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Purpose: Type 1 diabetes mellitus (T1DM), as an autoimmune disease, can

increase susceptibility to clear cell renal cell carcinoma (ccRCC) due to its

proinflammatory effects. ccRCC is characterized by its subtle onset and

unfavorable prognosis. Thus, the aim of this study was to highlight prevention

and early detection opportunities in high-risk populations by identifying

common biomarkers for T1DM and ccRCC.

Methods: Based on multiple publicly available datasets, WGCNA was applied to

identify gene modules closely associated with T1DM, which were then integrated

with prognostic DEGs in ccRCC. Subsequently, the LASSO and SVM algorithms were

employed to identify shared hub genes between the two diseases. Additionally,

clinical samples were used to validate the expression patterns of these hub genes,

and scRNA-seq data were utilized to analyze the cell types expressing these genes

and to explore potential mechanisms of cell communication.

Results:Overall, three hub genes (KIF21A, PIGH, and RPS6KA2) were identified as

shared biomarkers for TIDM and ccRCC. Analysis of clinical samples and multiple

datasets revealed that KIF21A and PIGH were significantly downregulated and

that PIG was upregulated in the disease group. KIF21A and PIGH are mainly

expressed in NK and T cells, PRS6KA2 is mainly expressed in endothelial and

epithelial cells, and the MIF signaling pathway may be related to hub genes.

Conclusion: Our results demonstrated the pivotal roles of hub genes in T1DM and

ccRCC. These genes hold promise as novel biomarkers, offering potential avenues for

preventive strategies and the development of new precision treatment modalities.
KEYWORDS

type 1 diabetes mellitus, clear cell renal cell carcinoma, key genes, machine learning,
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1 Introduction

Diabetes mellitus (DM) affects approximately 463 million people

worldwide, with type 1 diabetes mellitus (T1DM) accounting for

nearly 10%. Remarkably, the prevalence of T1DM is increasing

globally (1, 2). Although there is no definitive consensus on the

exact pathogenic mechanism of T1DM, it is fundamentally

characterized as a chronic autoimmune disorder involving the

destruction of insulin-producing pancreatic islet cells (b cells) (3).

By identifying autoantibodies, autoreactive CD8+ T cells are the

primary immune cells responsible for the death of b cells, and islet-

specific CD4+ T cells can produce cytokines that promote the

activation of B cells and islet-specific CD8+ T cells (4, 5).

Additionally, recent studies have emphasized the significance of

natural killer cells (NKs) in autoimmune contexts. NKs can

eliminate specific cells, generate memory cells, respond to antigens,

and interact with CD8+ T cells, promoting immune-mediated

assaults on b cells (6, 7).

T1DM increases cancer risk, and previous research has

highlighted its connection to renal cell carcinoma (RCC).

Coexisting T1DM in RCC patients increases the risk of

recurrence and distant metastasis, contributing to a poorer

prognosis (8). Clear cell renal cell carcinoma (ccRCC) constitutes

up to 80% of all pathological subtypes of RCC (9), and nearly one-

third of ccRCC patients present with metastases at the initial

diagnosis (10). The link between RCC and diabetes has become

increasingly evident over the years, both in terms of incidence and

prognosis (11, 12). DM, a major consequence of metabolic

syndrome, is more prevalent in ccRCC patients, and those with

DM and ccRCC tend to have worse outcomes compared to ccRCC

patients without DM. Diabetes is associated with higher recurrence

rates, increased distant metastases, and reduced survival rates (8).

Epidemiological studies also highlight that individuals with diabetes

have a significantly higher risk of RCC compared to non-diabetic

individuals (13). This connection is particularly prominent in

conditions associated with metabolic syndrome, such as T1DM.

The tumor microenvironment (TME) in ccRCC is characterized

by a substantial presence of tumor-infiltrating immune cells (14).

Although a connection between T1DM and immune cell activity

exists, the exact extent of its influence on the TME still needs to be

understood. Therefore, it is imperative to assess the potential impact

of other related diseases on the TME. Therefore, employing machine

learning techniques that integrate multiple diseases can facilitate a

more comprehensive analysis of meaningful biomarkers (15, 16). The

primary aim of this study was to identify common biomarkers shared

between T1DM and ccRCC, with the objective of establishing a more

comprehensive early diagnostic model for ccRCC based on novel

potential serum biomarkers. Another objective of this study was to

identify biomarkers with increased sensitivity and specificity for the

early screening and diagnosis of ccRCC in T1DM patients.

Additionally, we hypothesized that these identified markers may

play a role in the immune mechanism underlying the pathogenesis

of ccRCC. In this work, we endeavored to provide new insights into

the impact of the TME.

In this study, we used a variety of machine learning algorithms

and weighted gene coexpression network (WGCNA) methods to
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screen out possible shared biomarkers between T1DM and ccRCC.

