genes in each patient group.
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Analysis of stromal and immune features

To assess the tumor microenvironment (TME) composition,

stromal, immune, and ESTIMATE scores were computed using the

tidyestimate package (v1.1.1), which implements the ESTIMATE

algorithm based on single-sample gene set enrichment analysis

(ssGSEA) of predefined stromal and immune gene signatures.

Expression data were formatted to meet the requirements of the

ESTIMATE algorithm, with HGNC gene symbols as row identifiers

and sample IDs as columns.

For correlation analysis, TRA16 expression values were extracted

across all samples. Spearman correlation coefficients were calculated

between TRA16 expression and stromal, immune, and ESTIMATE

scores. Samples were further stratified into “TRA16-high” and

“TRA16-low” groups using the median expression value as a cutoff.

Expression levels of canonical immune checkpoint genes PD-L1

(CD274) and CTLA4 were compared between TRA16-high and

TRA16-low groups using the Wilcoxon rank-sum test.
Immunohistochemical staining and
interpreting

The IHC-validation cohort consisted of consecutive patients

diagnosed with ovarian clear cell carcinoma (OCCC), who

underwent surgical resection from 2016 to 2023 at Peking Union

Medical College Hospital. Tissue microarrays were constructed

from formalin-fixed, paraffin-embedded tissues. Both primary

tumors and normal endometrium were included. 4-mm tissue

sections were deparaffinized and rehydrated. Antigen retrieval was

processed at pH 6 for 20 minutes. The IHC staining process was

performed with DAKO Autostainer Link 48 using TRA16

polyclonal antibody (HPA042054, Sigma-Aldrich) in 1:200 dilution.

As described in previous studies (17, 18), each core was evaluated

by composite scores (ranging from 0 to 12) based on both intensity and

percentage of positive cells. Cases with composite scores ≥ 4 points

were considered positive, while others were considered negative.
Statistical analysis

GraphPad Prism software Version 8.0 (GraphPad, San Diego,

CA) was used to analyze and visualize the immunostaining data. All

other statistical analyses were performed in R unless otherwise

specified. T-tests were used to compare gene expression between 2D

and organoid cultures using TPM matrix. For count matrix

(GSE274674), edgeR method was employed. Wilcoxon tests were

applied to compare mutation numbers between patient groups, to

identify cluster-specific markers, and to determine differentially

expressed genes between TRA16-positive and TRA16-negative cells,

with a significance threshold of p < 0.05. For survival analysis, log-

rank tests were employed to compare survival curves between

patient groups. Pearson correlation analysis was used to identify

genes correlated with TRA16 expression. For Gene Ontology (GO)
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enrichment analysis, p-values and q-values were set at 0.05, with p-

values corrected using the Benjamini-Hochberg method.
Results

Expression and prognostic significance of
TRA16 across cancer types

To investigate the functional role of TRA16 in human cancers,

we analyzed TRA16 expression levels in both cancer and normal

tissues using the TCGA datasets. Differential expression data for 28

cancer types were retrieved from GEPIA2. TRA16 was significantly

upregulated in 13 cancer types, including adrenocortical carcinoma

(ACC), cervical squamous cell carcinoma (CESC), colon

adenocarcinoma (COAD), diffuse large B-cell lymphoma (DLBC),

glioblastoma multiforme (GBM), kidney renal papillary cell

carcinoma (KIRP), lower-grade glioma (LGG), liver hepatocellular

carcinoma (LIHC), lung squamous cell carcinoma (LUSC),

pancreatic adenocarcinoma (PAAD), rectum adenocarcinoma

(READ), testicular germ cell tumors (TGCT), and thymoma

(THYM). In contrast, TRA16 was significantly downregulated in

only one cancer type: acute myeloid leukemia (LAML) (Figure 1A).

To assess the prognostic potential of TRA16, we analyzed

overall survival (OS) and progression-free survival (PFS) across

all cancer types by stratifying patients based on median TRA16

RNA expression (Figure 1B). TRA16 emerged as a significant

prognostic marker for both OS and PFS in three cancer types:

ACC, LGG, and LIHC. Survival curves comparing patient groups

with high and low TRA16 expression were generated for these

cancers, with log-rank p-values of 0.0032 (LIHC), 6.6e-05 (LGG),

and 0.01 (ACC), respectively, and confidence intervals were

provided (Figure 1C).
Single cell analysis of TRA16 in liver cancer

Given the high incidence of liver cancer, we analyzed TRA16

expression in a previously published single-cell atlas of liver cancer

(GSE156625). Cell types in the atlas were annotated using the

original study’s labels, with some re-grouping for clarity. For

instance, subclusters of tumor-associated macrophages (TAMs)

were merged into a single TAM group, and fetal B cells (B cells

with embryonic characteristics) were combined with mature B cells.

