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Chimeric Antigen Receptor T (CAR-T) cell therapy significantly and rapidly

changed the treatment paradigm for lymphoma, myeloma and leukemia, and

the recent approvals of the first cellular immunotherapies in melanoma and

synovial sarcoma demonstrate the potential success of this approach in solid

tumors. Though the therapeutic potential of CAR-T is impressive, severe cytokine

release syndrome (CRS) remains an ongoing challenge. Here we report a patient

who received an investigational CAR-T product for metastatic castration-resistant

prostate cancer who developedmulti-drug refractory, life-threatening CRS, which

was successfully treatedwith the interferon (IFN)-g antagonist emapalumab.Within

12 hours after the first dose of emapalumab, there was a dramatic improvement in

hemodynamic status and the patient was weaned off all four vasopressors. The

hemodynamic improvement was associated with a decrease in IFN-g and CXCL10

levels but no other cytokines. Not only was emapalumab the only drug effective at

treating this case of refractory CRS, but it did not appear to reduce the activity of

the CAR-T product, as the CAR-T vector copy numbers remained persistent and

the patient’s PSA levels remained low. This case demonstrates the clinical use of

emapalumab to treat refractory cytokine release syndrome in a solid tumor CAR-T

while potentially preserving therapeutic efficacy of CAR-T therapy. Further studies

with larger patient populations are needed to evaluate the use of emapalumab as a

treatment for CRS.
KEYWORDS
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Introduction

Chimeric Antigen Receptor T (CAR-T) cell therapy is a form of

genetically modified autologous or allogeneic immunotherapy

armed with a receptor directed against an antigen on the surface

of cancer cells. This novel treatment modality significantly and

rapidly changed the treatment paradigm for lymphoma, myeloma

and leukemia (1–4), and the recent approvals of the first cellular

immunotherapies in melanoma and synovial sarcoma demonstrate

the potential success of this approach in solid tumors (5, 6). Though

the therapeutic potential of CAR-T is impressive, cytokine release

syndrome (CRS) remains an ongoing challenge with rates as high as

92% in patients receiving CAR-T therapy (1). Treatment for CRS

includes agents such as tocilizumab and anakinra (7–9), though

some patients have severe CRS refractory to these interventions.

Most research on the treatment of CRS in CAR-T therapy is based

on CD19 and BCMA constructs targeting liquid tumors, while

specific data on the treatment of CRS in solid tumors is largely

lacking. This patient with prostate cancer received the

investigational prostate stem cell antigen (PSCA) targeting

autologous CAR-T product (BPX-601) on a Phase 1/2 clinical

trial (NCT02744287). This particular CAR-T product was

equipped with a cytoplasmic molecular “on switch” that allows

re-activation of the CAR-T cells with weekly infusions of the

dimerizing agent rimiducid starting on Day +7. This dimerization

activates toll-like receptors and CD40 signaling pathways which

triggers strong pro-survival, activation, and expansion signals. A

separate report has been published on the results of this clinical

trial (10).

Here, we report on a case of multi-drug refractory, life-

threatening CRS, which was successfully treated with the

interferon (IFN)-g antagonist emapalumab.
Case description

A 67-year-old patient was diagnosed with metastatic castration-

resistant prostate cancer (mCRPC), T3bN0M1, Gleason score 8

with bone metastases involving S1 vertebra and left iliac bone in

2019. He was initially treated with degarelix, leuprolide, and

apalutamide with a brief response. In 2020, olaparib was added

and he received palliative radiation to metastatic lesions in the
Abbreviations: CAR-T, chimeric antigen receptor T-cell; CRS, cytokine release

syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome; ICE

(score), immune effector cell-associated encephalopathy; IFN-g, interferon

gamma; mCRPC, metastatic castration-resistant prostate cancer; PSCA,

prostate stem cell antigen; PSA, Prostate-specific antigen; IEC-HS, immune

effector cell-associated HLH-like syndrome; HLH, hemophagocytic

lymphohistiocytosis; CXCL, C-X-C motif chemokine ligand; VCN, vector copy

number; Chimeric antigen receptor T-cell or CAR-T; CRS, Cytokine Release

Syndrome; Emapalumab or Gamifant; IFN-g, Interferon gamma; PSCA, Prostate

Stem Cell Antigen; PSA, Prostate-specific antigen; IEC-HS, Immune effector cell-

associated HLH-like syndrome.
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thoracic spine. In 2022, he received consolidative radiation therapy

to the prostate and was treated with an ATR inhibitor on a clinical

trial. He enrolled in the Phase 1/2 BPX-601 clinical trial using

autologous prostate stem cell antigen (PSCA)-targeted CAR-T cells

with weekly infusions of rimiducid (10). The patient’s T cells were

collected, followed by bridging docetaxel as well as palliative

radiation to the lumbar and sacral spine. Baseline prostate-

specific antigen (PSA) level prior to clinical trial start date was

22.5 ng/mL.