We further identified the core genes closely related to the diagnosis

and prognosis of T1DM patients and ccRCC patients and verified

the expression levels of these genes in clinical samples. Immune

infiltration analysis revealed that these core genes were closely

related to the immune response of NK cells and T cells in the

immune microenvironment of ccRCC, and single-cell RNA

sequencing (scRNA-seq) data confirmed this result (Figure 1).

These findings reveal potential alterations in the immune

microenvironment of ccRCC in the context of T1DM and

provide a new target for the prevention and treatment of ccRCC.
2 Materials and methods

2.1 Transcriptome data acquisition
and processing

Transcriptome RNA sequencing (RNA-seq) data of ccRCC

samples were obtained from The Cancer Genome Atlas (TCGA).

The RNA-seq data selected for analysis were normalized using the

Fragments Per Kilobase of Transcript Per Million Mapped Reads

(FPKM) method. After eliminating duplicated data entries and

samples with missing information, the final TCGA-KIRC cohort

comprised 29 normal samples and 400 cancer samples, of which 141

were from females and 259 were from males, aged 68.0 ± 10.64

years. All patients had accompanying clinical information.

The T1DM peripheral blood mononuclear cell (PBMC)

transcriptome dataset GSE55098, the T1DM validation cohort

GSE9006, and the ccRCC transcriptome validation cohort

GSE53757 were obtained from the GEO database. The GPL96

and GPL97 platforms from the UTSW Medical Center were used

for GSE9006. Our study used data based on the GPL97 platform,

including 24 normal PBMC samples and 43 PBMC samples from

T1DM patients (26 women and 17 men; aged 10.1 ± 3.8 years). The

GPL97 platform from Shanghai JiaoTong University Ruijin

Hospital was used for GSE53757, which included 10 normal

PBMC samples and 12 PBMC samples from patients with T1DM

(5 women and 7 men; aged 17.5 ± 3.68 years). The GPL570 platform

from The Mayo Clinic was used for GSE53757, which consists of 72

normal samples and 72 ccRCC samples. Details of the dataset are

shown in Supplementary Table S1. The demographic characteristics

of the TCGA-KIRC cohort involved in this study are shown in

Supplementary Table S4
2.2 Weighted gene coexpression
network analysis

We chose WGCNA as the analysis method for the T1DM

transcriptome data because this method can identify coexpressed

gene modules closely related to T1DM as a whole, revealing the

pathway by which T1DM influences the development and

prognosis of ccRCC. We employed the “WGCNA” package (17)

to construct a weighted adjacency matrix by selecting appropriate

thresholds. Subsequently, the weighted adjacency matrix was
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transformed into a topological overlap matrix (TOM). To identify

modules with the most significant correlation with T1DM, we

applied the dynamic tree-cutting algorithm to divide the network

into distinct modules and extracted the genes within the modules.
2.3 Identification of differentially expressed
genes and ccRCC prognostic genes

The “limma” package (18) was used to identify differentially

expressed genes (DEGs) between normal and diabetic samples in

the GSE55098 dataset and between normal and tumor samples in

the TCGA-KIRC cohort. Genes with an adjusted p value < 0.05 and

|log2FC|>1 were considered DEGs. Then, we performed univariate

Cox regression analysis using the “survival” package to identify

prognostic genes (p value < 0.05). Genes meeting the criteria of both

DEGs in ccRCC, specific prognostic genes for ccRCC, and present

in the modules most strongly correlated with T1DM were classified

as TIDM-related prognostic DEGs for subsequent analysis.
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2.4 GeneMANIA-associated analysis and
PPI network construction

Due to the limited number of TIDM-related prognostic DEGs,

directly applying them to machine learning models may lead to

unreliable results. Drawing on the approach adopted in previous

studies (19–21), the GeneMANIA database (22) was used to identify

genes associated with TIDM-related prognostic DEGs. The

STRING database (23) and Cytoscape were used to construct a

protein‒protein interaction (PPI) network.
2.5 Functional enrichment analysis

To investigate the pathways shared between T1DM and ccRCC,

we performed Gene Ontology (GO) term enrichment and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses

using the Metascape database. These analyses were based on

T1DM-related prognostic DEGs and their associated genes (24).
FIGURE 1

Workflow of this study. Step 1: Identified T1DM-related genes using WGCNA based on the T1DM dataset and intersected them with prognostic DEGs
in ccRCC. Their associated genes were subsequently obtained using the GeneMANIA database. Step 2: Hub genes were selected from these T1DM-
related ccRCC prognostic DEGs and their associated genes using machine learning algorithms. The clinical value of the hub genes was validated
through ROC curve analysis in an independent validation cohort. Furthermore, the expression levels of the hub genes were confirmed via RT-qPCR
and IHC, and potential shared regulatory pathways between T1DM and ccRCC were explored using GSEA. Step 3: scRNA-seq data were utilized to
validate the expression of hub genes at the single-cell level and to investigate their association with immune microenvironment remodeling.
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2.6 Hub gene screening and validation
based on the machine learning algorithm