In total, eight major cell types were retained: cancer cells, dendritic

cells (DCs), fibroblasts (FBs), endothelial cells (ECs), B cells (B), T

cells (T), TAMs, and monocytes (MCs). TRA16-positive cells were

identified in all major cell types except monocytes and B

cells (Figure 2A).

The highest percentages of TRA16-positive cells were observed

in cancer cells (6.7%), fibroblasts (4.3%), and dendritic cells (2.8%).

To further investigate transcription factor (TF) activity, we used the

SCENIC algorithm to compare TRA16-positive and TRA16-

negative cancer cells. Among the top 10 differentially active TFs,

eight showed decreased activity in TRA16-positive cancer cells.
Frontiers in Oncology 04
Notably, four of these TFs—RUNX3, GABPB1, GABPA, and

BCL6B—are known tumor suppressors (Figure 2B).

Cells were stratified based on TRA16 expression, with TRA16-

positive cells defined as those with at least one UMI detected for

TRA16, and TRA16-negative cells as those without any detected

UMI for TRA16. Differentially expressed genes between the two

groups were identified using the Wilcoxon test. These differentially

expressed genes were then subjected to Gene Ontology (GO)

enrichment analysis using an over-representation method.

Interestingly, genes upregulated in TRA16-positive cancer cells

were enriched for several key biological processes, including SRP-

dependent cotranslational protein targeting to the membrane,

cotranslational protein targeting to the membrane, protein

targeting to the endoplasmic reticulum (ER), establishment of

protein localization to the ER, protein targeting to the membrane,

and translational initiation (Figure 2C). Notably, genes upregulated

in TRA16-positive dendritic cells were also enriched for these same

processes, mirroring the enrichment observed in cancer

cells (Figure 2D).
Landscape of intercellular communication
with or without TRA16 expression

Next, we investigated whether TRA16 expression influences

differential cell-cell communication patterns. Using CellChat and

single-cell transcriptomic data, we constructed a complex

intercellular communication network. Notably, TRA16 expression

appeared to enhance autocrine signaling in several cell types,

including dendritic cells, tumor-associated macrophages,

endothelial cells, and fibroblasts (Figure 3A). TRA16 expression

also increased the overall strength of both incoming and outgoing

intercellular communication (Figure 3B). Among these, TRA16-

positive endothelial cells exhibited the highest signaling strength in

both directions, likely reflecting an adaptive mechanism involved in

tumor angiogenesis.

At the individual cell type level, TRA16 expression induced

distinct perturbations in communication patterns (Figure 3C).

TRA16-positive cancer cells showed increased interaction with

TRA16-positive endothelial cells, while TRA16-positive tumor-

associated macrophages secreted more autocrine signals. TRA16-

positive endothelial cells demonstrated stronger signaling both to

themselves and to TRA16-positive tumor-associated macrophages.

We further analyzed the specific outgoing and incoming

signaling pathways that differed between TRA16-positive and

TRA16-negative cells (Figure 3D). TRA16-positive cancer cells

exhibited increased outgoing signaling via COMPLEMENT,

VEGF, EPHA, PARs, GDF, BRADYKININ, BAG, MHC-I, OCLN,

and CDH pathways, while receiving more incoming signaling

through MK, THBS, GDF, LIGHT, OCLN, CDH, and NRG

pathways. For endothelial cells, top 10 elevated outgoing signaling

pathways included LAMININ, APP, THY1, ANGPTL, CXCL,

THBS, VEGF, PECAM1, NOTCH, CD46, while top 10 enhanced

incoming signaling pathways were COLLAGEN, CD99, FN1, SPP1,

LAMININ, VISFATIN, ANGPT, ITGB2, VTN, VEGF.
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FIGURE 1

Expression and prognostic significance of TRA16 across cancer types. (A) Transcripts per Million Reads (TPM) for TRA16 shown in log2 scale for
tumor tissues (T) and normal tissues (N) for the TCGA datasets. Red indicates the cancer types where TRA16 is significantly upregulated in tumor
tissues compared with normal tissues. (B) TCGA cancer cohorts (33 different types) were each stratified by TRA16 RNA expression. Survival analysis
was performed with overall survival (top panel) and progression free survival (bottom panel). Heatmap was used to present results of survival analysis.
Hazard ratio was shown in blue to red color scale. Red squares indicate significant prognostic factor when high TRA16 correlates with bad
prognosis. Blue squares indicate significant prognostic factor when high TRA16 correlates with good prognosis. (C) Survival curves for TCGA liver
cancer cohort (LIHC), low grade glioma (LGG) and Adrenocortical Carcinoma (ACC). Red curve presents patients with high TRA16 expression and
pink curve presents patients with low TRA16 expression.
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Using an independent single-cell atlas of liver cancer

(GSE125449), we confirmed that TRA16 was predominantly

expressed by malignant cells (Supplementary Figure 1A).