He underwent lymphodepleting chemotherapy with

fludarabine 30 mg/m2 and cyclophosphamide 500 mg/m2 on Day

-5 through -3, followed by infusion of BPX-601 on Day 0. On Day

+1, the patient developed fever consistent with Grade 1 cytokine

release syndrome (CRS) as per ASTCT consensus grading, which

progressed to Grade 2 (fever with hypoxia) on Day +2 and was

treated with one dose of tocilizumab 8mg/kg. Blood and urine

cultures were obtained, and he was started on broad spectrum

antibiotics. On Day +3, he continued to have persistent fevers and

hypoxia, as well as new fluid-responsive hypotension, still

consistent with Grade 2 CRS. He was given a second and a third

dose of tocilizumab, as well as dexamethasone 10mg x2. His CRP

peaked at 96.77 mg/L, but ferritin was stable from baseline at 487

ng/mL. By Day +4, CRS was resolved. The patient had one Immune

Effector Cell-Associated Encephalopathy (ICE) score of 9/10, which

resolved without intervention and deemed not to be immune

effector cell-associated neurotoxicity syndrome (ICANS), however

levetiracetam was initiated and continued throughout

the hospitalization.

On Day +5, the patient developed hematuria, dry eyes, and a

diffuse papular rash with skin biopsy showing superficial

perivascular mononuclear cell infiltrate consistent with a

hypersensitivity reaction thought to be due to CAR-T “on-target/

off-tumor” effect. The Day +7 rimiducid was delayed until

symptoms improved.

The first dose of rimiducid was given on Day + 11. On Day +12,

the patient developed a worsening rash, which was more

pronounced on abdomen and trunk, and newly involving face

and scalp. He also had worsening eye redness with blurry

vision, as well as new swollen parotid and submandibular

glands bilaterally.

On Day +13, he had recurrent fevers with severe hypotension

(lowest BP 70/40) requiring a norepinephrine infusion, consistent

with Grade 3 CRS, and was transferred to the ICU. He received fluid

resuscitation, tocilizumab x 1 (fourth total dose), and

dexamethasone 10mg every six hours. By Day +15, he was

weaned off vasopressors and dexamethasone, and the skin rash,

eye redness, and parotid gland swelling improved. He then was

transferred out of the ICU.

Given rapid resolution of CRS and responsiveness to treatment,

the second dose of weekly rimiducid was given on Day +18. The

following day, the patient developed fevers, hypotension requiring a

norepinephrine infusion, and hypoxia requiring 4L of oxygen via

nasal cannula, consistent with Grade 3 CRS, and was transferred to

the ICU. He was again given fluid boluses, tocilizumab (fifth total

dose), and dexamethasone 10mg every 6hrs without improvement.
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Over the next two days, he developed a worsening vasopressor

requirement (norepinephrine up to 40mcg/min, addition of

vasopressin and phenylephrine) and required intubation for

hypoxemic respiratory failure consistent with Grade 4 CRS. He

had no evidence of ICANS and infectious workup was negative. He

also had a rapid increase of ferritin to over 4,000 ng/mL and lactic

acidosis (pH 7.12), however, his PSA level continued to decrease to

0.29. For rapidly progressive Grade 4 CRS without response to

tocilizumab or dexamethasone, additional CRS treatment was

initiated including siltuximab 11mg/kg once, methylprednisolone

1g twice daily, anakinra 200mg every 6 hours, and ruxolitinib 10mg

twice daily on Day +21. The clinical course is summarized

in Figure 1.

His hemodynamic status continued to deteriorate on Day +22.

He developed multiorgan failure, disseminated intravascular

coagulation (fibrinogen <50 mg/dL), and required continuous

renal replacement therapy. He continued to have persistent

fevers despite broad anti-cytokine therapy and high-dose

steroids; norepinephrine, vasopressin, and phenylephrine were

at or near their maximal doses; and angiotensin II was added. An

abdominal ultrasound showed suspicion for acalculous

cholecystitis, therefore an urgent percutaneous cholecystostomy

tube was placed. Labs showed concern for immune effector cell-

associated HLH-like syndrome (IEC-HS): he was pancyotopenic

and transfusion dependent, ferritin peaked at 9,580 ng/mL,

triglycerides elevated to 318 mg/dL, and soluble IL-2 receptor

elevated to 93,326 pg/mL. A cytokine panel revealed that

interferon (IFN)-g was elevated to 1,786 pg/mL (baseline was

<4.2 pg/mL on Day 0); thus, we decided to administer the IFN-g
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antagonist emapalumab (Gamifant) 1mg/kg on Day +24. No other

intervention was initiated.