We applied three machine learning methods to identify key

biomarkers associated with ccRCC prognosis from T1DM-

associated ccRCC prognostic DEGs and their associated genes

based on the TCGA-KIRC cohort. First, we evaluated the efficiency

of the random forest (RF) and support vector machine recursive

feature elimination (SVM-RFE) algorithms in the TCGA-KIRC

cohort through residual and receiver operating characteristic

(ROC) curve analyses. We then selected the genes identified by one

of these algorithms. It is important to clarify that our study’s machine

learning models were trained using the presence or absence of renal

cancer as the response variable, with 20 ccRCC biomarkers related to

T1DM as covariates. Notably, we utilized the “randomForest”

package (25) for constructing the random forest model and the

“Kernlab” package (26) for constructing the SVM-RFE model. The

random forest model employed default feature selection based on

mean decrease impurity, while the SVM-RFE model employed

recursive feature impurity removal for feature selection. We

implemented K-fold cross-validation for feature extraction,

ensuring that both the SVM/RF and least absolute shrinkage and

selection operator (LASSO)models utilized this data splitting method

for accurate and reliable feature comparisons. Subsequently, LASSO

regression was performed, and we selected one of the algorithms

according to the advantages and disadvantages of RF or SVM-RFE

and intersection with the genes found in LASSO regression analysis

as the hub genes.
2.7 Evaluation of the prognostic efficacy of
the hub genes

The prognostic efficacy of the hub genes in T1DM patients and

ccRCC patients was evaluated by constructing ROCs and

calculating the corresponding area under the curve (AUC) using

the “pROC” package. After grouping based on the cutoff values

calculated by the “survival” package, Kaplan‒Meier survival curves

corroborated a substantial correlation between the hub genes and

the survival outcomes of ccRCC patients.
2.8 Gene set enrichment analysis of the
hub genes in patients with T1DM
and ccRCC

GSEA is a computational method used to determine whether

predefined sets of genes show statistically significant, coordinated

differences between two biological states. We conducted single-gene

GSEA of the hub genes in the T1DM cohort GSE55098 and TCGA-

KIRC cohort using the “fgsea” package (27), with the hallmark gene

set obtained from the MsigDB database (28, 29). Specifically,

samples were divided into high- and low-expression groups based

on the expression levels of the hub genes. Differential expression

analysis was then conducted to identify DEGs between these two
Frontiers in Oncology 04
groups. GSEA was subsequently applied to evaluate the association

between the target genes and specific biological processes

or pathways.
2.9 Assessing the role of the hub genes in
the tumor microenvironment

The “Cibersort” package (30) was used to analyze the

abundance ratios of 22 types of immune cells in the TCGA

ccRCC cohort and to evaluate the interactions between different

immune cells. Furthermore, the associations between the hub genes

and specific immune cells were investigated.
2.10 Single-cell RNA sequencing analysis

We obtained ccRCC scRNA-seq data comprising seven tumor

samples and two adjacent normal tissue samples from the

GSE210042 dataset in the GEO database. In this study, we only

used single-cell data from tumor samples. Data preprocessing was

conducted using the “Seurat” package (version 4.1.0) (31) with the

following criteria for the tumor samples: nFeature_RNA > 200,

nCount_RNA > 1000, and fewer than 20% of mitochondrial genes.

A total of 50,487 cells were obtained for subsequent analysis. The

top 2000 highly variable genes were identified using the

“FindVariableGenes” function, and principal component analysis

was subsequently conducted. Cell types were annotated based on

known renal-specific marker genes from a previous study (32) or

queried in PanglaoDB (33) to assign cell types based on cluster-

specific marker genes. Pseudotime analysis was performed using the

“monocle3” package (34). We examined hub gene expression across

all cell clusters and explored cellular crosstalk using the “CellChat”

package (35).
2.11 Human renal RNA extraction and
quantitative real-time polymerase
chain reaction

Tumor and adjacent normal tissues were collected from 12

ccRCC patients who underwent radical nephrectomy, and RNA was

extracted from these tissues. This study was approved by the Ethics

Committee of the First Affiliated Hospital of Jinan University, and

written informed consent was obtained from all patients and

control individuals.

Total RNA was extracted using the EZ-Press RNA Purification

Kit (EZbioscience, USA). cDNA was synthesized using the

PrimeScript RT Kit (TaKaRa, Japan) through reverse

transcription. RT–qPCR detection was performed using a CFX96

real-time PCR system (Bio-Rad, USA) following the SYBR Green

method (Vazyme, China). After normalization to GAPDH

expression, relative mRNA expression levels were determined.