Consistent with previous observations, TRA16 expression

increased the overall strength of both incoming and outgoing

signaling across most cell types (Supplementary Figure 1B),

though the specific pathways perturbed were not completely

identical (Supplementary Figure 1C).

Next, we analyzed a single-cell atlas of low-grade glioma (LGG)

using a previously published dataset. The immunemicroenvironment

and stromal composition of LGG were markedly different from liver

cancer, with B cells and fibroblasts being almost absent. Notably, the

highest percentage of TRA16-positive cells was found in cycling

glioma cancer cells (Supplementary Figure 2A). Similar to liver

cancer, TRA16 expression enhanced the overall interaction strength

of both incoming and outgoing signals in LGG (Supplementary

Figures 2B, C).
TRA16-associated genes are implemented
in cell cycle regulation

As confirmed by our pan-cancer analysis of TCGA datasets,

TRA16 is upregulated in cancer tissues compared to normal tissues.

Next, we sought to identify genes co-regulated with TRA16. To do

this, we employed a straightforward approach to detect similar

genes. For each of the 33 TCGA cancer datasets, we identified the

top 1000 genes correlated with TRA16 expression using Pearson
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correlation analysis. Genes that ranked among the top 1000 in at

least 11 datasets were selected for downstream analysis. In total, 595

genes were subjected to pathway enrichment and transcription

factor enrichment analyses.

Interestingly, the top 20 pathways enriched for TRA16-

associated genes were predominantly related to the cell cycle or

cell cycling processes (Figure 4A). The top five enriched

transcription factors were E2F1, TP53, MYC, E2F4, and RB1,

consistent with cell cycle regulation (Figure 4B). Notably, three

members of the E2F family—E2F1, E2F4, and E2F3—were among

the enriched transcription factors. Network visualization of the

enriched terms revealed a strong representation of cell cycle-related

pathways among the TRA16-associated genes (Figure 4C).

To further explore the role of TRA16 in cell cycle regulation at

the single-cell level, we inferred the cell cycle phase (G1, S, G2M) for

individual cells in the liver cancer dataset (Figure 4D). Consistent

with the involvement of TRA16-associated genes in the cell cycle,

we observed an increased percentage of cells in the S or G2M phases

among TRA16-positive cells across multiple cell types, including

dendritic cells, fibroblasts, tumor-associated macrophages, and

cancer cells (Figure 4E).
TRA16 is upregulated in liver cancer
organoids

In a previous study, we profiled HepG2 liver cancer cells

cultured as either 2D adherent cells or 3D organoids (19).
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Notably, TRA16 was significantly upregulated in liver cancer

organoids (Figure 5A). TRA16 upregulation in 3D culture was

further observed in cervical cancer cell line SiHa (Supplementary

Figure 3A). Similarly, the expression levels of LSM4 (p = 0.072) and

RNASEH2A (p = 0.036) were also elevated in liver cancer organoids
Frontiers in Oncology 07
(Figures 5B, C). Pan-cancer analysis using TCGA tumor samples

revealed a significant positive correlation between TRA16 and

LSM4 (R = 0.63), as well as TRA16 and RNASEH2A (R = 0.6)

(Supplementary Figures 3C–E). To further investigate the clinical

relevance, we stratified patients based on the median expression
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levels of LSM4 and RNASEH2A into low-expression and high-

expression groups. Survival analysis revealed significantly different

survival curves for both LSM4 (Figure 5D) and RNASEH2A

(Figure 5E), suggesting their potential prognostic value.
Mutational landscape of liver cancer with
high TRA16

Given the potential role of TRA16 in liver cancer, we next

investigated whether liver cancers with high TRA16 expression

exhibit distinct mutation patterns compared to those with low

TRA16 expression. TCGA liver cancer patients with RNA

expression data (n = 415) were stratified into high and low
Frontiers in Oncology 08
expression groups based on the median TRA16 expression.

Among these patients, 371 had whole exome sequencing

data available.