Within 12 hours of the first dose of emapalumab, he had a

dramatic improvement in his hemodynamic status. Vasopressors

were gradually withdrawn, he became afebrile, and oxygen

requirement improved. Angiotensin and vasopressin were quickly

weaned off, and he was maintained on low dose norepinephrine

until Day +27. The second dose of emapalumab was given on Day

+27, at which point he was normotensive, afebrile, and no longer on

vasopressors (see Figure 1). Ferritin decreased by over 50% to 4,460

ng/mL, and IFN-g decreased by over 99% from 1,786.3 pg/mL to 6.0

pg/mL (see Figure 2). CXCL10 (IP-10), a downstream effector

molecule in the IFN-g signaling pathway, decreased by 2-fold.

Interestingly, other cytokines, such as IL-6 and TNF-a, either
increased or did not significantly change. These trends were

confirmed by separate lab studies conducted by the study sponsor

(Supplementary Figure S1).

Despite hemodynamic and respiratory improvement, he had

evidence of severe end-organ damage from prolonged shock

manifested as anuric renal failure, digital ischemia and probable

anoxic brain injury.

On Day +33, he developed bacteremia with vancomycin-

resistant enterococcus, along with progressive encephalopathy and

lactic acidosis. MRI brain showed multiple embolic strokes in

frontal/parietal lobes. Given the significant multi-organ damage,

his family decided to withdraw care and he passed away on D+37.

He had no signs of active CRS at the time of death and his PSA

dropped from baseline of 22.5 ng/mL before therapy to 0.29 ng/mL

at time of death (see Figure 2).
FIGURE 1

Effect of anti-cytokine therapy on fever and vasopressor requirement. The patient experienced three separate episodes of CRS: the first on Day +1,
second on Day +13, and third and most severe on Day +19. After the second dose of rimiducid on Day +18, the patient rapidly decompensated and
required multiple vasopressors. Note the lack of effect of siltuximab, methylprednisolone, anakinra, and ruxolitinib (all given on Day +21) on fever
curve and vasopressor requirement. Emapalumab was first given on Day +24, which led to rapid decrease in temperature and
vasopressor requirement.
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Discussion

Despite mortality, this case is remarkable for two reasons. First,

emapalumab dramatically and rapidly led to complete resolution of

CRS after failed attempts with tocilizumab, siltuximab, high dose

steroids, anakinra, and ruxolitinib (see Figure 1). Levels of

Inflammatory cytokines also increased despite administration of

these medications (see Figure 2, Supplementary Figure S1). In

contrast, emapalumab effectively reduced active IFN-g levels and

improved hemodynamic status. In particular, IFN-g blockade

seemed to clearly correlate with clinical improvement in fever

curve and hemodynamic stability (i.e., reduction in vasopressor

requirement). Other cytokines increased when CRS worsened, but

did not decrease when CRS improved. This evidence supports the

importance of IFN-g as a primary driver of severe CRS and suggests

that IFN-g blockade can be used to effectively reverse CRS. To the

best of our knowledge, ours is the first case report of emapalumab

use in CAR-T for a solid tumor. Other studies have shown promise

in IFN-g blockade to treat severe CRS, though these are largely
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limited to the pediatric B-cell acute lymphoblastic leukemia

population, with only one adult case report published to the best

of our knowledge (11–13). These case reports also show mixed

reduction in ferritin, IL-2, IL-6, IL-8, IL-10, TNF-a after

administration of emapalumab, suggesting some differences in the

overall inflammatory cascade in CRS induced by PSCA vs CD19-

targeted CAR-T. IFN-g blockade also has a key role in treating

hemophagocytic lymphohistiocytosis (HLH), and HLH mouse

models show that IFN-g blockade has better survival outcomes

compared to blockade of other cytokines (14–18). One study that

showed the efficacy of emapalumab administration for pediatric

primary HLH noted reduction in C-X-C motif chemokine ligand 9

(CXCL9), which is induced by IFN-g (15). Our patient also had a

decrease in a similar C-X-C motif chemokine ligand, CXCL10, after

emapalumab administration (see Figure 2, Supplementary

Figure S1).