The mRNA-specific primer sequences can be found in

Supplementary Table S2.
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2.12 Statistical analysis

Statistical analyses were conducted using R 4.1.1 and GraphPad

Prism 8 (GraphPad Software, Inc.), results are based on two-group

comparisons, and no multiple-group comparisons were performed.

Continuous variables were described as the mean standard

deviation (SD) when normally distributed or median

(interquartile range, IQR) when not, and categorical variables

were described as numbers (percentage). The means of medians

for continuous variables in two independent groups were tested by

the Wilcoxon rank-sum test. The enumeration data analyzed by

using t-test. p<0.05 was considered statistically significant. The

error bars indicate the standard deviation in the figures.
3 Results

3.1 Identification of T1DM-related
prognostic DEGs

WGCNA was used to determine an optimal soft threshold (b =

9) for constructing a scale-free network (Figure 2A) after multiple

iterations. After excluding the gray module, which contained genes

not involved in clustering, we identified 32 modules. Correlation

analysis between these modules and T1DM highlighted the

magenta module, consisting of 189 genes, as having the highest

correlation with T1DM (correlation coefficient = 0.75, P < 0.001)

(Figure 2B). A scatterplot further illustrates the correlation

coefficient (0.75, P < 0.001) between GS and MM within the

magenta module (Figure 2C).

In the TCGA-KIRC cohort, we identified 1521 DEGs,

comprising 947 upregulated and 574 downregulated DEGs

(Figure 2D; Supplementary Table S3). Subsequently, 1554

prognosis-related genes were identified through univariate Cox

regression. The intersection of DEGs, prognostic genes, and

magenta module genes revealed seven genes designated as TIDM-

related prognostic DEGs (Figure 2E).
3.2 Identification of genes associated with
the prognosis of patients with TIDM and
enrichment analysis

A set of 20 genes associated with the TIDM-related prognostic

DEGs was identified using GeneMANIA (Figure 3A). Subsequently,

a PPI network was visualized through Cytoscape (Figure 3B). To

gain insight into the functional implications of these genes,

enrichment analysis was performed via the Metascape database.

The results indicated that the following pathways may represent

pathways shared between T1DM patients and ccRCC patients: the

mitogen-activated protein kinase (MAPK) signaling pathway, the

biosynthesis of cofactors, protein domain-specific binding,
Frontiers in Oncology 05
phosphotransferase activity, and the modulation of chemical

synaptic transmission (Figures 3C, D).
3.3 Selection of shared biomarkers
between T1DM patients and ccRCC
patients using multiple machine
learning methods

We first used the RF and SVM-RFE models for gene selection.

Supplementary Figure S1A shows gene selection based on the

minimum error point in the RF model (X=152). The RF method

exhibited superior machine learning capabilities, as evidenced by

smaller residuals (Supplementary Figures S1B–C) and higher AUC

values (Supplementary Figure S2A) than those of the SVM.

Consequently, leveraging the RF method, we identified seven

candidates from 27 T1DM-related prognostic differentially expressed

genes (DEGs) and their associated genes. Furthermore, LASSO

regression showed high AUC values in the TCGA-KIRC cohort

(Supplementary Figure S2B), and identified nine genes with the

lowest binomial deviance (Supplementary Figures S1D, E). The

intersection of genes detected by both the RF method and LASSO

regression revealed three hub genes, KIF21A, PIGH, and RPS6KA2, as

illustrated in a Venn diagram (Supplementary Figure S1F).
3.4 Validation of the expression patterns of
the hub genes

We validated the expression of three hub genes in both T1DM

patients and ccRCC patients. Similarly to PIGH, KIF21A was

expressed at low levels in both T1DM (Figure 4A) and ccRCC

(Figure 4D) patients (Figures 4B, E). Conversely, the opposite trend

was observed for RPS6KA2 (Figures 4C, F).

To address the issue of patient diversity, the study analyzed the

demographic characteristics of the TCGA-KIRC cohort

(Supplementary Table S4), which primarily includes White and

Black patients. While no significant effects of these factors on gene

expression were observed, however, the potential influence of

ethnicity on disease mechanisms should not be ignored. Thus, to

mitigate this limitation, we validated our findings using RT-qPCR

on clinical samples from Asian patients, demonstrating the

applicability of our results across diverse populations. This

partially addresses the underrepresentation in public datasets. By

RT‒qPCR, we confirmed the downregulation of KIF21A

(Figure 5A) and PIGH (Figure 5B) and the upregulation of

RPS6KA2 (Figure 5C) in ccRCC tissues compared to normal

tissues. Immunohistochemical (IHC) analysis of samples from the

Human Protein Atlas (HPA) database further confirmed these

trends: KIF21A (Figure 5D) and PIGH (Figure 5E) exhibited low

expression, while RPS6KA2 (Figure 5F) exhibited high expression

in ccRCC tissues compared to normal tissues. These findings
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provide strong evidence for consistent expression patterns of these

three hub genes in both T1DM patients and ccRCC patients.
3.5 Validation of the prognostic efficacy of
the hub genes