In the TRA16 high-expression group, the top 10 most

frequently mutated genes were TP53, CTNNB1, TTN, MUC16,

ALB, PCLO, FLG, OBSCN, CSMD3, and RYR2 (Figure 6A). In

contrast, the top 10 mutated genes in the TRA16 low-expression

group were CTNNB1, TTN, TP53, MUC16, ALB, APOB, PCLO,

RYR2, FREM2, and HMCN1 (Figure 6B). Notably, the frequency of

TP53 mutations increased from 18% in the low-expression group to

35% in the high-expression group.

Given the established correlation between TP53 mutations,

mutation burden, and response to immunotherapy, we further

quantified the number of mutations in each group (Figures 6C–H).
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Patients with high TRA16 expression exhibited a significantly higher

mutation burden, suggesting a potential link between TRA16

expression and mutation-driven oncogenesis.
TRA16 expression inversely correlates with
stromal and immune features

Stromal and immune cells are two key components of the tumor

microenvironment. We evaluated the relationship between the

expression of TRA16 and the tumor microenvironment composition
Frontiers in Oncology 09
using ESTIMATE-derived scores (non-tumor scores). Spearman

correlation analysis revealed a significant inverse correlation between

TRA16 expression and stromal, immune, and ESTIMATE scores

(Figures 7A–C). These findings suggest that higher TRA16

expression is associated with reduced infiltration of both stromal and

immune components, indicating that TRA16 may be preferentially

expressed in tumor-cell–dominant regions with a less prominent

microenvironmental presence.

To further explore the immunological context of TRA16

expression, we stratified samples into TRA16-high and TRA16-

low groups based on the median expression value and compared the
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expression levels of immune checkpoint genes. Notably, PD-L1

(CD274) expression was significantly down-regulated in the

TRA16-high group (Supplementary Figure 4), suggesting that

tumors with higher TRA16 expression may exhibit enhanced

immunotherapy response. In contrast, CTLA4 expression showed

less consistent differences between the two groups, with no

statistically significant trend observed.
Expression of TRA16 at protein level

We further performed immunohistochemical staining to

investigate TRA16 protein expression level in cancer and non-

malignant tissues. Ovarian clear cell carcinoma (OCCC) is a specific

histological subtype of ovarian cancer with several mutational
Frontiers in Oncology 11
similarities with KIRC (20). Due to limited access to normal

ovarian samples and the recognition that OCCC originates from

endometriosis (21), we compared OCCC (n = 208) and normal

endometrium (n = 187) with immunohistochemistry

(Supplementary Figures 5A–D). It was discovered that cancer

tissues from OCCC patients were significantly more likely to

exhibit positive expression of TRA16 (78.3% vs 21.7%, p<0.001)

compared with normal endometrium tissues (Supplementary

Figure 5E). As for paired samples of OCCC tumor and normal

endometrium (n=159 pairs), OCCC tumors showed higher

composite scores (Wilcoxon test, p<0.0001) than normal

endometrium (Supplementary Figure 5F). However, there was no

significant difference in survival between OCCC patients with

positive TRA16 expression and those with negative TRA16

expression (Supplementary Figure 5G). Positive staining of
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TRA16 was also observed in various cancer types in the Human

Protein Atlas (Supplementary Figure 6). Considering the current

limited protein level characterization of TRA16 in cancer and

paired normal tissues, future studies combining large scale

biobank of tissue microarrays and high throughput in situ protein

level profiling might provide a more comprehensive pan-cancer

view of TRA16 protein expression and enable a comparison

between RNA and protein expression.
Discussion

Over the past decade, massive datasets profiling cancer patients at

both the bulk tissue and single-cell levels have been generated. These

datasets offer a valuable resource for pan-cancer analysis, particularly

for investigating genes of interest. In our study, we adopted an in

silico pan-cancer functional genomic approach to investigate the role

of TRA16 in cancer (Figure 8). Since its discovery in 2003, very few

publications have referenced TRA16 in PubMed. Earlier studies

demonstrated that TRA16 could be detected in 88.64% of non-

small cell lung cancers (NSCLC) but was absent in normal lung

tissue and benign lung tumors (22). A subsequent study further

revealed that TRA16 promotes cancer cell growth by activating the

estrogen receptor beta (ERb) pathway (6).
Cancer development and progression are driven by a complex

network of intercellular communication (23). Notably, cancer cells

rely on endothelial cells to proliferate and form new blood vessels.

These newly formed vessels not only supply nutrients to the tumor

but also serve as gateways for immune cells to infiltrate and surveil

the tumor tissue. Our discovery that TRA16-positive cancer cells

and endothelial cells exhibit more active intercellular
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communication highlights TRA16 as a potential novel target for

anti-angiogenesis therapy by disrupting cellular interactions within

the tumor microenvironment.