Second, emapalumab did not appear to decrease activity of

PSCA-targeting CAR-T therapy. Although follow up is short, the

patient ’s serum PSA dropped by nearly two orders of
FIGURE 2

(Top panel) Prostate Specific Antigen (PSA) levels and CAR-T Vector Copy Numbers (VCN) in relation to date of cell infusion (Day 0) and rimiducid
doses. Baseline PSA levels starting on Day -10 (before lymphodepleting chemotherapy) was 22.5 ng/mL and maintained at 0.29 ng/mL at time of
death. CAR-T VCN remained persistent despite emapalumab administration on Day +24 and Day +27. (Bottom panel) Cytokine and ferritin levels in
relation to date of cell infusion (Day 0) and emapalumab administration (Day +24 and Day +27). After the first dose of emapalumab, ferritin (blue
shaded portion) decreased by over 50% from 9,580 ng/mL to 4,460 ng/mL, IFN-g decreased by over 99% from 1,786.3 pg/mL to 6.0 pg/mL, and
CXCL10 (IP-10), a downstream effector molecule in the IFN-g signaling pathway, decreased 2-fold. IL-6 and TNF-a increased after emapalumab.
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magnitude and was nearly undetectable (0.29 ng/mL) at the time of

death. Most of the impressive PSA response was achieved prior to

the first dose of emapalumab, however, our case is unique in that we

were able to measure CAR-T vector copy numbers (VCN) in

relation to multiple doses of emapalumab (see Figure 2). A

persistence of CAR-T VCN in the peripheral blood, as well as the

persistent decrease in PSA, suggest that emapalumab does not

decrease efficacy of CAR-T cell therapy. However, it should be

noted that the pre-emapalumab PSA level and post-emapalumab

PSA level was the same (0.29 ng/mL). Decrease in PSA was similar

to other patients in this trial, with 44.4% of mCRPC patients

achieving a reduction of 90% or greater (10). Preclinical studies

demonstrate the effective use of IFN-g blockade while preserving

CAR-T cytotoxicity in hematologic malignancies (19, 20), though a

critical role of the IFN-g signaling pathway in mediating CAR-T

cytotoxicity in solid tumors has been demonstrated both in vitro

and in immunocompromised mice (21). This suggests a key

difference between hematologic and solid tumor CAR-T

therapies, although the role of IFN-g in CAR-T in humans needs

further study and the specific clinical scenario presented in this case

report (i.e., PSCA target, use of an activation switch, prostate cancer

microenvironment) may limit a broad conclusion.

It is thought that CRS typically occurs at the same time as

CAR-T cell expansion due to an increase in cytokines levels (22). In

this particular trial, the dimerizing agent rimiducid was

administered to assist with CAR-T expansion. Rimiducid was

given on Day +11 and Day +18, which increased CAR-T vector

copy numbers to 21,033 and 5,299 copies/µg, respectively (see

Figure 2), but also ultimately led to Grade 3 and Grade 4 CRS,

respectively. Cytokine levels increased after each administration of

rimiducid (see Figure 2, Supplementary Figure S1), which

correlated with worsening CRS. Of note, all patients with mCRPC

in this trial had an increase in pro-inflammatory cytokines and

clinical evidence of CRS after the first dose of rimiducid (10). The

contribution of “off-tumor” antigen burden to the severity of CRS is

possible in this case, given the expression of PSCA in certain healthy

tissues and the off-target manifestation of a disseminated skin rash

in this patient. This case highlights the critical need for better

predictors of severe toxicity that can be used in real time to guide

patient management.

Interestingly, emapalumab had a dramatic effect after failure of

ruxolitinib. While both agents act on the IFN-g-JAK-STAT
pathway, there are key differences. First, ruxolitinib is only

available orally and its absorption in the setting of profound

circulatory shock may be inadequate. Second, ruxolitinib has an

effect on signaling of multiple cytokines which may be suboptimal if

the pathogenesis is primarily driven by IFN-g. Lastly, IFN-g triggers
non-canonical STAT-independent pathways that affect cellular

metabolism, histone modification and NF-kB signaling, which

may explain a selective response to emapalumab (23).

A limitation of our study is that this is a case report with a PSCA

targeting CAR-T product under clinical investigation. Further

studies with larger patient populations should be conducted

before extrapolating these findings to other types of solid tumor
Frontiers in Oncology 05
and hematologic malignancy CAR-T products. In this case, CRS

appeared to dramatically and rapidly improve after emapalumab

administration, but methylprednisolone, anakinra, and ruxolitinib

all were continued during this resolution. The possibility of

synergistic or cumulative effects from these other agents cannot

be entirely ruled out. Despite resolution of CRS and sustained PSA

reduction, the patient unfortunately did not survive and the

duration of response was not evaluated past Day +30. With

multiple immunosuppressive medications given to treat severe

CRS, this patient developed a severe bacteremia, which highlights

the need for further studies to evaluate effect of CRS treatment on

infection risk and overall survival.

In conclusion, emapalumab appears to be an effective agent in

treating severe CRS while preserving CAR-T persistence. Further

research is needed to help understand the potential of IFN-g
blockade in CRS and its impact on anti-tumor efficacy.
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