Univariate Cox regression analysis was performed to validate

the prognostic significance of the hub genes in both T1DM patients

and ccRCC patients. KIF21A, PIGH, and RPS6KA2 demonstrated

significant prognostic performance in T1DM patients, with AUC

values of 0.933, 0.858, and 0.908, respectively (Figure 6A). In ccRCC

patients, the AUC values were 0.964, 0.992, and 0.826, respectively

(Figure 6B). K‒M survival curves confirmed the significant

correlation between these genes and the survival of ccRCC

patients (Figure 6C).
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We also assessed the prognostic performance of the hub genes

in independent validation datasets for both T1DM (GSE9006) and

ccRCC (GSE53757) patients. In T1DM patients, the AUC values for

KIF21A, PIGH, and RPS6KA2 were 0.783, 0.800, and 0.850,

respectively (Figure 7A). In ccRCC patients, the AUC values were

0.972, 0.912, and 0.839, respectively (Figure 7B). Combining the

results from the original and validation cohorts, it is evident that

these hub genes exhibit superior prognostic efficacy in both T1DM

patients and ccRCC patients.
3.6 Single-gene GSEA of the hub genes in
patients with T1DM and ccRCC

We performed single-gene GSEA of the hub genes in the T1DM

and ccRCC cohorts.
FIGURE 2

(A) Fitting index of the scale-free topology module under different soft thresholds (left) and network connectivity under different soft thresholds
(right). (B) Correlations between module eigengenes and type 1 diabetes. (C) Scatterplot showing the relationship between gene significance (GS) for
type 1 diabetes and module membership (MM) in the magenta module. (D) Differentially expressed genes (DEGs) in ccRCC samples compared with
normal samples in the TCGA-KIRC cohort. (E) Intersection between the DEGs and prognostic genes from the TCGA-KIRC cohort and the magenta
module genes from the T1DM GEO dataset.
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The results showed that the hub genes were involved in the

estrogen response, epithelial–mesenchymal transit ion,

inflammatory response, angiogenesis, KRAS signaling, and other

pathways in both disease groups (Figures 8A, B). The identified

pathways highlight shared mechanisms underlying T1DM and

ccRCC, supporting KIF21A, PIGH, and RPS6KA2 as shared
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biomarkers. Such as estrogen signaling enhances insulin-like

growth factor-1 receptor activity, exacerbating the effects of

elevated insulin and promoting ccRCC development (36).

Increased oxidative phosphorylation activates the pyruvate

dehydrogenase complex, reprogramming glucose metabolism and

the TCA cycle, thereby facilitating tumor growth and metastasis
FIGURE 4

(A-C) Expression of the hub genes KIF21A, PIGH, and RPS6KA2 in normal samples and T1DM samples (GSE55098). (D-F) Expression of the hub genes
KIF21A, PIGH, and RPS6KA2 in normal samples and ccRCC samples (TCGA-KIRC).
FIGURE 3

(A) GeneMANIA was utilized to identify the interacting genes associated with T1DM-related prognostic differentially expressed genes (DEGs) in clear
cell renal carcinoma (ccRCC). (B) The protein‒protein interaction (PPI) network visualizes the interactions between T1DM-related prognostic DEGs
and their interacting genes in ccRCC. (C, D) KEGG and GO enrichment analyses of T1DM-related prognostic DEGs and their interacting genes
in ccRCC.
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(37). Additionally, partial complement system activation increases

immune cell infiltration in the tumor microenvironment while

promoting immune evasion, ultimately driving distant metastasis

(38). These shared pathways underscore the interconnectedness of

T1DM and ccRCC, with dysregulated mechanisms contributing to

ccRCC risk and progression in T1DM patients. The roles of

KIF21A, PIGH, and RPS6KA2 in these pathways reinforce their

potential as diagnostic and therapeutic biomarkers.
3.7 Associations between immune cell
infiltration and hub genes in ccRCC

We compared immune cell infiltration between the normal and

ccRCC groups in the TCGA-KIRC cohort (Figure 9A). Most

immune cells, including memory B cells, NK cells, T helper cells,

dendritic cells, and monocytes, exhibited increased infiltration in

the normal group. Conversely, immunosuppressive cells such as

Tregs and resting immune cells were more abundant in the ccRCC

group (Figure 9B).