Our pan-cancer analysis revealed that genes co-expressed with

TRA16 are regulated by E2F1, TP53, MYC, E2F4, and RB1. Both the

E2F family of transcription factors and MYC are crucial regulators

of cell cycle progression (24, 25). RB1, the first tumor suppressor

gene ever discovered, functions as an upstream regulator of E2F1

(26). This aligns with the hypothesis that TRA16 may play a role in

cell cycle regulation.

Two TRA16-associated genes, LSM4 and RNASEH2A, were

found to be upregulated in organoid cultures of HepG2 cells. LSM4

has been implicated in the progression of pancreatic cancer (27),

breast cancer (28) and hepatocellular carcinoma (29). RNASEH2A,

a member of the RNase HII family, plays critical roles in the

invasiveness and chemoresistance of breast cancer (30),

proliferation and apoptosis in glioma (31), DNA damage

response and cell viability of T cell leukemia (32). The co-

expression network of RNASEH2A is involved in DNA

replication, DNA damage response, and cell cycle regulation (33).

Our study also highlights the role of TRA16 in liver cancer. The

risk of liver cancer significantly increases in patients with viral

hepatitis (34). Chronic infection with hepatitis B or C viruses leads

to increased hepatocyte apoptosis and regeneration. When key

genes in the DNA damage repair pathway are mutated, resulting

in loss of function, cells with DNA damage become resistant to

apoptosis (35). The elevated expression of TRA16 in cells with more

somatic mutations may represent an adaptive mechanism that

supports cell survival and sustained proliferation. This

mechanism likely helps cancer cells remain viable and maintain

fitness in response to environmental stress.
TRA16

TMB

TCGA

HCCA

Survival

Similar genes

Intercellular

crosstalk

Cell cycle

TFs

The Cancer Genome Atlas

Human Cancer Cell Atlas

Insilico pan-cancer functional genomics

“oncogene”

FIGURE 8

Schematic summary of in silico pan-cancer analysis. The potential role of TRA16 as an oncogene revealed by in silico analysis of transcription
factors, cell cycle, similar genes, intercellular crosstalk, TMB and survival significance.
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The potential link between TP53 mutations and TRA16

expression uncovered in our study could be leveraged to develop

novel therapeutics for patients with TP53-mutated liver cancer.

TP53, a frequently mutated tumor suppressor gene, encodes a

protein that plays a crucial role in the DNA damage response and

apoptosis. Despite its significance in cancer, TP53 has remained a

challenging target for drug development (36). Future studies

should explore whether targeting TRA16 could offer an

effective alternative strategy for treating TP53-mutated liver

cancer patients.

Immune checkpoint blockade (ICB) has revolutionized cancer

treatment over the past decade. Clinical studies have shown that

patients with a high tumor mutation burden (TMB) respond better

to ICB therapy (37). Our finding that TRA16-upregulated cancers

may harbor elevated TMB suggests that ICB could be a viable

treatment option for this subtype of liver cancer. Furthermore, it

might be of interest to explore the usefulness of TRA16 expression

in patient stratification for checkpoint inhibitor therapy considering

the connection of TP53 mutations and response to immune

checkpoint inhibition (38).

The potential role of TRA16 in carcinogenesis is not limited to

liver cancer. TRA16 also appears to be a significant prognostic

marker in low-grade glioma and adrenocortical carcinoma.

Additionally, our results reveal that the association between

TRA16 and TMB extends to other cancers, including melanoma,

lung cancer, and colon cancer—cancers that are often characterized

by high TMB (39). The link between TRA16 and TMB may be

either dependent on or independent of TP53 mutations. Future

studies are merited to further explore whether TRA16 alone or in

combination with other biomarkers can be used to improve the

accuracy of cancer patient stratification (40).

However, our study has some limitations. First, while our

analysis of large datasets provides valuable insights, it is largely

correlative, and correlation does not imply causation. Well-

designed in vitro and in vivo experiments are necessary to

determine the effects of TRA16 gain-of-function and loss-of-

function mutations (41). Second, dropout events are common in

single-cell datasets (42), which can affect the accuracy of grouping

cells based on UMI counts. Some cells classified as TRA16-negative

may in fact have low TRA16 expression.

In conclusion, we rigorously analyzed publicly available datasets

profiling human cancers at both the bulk and single-cell levels to

investigate the function of TRA16. Our findings suggest that TRA16

is a potential oncogene and may serve as a master regulator

of carcinogenesis.
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