We also examined the correlation between the hub genes and

immune cells infiltrating ccRCC. KIF21A and PIGH exhibited

positive correlations with activated NK cells, follicular helper T

cells, and gd T cells, while they had negative correlations with

eosinophils, resting NK cells, naive CD4 T cells, and Tregs, and

RPS6KA2 was positively correlated with NK cells resting. It was

negatively correlated with NK cells activated and M1 macrophages

(Figures 9C–E). Notably, there was a significant positive association

between KIF21A and PIGH with activated NK cells, which are

immune cells with broad-spectrum anti-tumor effects, while

RPS6KA2 was negatively correlated with its activation

(Figures 9F–H). Given the low expression of KIF21A and PIGH

in ccRCC and the high expression of RPS6KA2, KIF21A and PIGH
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may act as tumor suppressor genes that promote NK cell activation

in ccRCC, while RPS6KA2 may function as an oncogene that

inhibits NK cell activation.

Finally, we analyzed the interactions between different immune

cells and revealed positive correlations between activated NK cells

and TFH cells, gd T cells, and resting mast cells but negative

correlations between eosinophils and naive CD4 T cells (Figure 9I).
3.8 Single-cell sequencing analysis

After quality control, we analyzed the ccRCC microenvironment

using scRNA-seq data, which involved clustering 40215 cells into 18

distinct clusters (Figure 10A). These 18 clusters were further

categorized into eight cell populations through cell cluster

annotation (Supplementary Figure S1) (Figure 10B). Pseudotime

analysis revealed the pseudotime trajectory of these cell populations

(Figure 10C). Our single-cell analysis showed that KIF21A was

primarily localized in NK and T cells, PIGH was mainly expressed

in NK, T, and endothelial cells, and RPS6KA2 targeted epithelial and

endothelial cells (Figure 10D).

We also investigated interactions among these eight cell

populations and noted a strong correlation between NK cells and

CD8+ T cells (Figure 10E). CellChat analysis revealed interaction

patterns among tumor, immune, and stromal cells in the ccRCC

microenvironment. In pathways such as the SPP1, THBS, and GDF

pathways, epithelial cells act as prominent senders, while NK cells

and T cells act as receivers. Conversely, in the CD99 pathway, NK

and T cells were senters, and epithelial cells were receivers

(Figure 10F). Notably, in the macrophage migration inhibitory

factor (MIF) pathway, epithelial cells were the strongest sender,

indicating robust MIF pathway activity between epithelial cells, NK

cells, and T cells (Figure 10G).
FIGURE 5

(A-C) The mRNA expression levels of KIF21A (A), PIGH (B), and RPS6KA2 (C) in clinical samples were detected by RT‒qPCR. (D-F) Immunohistochemistry of
KIF21A (D), PIGH (E), and RPS6KA2 (F) in normal tissues (left) and ccRCC tissues (right) from the HPA database. *** indicates P < 0.001.
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4 Discussion

Currently, the precise pathological mechanism underlying

ccRCC remains elusive; however, gaining insights into the

mechanisms driving the initiation of ccRCC is essential for

formulating effective prevention strategies. Despite its relatively

low incidence in the population, however, the onset of ccRCC is

insidious, and its propensity for metastasis intensifies in advanced

stages. Even after surgical resection, the recurrence rate of ccRCC is

approximately 20-40%. For those with metastatic ccRCC, despite

the combination of chemotherapy, the prognosis remains grim (39).

Therefore, early detection and prevention of ccRCC has important

clinical significance, especially for high-risk groups such as

diabetic patients.

T1DM is an autoimmune disorder characterized by the

progressive destruction of b cells (5). The human leukocyte

antigen risk alleles present islet antigens to CD4+ T cells,
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initiating an immune response against b cells. Additionally, CD8+

T cells are stimulated by cytokines produced by B and T cells (40,

41). Consequently, as the primary cytotoxic effectors in specific

immune responses, CD8+ T cells are pivotal for destroying b cells

during the progression from insulitis to T1DM (42).

Recent studies indicate that the incidence of T1DM is

progressively increasing; while it predominantly develops in

children and young adults, many patients are diagnosed with this

condition during adulthood. In such cases, the destruction of b cells

is variable, exhibiting characteristics of both T1DM and T2DM.

This unique manifestation may be associated with the penetrance

(43, 44) of the immune system. Notably, long-term DM is

correlated with an elevated risk of numerous cancers (45). In

patients with long-term DM, metabolic syndrome mainly includes

obesity and high blood sugar. Obesity triggers changes in the

immune microenvironment, including hyperinsulinemia, elevated

insulin-like growth factor levels, and chronic inflammation, which
FIGURE 6

(A) ROC curves showing the prognostic performance of KIF21A, PIGH, and RPS6KA2 in patients with T1DM. (B) ROC curves depicting the prognostic
performance of KIF21A, PIGH, and RPS6KA2 in ccRCC. (C) Kaplan‒Meier survival curves illustrating the prognostic impact of KIF21A, PIGH, and
RPS6KA2 in ccRCC patients.
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collectively contribute to cancer progression (46). Many cancers,

including ccRCC, rely on increased carbohydrate metabolism.

Cancer cells in hyperglycemic patients can absorb more glucose,

leading to increased proliferation, metastasis, and poor prognosis

(47), and hyperglycemia induces oxidative stress and DNA damage,

promoting genomic instability and cancer initiation (48). Thus, as a

chronic proinflammatory condition, DM significantly affects the

tumor microenvironment, promoting cancer occurrence (49).

By integrating multiple transcriptome data and ccRCC scRNA-

seq data, we used multiple machine learning methods to screen

three biomarkers that are common between T1DM patients and

ccRCC patients (KIF21A, PIGH, and RPS6KA2), which are linked

to tumor and immune infiltration, and to predict the trajectory and

prognosis of T1DM patients and ccRCC patients in an independent

validation cluster. Our results revealed multiple pathways linking

T1DM with ccRCC, which may be related to increased

inflammation and an adverse prognosis for patients with ccRCC.

For example, in the MAPK pathway, both diseases may involve

several cascade protein kinases that coordinate intracellular

signaling. This pathway influences lymphocyte differentiation,

activation, and inhibition (50). Overactivation of the MAPK

pathway could promote the transformation of renal cysts to

ccRCC and enhance the proliferation of cancer cells, thereby

enhancing the progression of the disease (51).
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Among these biomarkers, KIF21A plays a pivotal role in

microtubule assembly, and research has shown that its activity is

significantly decreased in several cancers, subsequently influencing

the regulation of cell polarity and migration (52). Previous

investigations have shed light on the role of KIF21A in lung

cancer. The expression of KIF21A decreases owing to DNA

methylation in patients with lung cancer. This decrease in

expression heightens the risk of distant metastasis of the

cancer (53).

PIGH is an anchoring mechanism for numerous cell

membrane-bound proteins and plays an integral role in

synthesizing glycosyl phosphatidylinositol (54). Downregulation

of PIGH expression leads to heightened chemotherapy resistance

and bolsters the phenomenon of immune escape within the realm of

cancer (55).

RPS6KA2, a serine/threonine protein kinase family member, is

substantially overexpressed in several cancer types, including

prostate, breast, and pancreatic cancers. Intriguingly, such

elevated RPS6KA2 levels have been associated with fortified drug

resistance and the reversal of cancer cell apoptosis typically induced

by chemotherapy (56).

Consistent with the above conclusion, our study showed that

ccRCC patients with low KIF21A and PIGH expression and

elevated RPS6KA2 levels exhibit a poorer prognosis and overall
FIGURE 7

(A) ROC curve of KIF21A, PIGH, and RPS6KA2 in the validation cohort for T1DM. (B) ROC curve of KIF21A, PIGH, and RPS6KA2 in the validation
cohort for ccRCC.
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survival than their low-risk counterparts. The analysis of the

scRNA-seq data revealed that KIF21A and PIGH predominantly

localize to NK cells, CD4+ T cells, and CD8+ T cells, and decreased

expression of these genes may reduce the activation of NK cells and

reduce the number of NK cells in patients with T1DM, increasing

the risk of cancer onset (6, 57). RPS6KA2 is mainly localized in

endothelial and epithelial cells. Single-gene GSEA revealed that

RPS6KA2 was significantly enriched in pathways associated with

angiogenesis and KRAS signaling in the TCGA cohort with high

RPS6KA2 expression. Therefore, RPS6KA2 may play a role in two

ways: on the one hand, it may promote endothelial cell

angiogenesis, and on the other hand, it may promote the

progression of malignant epithelial cells by activating the KRAS

signaling pathway; on the other hand, in diabetic patients,

hyperglycemia and inflammation trigger endothelial dysfunction,

which may eventually lead to vascular remodeling and renal

damage (58). Given that RPS6KA2 is localized primarily within
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endothelial cells, RPS6KA2 may play a role in transforming tumor-

derived endothelial cells into cancer cells and promoting

vascularization. The vascularization process is closely related to

tumor proliferation and metastasis (59). Thus, RPS6KA2 may be

essential for multiple vital steps in tumor development. Moreover,

we used CellChat to investigate cell interactions within the ccRCC

microenvironment. Our findings revealed that epithelial cells, NK

cells, and T cells all play active roles in the MIF signaling pathway,

indicating their potential involvement in mediating interactions

among these cell types.

This study focuses on exploring potential associations between

T1DM-related genes and ccRCC risk, laying the groundwork for

future mechanistic research. While it remains unclear whether genes

such as KIF21A, PIGH, and RPS6KA2 directly drive disease processes

or are secondary to other factors, we propose that their dysregulation

may result from the proinflammatory and metabolic changes

associated with T1DM. This dysregulation likely impacts shared
FIGURE 8

(A) GSEA analysis for hub genes in T1DM. (B) GSEA analysis for hub genes in ccRCC.
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biological pathways, including estrogen response, oxidative

phosphorylation, and signal transduction, thereby increasing ccRCC

risk or accelerating its progression. Moreover, the proinflammatory

state in T1DM may exacerbate gene dysregulation, further driving

processes that promote ccRCC development and progression.

We validated the prognostic value of these markers in both the

original and independent datasets, confirming their importance in

ccRCC patient survival and management. Although no significant

effect of race on hub gene expression was observed, the potential

impact of race on disease mechanisms should not be overlooked.

Thus, to mitigate this limitation, we validated our findings using

RT-qPCR on clinical samples from Asian patients, demonstrating

the applicability of our results across diverse populations. This

partially addresses the underrepresentation in public datasets.

The strong association of these hubgenes with ccRCC prognosis

and the stability of their expression across ethnic groups highlight

their potential as biomarkers for early detection and personalized
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patient management. We propose incorporating these biomarkers

into liquid biopsy platforms, such as ctDNA or RNA-based assays,

using advanced techniques like digital PCR and NGS to enable

early, non-invasive detection of ccRCC, especially in high-risk

populations like T1DM patients.

Due to our study’s reliance on bioinformatics methods, issues with

sample quality and batch effects within public databases may have

introduced bias in the analysis results. Consequently, additional in

vivo or in vitro experiments are essential to further validate our

findings. In this study, distinct external validation sets were utilized

for ccRCC and T1DM patients. However, it is imperative to

substantiate the robustness of the hub genes by incorporating more

external datasets in future investigations. Furthermore, our

conclusions are drawn from diverse patient cohorts and lack

validation within the same individual. Thus, future research should

employ animal models that integrate ccRCC and T1DM to elucidate

the potential relationship between these two diseases.
FIGURE 9

(A) Immune cell infiltration of the TCGA-KIRC cohort. (B) Differences in immune cell abundance between the normal and ccRCC groups.
(C-E) Correlations between hub genes and various immune cell populations. (F-H) A significant correlation was observed between the expression of
the hub genes and NK cell infiltration. (I) The correlation between immune cells. *indicates P < 0.05, ** indicates P < 0.01, *** indicates P < 0.001,
**** indicates P < 0.0001.
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5 Conclusion

In this study, T1DM-related genes were identified usingWGCNA,

and three hub genes (KIF21A, PIGH, and RPS6KA2) were selected

through feature selection in machine learning models that intersected
Frontiers in Oncology 13
with ccRCC prognostic DEGs; we also explored their role and

potential mechanism in the development of ccRCC. Single-cell RNA

sequencing analysis has laid the groundwork for obtaining a

comprehensive understanding of the functions and interactions of

these biomarkers within the immune microenvironment. This work is
FIGURE 10

(A) UMAP visualization of 50,487 cells in the single-cell RNA sequencing dataset GSE21002, where distinct colors indicate different cell clusters.
(B) Eight cell clusters (B cells, epithelial cells, NK cells, T cells, endothelial cells, mast cells, fibroblasts, and monocytes) were identified on the UMAP
plot. (C) Potential trajectory of eight cell clusters. (D) Expression levels of hub genes across different cell clusters. (E) The number and strength of
interactions between cell populations. (F) Various intercellular signaling pathways in which different populations participate. (G) The MIF
signaling networks.
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anticipated to offer possibilities for the prevention or early detection of

ccRCC in T1DM patients and to provide novel targets for

new pharmacotherapies.
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SUPPLEMENTARY FIGURE 1

(A) Gene selection using the random forest algorithm. (B) Comparison of the
reverse cumulative residual distribution between the random forest and

support vector machine methods. (C) Comparison of the residual values

between the random forest and SVM-RFE methods; the red dots represent
the root mean square of the residuals. (D) Selection of the optimal parameter

(l) for LASSO regression through cross-validation. (E) Gene selection using
LASSO regression. (F) The hub genes were selected as the intersection of

genes identified by the random forest and LASSO algorithms. * RF, SVM-RFE,
and LASSO analyses were performed using the TCGA-KIRC cohort.

SUPPLEMENTARY FIGURE 2

(A) Comparison of the receiver operating characteristic (ROC) curves

between the random forest and SVM methods in TCGA-KIRC cohort. (B)
The ROC curve of LASSO method in TCGA-KIRC cohort.

SUPPLEMENTARY FIGURE 3

Bubble plot depicting marker gene expression levels in each cell type.
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